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HISTORICAL DEVELOPMENT OF PHYSICAL DEVUICE MODELLING

Prior to the widespread availability of digital
computers, solid state-devices were theoretically cha-
.racterised using c105ed-- form analytical techniques ;
based on approximate solutions to the carrier transport
processes. A well known example of this type of
analysis was described by schbckly (1) in his paper
on Unipolaf FETS in 1952., This approach usually proceeds
by diviqing the device into regions in which simplified
linearised approximations are applied, joined by appro-
priate boundary conditions { 1,2, 3). This method was
originally applied to one - dimensional models, but was
later extended to include two - dimensional effeéﬁs'in
both silicom and Gallium Arsenide devices (4;5,6)

Important effects such as carrier velocity 'saturation,
absent from some of the very early quels, were included
in later unélyses (7:5 ); The closed - form analysis
technique proved very effective in characterising large
‘geometry unipolar devices and has continued to be used

in many applications which take advantage of the relative

simplicity and ease of programming inherent in this approach.

However, although this approach allows rapid analysis

and provides a basic insight into the-device physics,
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it is unsuitable for modelling devices where thé ﬁrans—'
port process is other than largely one - diménsional
and where the electric field varies rapidly throughout
thg device., This implies that a closed - form
solution is unsuitable for modelling sub-micron devices
and oany plana; devices, such as ' FETS, fdund ih.ér
wide range of disérete and integrated forms,

Interest in the numerical simulatiog-of,éemicon-

ductor devices, using phyéical device models, began over

or

twenty years ago, In 1964,7Gumﬁéls (9) successfully
Qemonstrated that this approach could be dised to charac-
terise a silicon bipolaf traﬁsistbr, using a one-dimen-
sional steady - state model, The limited computer
resources available at this time meant that device simu-
lations had to be restricted to one- dimension, McCumber

and Chyncwcth (10) demonstrated Gunn instabilities, in

what was one ot iie first . reported one-dihénsiOnal electron
temperature moaels for a uﬁipoiaf GaAs Sample. De Mari
(% SEY) appij cne -dimensional numerical models to P - n
junctions, In 1969 Scharfetter and.Gummel (13) reported
a one - dimensional simulation used to model silicon
Read (IMPATT) diodes.

.Their numerical scheme for accurately solving the
continuity equation has now become an‘eétablished technique

in many slmulations and iz still used in many two-dimen-

gional simulations,
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TwWo - dimensional numerical simulakions were '
developed to obtain a more realistic representation of
planar and thrge terminal devices. Tw 0-di mensi onal
models also allow othef importént phenoména such as
current crowding and high level injection in bipolar
junction transistors (B J T s) and short and this
channels in IFElg to be investigated, which is not possible
for une-dimensional wmodels. Kennedy and O'Brien (14)
reported a two - dimensional simulation for silicon
junction (FETS)V in 1970. Considerable effort has
been directed at simulating FETs, In particplar
metal - Oxide semiconductor FETs and metal semicondhctOr
FETs have received much attention.

Three - dimensional simulations have been recently
developed to account forrthree - dimensionai'effects
found in small devices with narrow widths and qonrunifor-
mities in 'the active regions. Small geomet}y very
large scale integration (VLSI) MOSFETS itk plExtany
widths of this order of the gate length cannot be
accurately modelled using two—d%mensional models and
three -dimensional simulaticns héve been used to inves-

tigate non-uniformities in this channel, fringing field

effects, breakdown voltage and,threshold voltage variations.




ABSTRACT

The historical development of physgical device
modelling was discussed and the physics of semiconductor
devices reviewed with particular emphasis on PN junction,
The depletion layer of.a PN junction was studied
extensively., The poisson eguation was solved and
an expression. was obtained which enables us to obtain
the width of a depletion layer.

Newton - Raphson iteration method was used to
obtain the extent of the depletion layer under a

specified biasing potential.



viii,

Semiconductor devi;es form tbe fundamental of
modern electronics, being used in applicdtions extending
from computers to Satellite communication systems. A
wide variety of devices are available, fabricated from
a range of semiconductor materials. The most common

.active §evices found in-electronic systems include
bipolar and field effect transistors, diodes, thyristor
and. triacs. Silicon is ene of the most coamonly used
semiconductor material for both discrete and integrated
-devices, although we have other materials like Géd&'and
InP,

Modelling plays an important role in the design' of
the semiconductor devices. The dqvelopment of so0lid
state devices has involvé& a largely empirical design
process with many iterations of the.fabrication stage
being required to €chieve the desired specification,

Device modelling could be able to predict characteris-
tics such as current - voltage, capacitance - voltage

relationship and voltage breakdown, all of which are

functions of the design parameters.
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NOTATION

q Electronic charge 1.6 x 10 1%

E = E (Er, E0) Dielectric constant.

Me, Mn E}ectron e;nd hole effective masses

h  Planck's constant, 6.626 x 10~ 2% J - s

k Boltzmann's constant, 1.38 x 10.-23’ J/K

Ei, Fg Electron energy at Fermi lenel; Energy gap

T Temperature

Q 3ol tsmann factor (q/KT)

ni. Intrinsic free electron density

n,p Electron and holw densities

Nd, Na Donor and acceptor concentrations

-/ Potential

@n, @p Electron and hole quasi-Fermi Potentials

E Electric fleld in vector and scalar, E = grad 4

Un; Up Electron and hole mobilities '

ADn, Dp Electron and hole diffusion constants

Jdn, Jp, jn, jp Electron and ﬁo]:e current densities in
vector and scalar time

1] time

G, U Generation and recombination

Ln, Lp Eiuvs &roa and hole lifetimes

Mo Free electron mass 9.11 x. 107 3_’~Kg




Mce Conductive effective mass of electrons

Ne, Nv Effective denslty of states in conduction

and valence Band.

Vin Built - in potential.
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CHAPTER ONE

CARRIER CONCENTRATION AND ENERGY BANDS IN SEMICON-

DUCTOR DEVICES.

Tel Semiconductors

At absolute zero a pure, berfect crystai of most
semiconductors will be an insulator. - . The,ch;racte}is—~
tic semiconducting properties are brought ‘about by
thermal excitation, impﬁrities, lattice defects, or
departure from non-chemical composition.: Semicon- -
ductor muterials are distinguished by having their ;
specific electrical conddctivity somewhéq_between that
of a good conductors (106 (ABCm)_‘)‘ and that of 5
éood insulators (1072 Cnﬁm)_l) ; hence the name. Among
those materlals, by far the most important in engineering
use 15 silicon (Si), Of quite lesser importance is
Germanium (Ge), which 1like silicon is an element belonging
to 2»rmup IV “of the periodig taﬁle, ) Becoming more
important daily are the compound semiconductors,
usually, compounded of two elements (but sometimes more)
of Groups IIXI and V or II and: VI of the periodic table,

Among -the compound semiconductors Gallivm Arsenide

(GaAs) is the most important. Also in use. for
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specific purposes are:-
Indium Antironide (InSb), Gallium Phosphide
(GaP), Cadmium Sulphide (Cds), lead -~ Tin =

Telluride (PbSnTe) and others.

1.2 CARRIER CONCENTRATION
@O

(m )

@
@ .
©: f@;;
@
IOE
@

Pig, 1 Three basic bond pictures of a semiconductor
(a) Intrinsic Si with neglible impurities

(b) n - type Si with donor (phosphorus)

(e) P - type Si with acceptor (boron),




3.

Figure 1, shows three basic bond pictures of a semi=-
conductor. Pig 1a ¢hows inlrinsic silicon, which is
very pure and contains a neglible small amount of impuri-
ties; each silicon -atom shares its four valence electrons
with the four neiggouring atoms, forming four covalent
bonds. Fig, 1b shows schematically an n-type silicon, -
where a substitutional ) i :
éhOSphOrﬂs atom with five valence electrons has
replaced a silicon atom, and a ﬁeéative - charged electron
is donated to the conduction band. The silicon is n;type
because of the addition of the negative charge carrigr
and the phosphorus atom is c alled a donor. .
Fig. 1C Similarly shows that when a Boron atom with three
Valem& electrons substitutes for a silicon atom, an
additional electron is accepted to form four covalent bonds
around the boron, and a positive -Icharged hole is created
in this valencw band. This 1s P — type, anﬁ this Boron'-

is an acceptor.

1e2s1 Intrinsic Semiconductor

e now consider the intrinsic case. The number of
occupied ccrnduction band levels is given by

n = EtOp

N(E)  F(E) dE CUGT))
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where E. ig the energy at the bottom of the
conduction band and EtOp is the energy at the top.
The density of statis N(E) can be approximated by
the density near the bottom of the éonduction band

for low - enough carrier densities and temperatures

,
P

~)

N(E) = M,

(B - k) 3
=gt (Mgg) 372 (1.2)

iu\

where Mc ig the number of equivalent minima in
the conduction band and M, , is the density-of-state

effective mass for the electrons:

2 g
Mg = (M M M3 )1/3 (1:3)

3

- * ”
where M, MZ. B2 are the effective masses

along the principal axes of the ellipsoidal energy

surface, an example is, in Silicon, M G =..(M; M1)1/3 _

d -
S o (ERg)
The Fermi - Uirac distribution function F(E) ig

given by F(E) - 1 ; (1‘5)
(E—EF)
KT

1 ¢+ exp
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where K is Boltzmann's constant, T the absolute
temperature, and Ep the Fermi energy, which can be
determined from the charge neutrality condition.
The integral in equatien (1) can be evaluated
to be
n= NC é F} (EF = EC)
i (1.6)
KT :
where Nc is the effective density of states in the

conduction baﬁg and is given by N. =2 (a2 Dye KT)3/2M

c
b2

B (7
For the Ferml 1level several }('f' below Ec in

non degenerate semiconductors,.the integral approaches

o E enf/2 and equation (1.6) becomes

En 3 e

c

n=N exp(EC-
,- AT

v, Similarly, we can obtain the hole demsity near the

top of the valeny band: P =N /7 Fi (EVK; Ef)

_ (1.9)

where Nv 1s the effective density of statis

= 3/2
in the valenw band and is given by N, = 2(2" P4h KT)

he
(1.10)

——— e
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whera Mdh is the density of state effective wass

of the valence band

. il b P
Myp = (Mlh 3/2 + Mp £ oy G 1.11

where the subscripts refer to light ahd heavy hole

masses. Again under nordegenerate conditions.

P=N exp(-rEf—E;,)‘

- v —
o 1.5

For intrinsic semiconductors at finite temperatures
cor;tinuous thermal agitation exists, which results
in excitation uf electrons from the valen: band to
the conduction- band and leaves an equal number of
holes in the Valence band, that is n = P = o, where
n; 1is the iutrinsic carrier density. -'This process
is balanced .by recombination of the _electrons in
the conduction band with holes in the valence band.
The Fermi level for an inii!rinsic semiconductor

is obtained by equating equations (1.8) and (1.12)

Ep o B . E., By Eln (Nv)
2 2 L

= Ec +« Ev + 2hi in (Mdh ; + oSS
)

2 b = Mde Mc2/3
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Hence the rermi level Ei of an intrinsic
semiconductor kenerally'lies verj clogse to the. middle
of the bandgap. ke’ >

The intrinsic carrier density islobtainéd from

equations (1.8), (l.lZ),ahd (1.13)

oP » nf = N, N, exp (-Eg/KT)

L Sl A T 5 ¢ Eg/PKT. (1/14)

1.2.2 Donors and Acceptors:

When a gemiconductor is doped with donor or
acceptor impurities, impurity energy levels are intro-
duced. A dimer level is definad as being neutral if
filled by an electron, and positive if empty and
negative if filled by an electrdp.

The simplest calculation ofiimpurity energy levels
is based on the hydrogen - atom model. The ionization

energy for the hydrogen atom is

: 4
.. 5 E, = MD‘ 1

327%E,%h2 = 13.6 oV _ (1.15)

where Eo is the free - gpace permittivity.
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‘Phe ionization energy for the donor Ed, can be

obtalned by replaciug MO by the conductivity effective

mags of electrons ‘ .
1 2 ]

and by réplacing Ed by the permittivity of the E8

in eqn (1.15)

£ @
Bq= (2" Moy g, _ (1.16)
o Vg e} T 2
8 o] . .

The ionization energy for donofs as calculated
in Eq. 1. 16 1s 0.006eV. for Ge, 0.025eV for Si,
and 0.07eV for GaAs. The hydrogen-atom calculation
for the ionization levei for the ‘acceptors is similar
to that for the donqrs. We conslider the unfilled
valenxv band as a filled band plus an imaginary hole
in the central force field of a negativiely charged
acceptor. The calculated acceptor ionization energy
(measured from the valenw - band edge)} is 0.015eV for
Ge, 0.0%V for Si and about 0.05V for GaAs.

1.3 Energy bands in Semiconductors.
The band structure of a crystalline sol%d;
that is, tﬁe energy - momentum (E - K) relationship;
is usually obtained by solving. the schroedinger equation

of an appropriate one - electron problem
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'ilz 2 ’
(-5 T2, v an = B Bi(n)

The bloch theorem states that if a potential
energy V(r) 1s periodic witb the periodicity of the

lattice, then the solutions By (r) . 4\ oopooo_

dinger equation are of the form

bk(r) = g JKeT U, (K,r) = Bloch function,

where U (K,r) is periodic in ' with the
periodicity of the direct lattice and, n is the band
index. From the Bloch theorem, it can be shown
that the energy Ek 1s periodic in the reciprocal
lattice, that 1s £ = By Gk whe re

Gazha s+ kbd's1c
h, k andl are integers
and a., »" and ¢ are reciprocal lattice
vecturs. for a given band index, to label the
energy uniquely, It 1s sufficient to use only K's
in a primitiveJcell of the reciprocal lattice,

The energy bands of solids have been studied

i ;
theoretically using a variety of pumerical methods.




10,

In the case 0f semiconductors, the three methods most
frequently used are the orthogonalized plane-wave .
method, the Pseudopoténtial method and the K.P method.
The valence band in the zincblende consists of
four subbands when spin is negleécted in the schroedinger
equation, and each band is "doubled whemj spin is taken

into account.

1 CONDUCTION BAND
|

Electron| | . | [

Energr | £y

|
|
\
|
|

; ' Hole
. I
VALENCE BAND Energy

_)Di stance

fig. 2:  Energy band aiagxam
Above is the energy band diagram of a Semiconductor.
At room temperature and under normal atmosphere,
-the values of the bandgap are 0.66 eV for Ge, 1.12eV
for Si, and 1,42eV for GaAs. These vallues are for

high - purity materials. For highly doped materials the




o
bandgaps become smaller. It has been observed experi-

mentally that the bandgaps of-wost gemiconductors

decrease with increasing temperature.

1.6
1.5 %
1.4 \ !
1.3 i
1.2 l (r’/
/)\ 1.1 \
wJ
«. 1.0
S \
T G® T
b - :
et W |
0.7 €2 }
0.5 : '
v : - - i
200

L]
500 600 800
T(K).
fig. 3: Energy bandgaps of Ge. Sl and GaAs As‘

a function of temperature.

Fig. 3 shows varlations of bandgaps as a function of

temperature for Ge, S1 and Ge, Si and GaAs. The bandgap
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approaches 0.75, 1.17 and 1.52eV respectively, for
the three semiconductors at OK.
The variation of bandgaps with temperature can be expressed

by a function

Eg (T) = Eg (0) - qu/(T +b)

-  Matcrials Eg(0) %D; L) b

GaAs 1.52 X18,, 204
st 1,97 « U473 636
Ge 0.75 h.77% 235

where Eg(o). a, b are given in the above table.
The temperature coefficient dEg/dT 1s'negative for the
aforementionéd three semliconductors. Some semicon-
ductors have positive dEg/dT, for example, the bandgap
of Pb.S increases from 0.286eV " at OK to O,41eV at
300K. The bandgaps of Ge and GaAs increases with

pressure near room temperature.

1.4 GENERATION AND RECOMBINATION OF EXCESS CARRIERS

In view of the fact that nenzero excess - carrier

concentrations represent a deviation from gquilibrium
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conditions, there arise i;hysipal mechanisms that
endeavour to restore the equilibrium state.
More pzﬁcisely. whenever the electron and hole concen-
trations i.e;“n and P are positive, corresponding to
total carrier'concentraﬁions greater than the equilibrium
values, there is a tendency for the excess carriers to
recnrhine oOr tb disappear by mdtﬁal annihilation conduc-
tion electrons fall back into vacancles in the bond
structure, thereby removing both themselves and an equal
number of holes'P' from circulation. If on the
other, electron concentration 'n’ apd hole concehtration
'P' are ‘negative, as they will be if the total concen-
trations are caused to be less than the corresponding
equilibrium.values, there is a tendency for excess
carrlers to appear or to be generate in ‘pairs by the
breaking of covalent bonds.

Recombination - genezafion_process that comes
into operation when the equi;ibrium 1s disturbed can be
described in terms of a local rate of recombination
which ﬁas a dimensions of pairs per cubic centimeter

per second,
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1.5 COMPENSATION AND DEEP IMPURITIES

A semiconductor doped by equal concentrations
of donor and acceptor impurities is said to be fully
compensated. The free electrons donated by the
donors are grabbed bylthé acceptors since a free electron
. 'comes down in energy when 1t occupies an acceptor
spate, and each system tends in equilibrium towards
its lowest possible energy.

-In a fully compensated sehiconductor, theanore,
ail the donated electrons have been caught by acceétor
states and none 1s available for conduction. All
the valence electrons stay in the valence levéls since
no acceptor state ig left inoccupled, s0 there are no
holes elther. The. number of available charge-carriers
will be very low, like in an 1ntriﬁsic, undoped, semi-
conductor. Contrary to intrinsic materials, however,
a compensate semiconductor has a lot of positively and
negatively charged ions (the donors and acceptors)
embedded in it and though macroscopically it is elec-

trically neutral, these charges would affect its

conductivity.
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If; an atom from Group II, like 2n, is used to
dope a éroup IV semiconductor like Si, two bonds in the
lattice will be missing in the vicinity of the Zp atom,
This atom can therefore accept elther a.single electron
from the valence band and become singly ionized, or
accept two and become dbubly ionized. The energy levels
that these valence electrons must attain to be accépted,
however, are much higher than for a Qroup III acceptor
like boron. Such levels are called deep. Thermal
energy is nolt sufficient to excite valence electrons
into them Wwut they can catch free electrons from the
conduction level. This may enhances the recombination
¢f such trapped électrons with holes that may come by,
Thermal energy 1is not sufficient to liberate an electron
trapped in a deep impurity. One there forg fi;ds that
deeb lmpurities drastically redpce the number of elsc-
trons free for conductions and an N~ type waterials so
doped behaves 1like an insulator. .

Deep levels may be created in semiconductor by
crystalline defects and by many heavy wmetal aéoms-
Especially useful are gold (Au), which in minut; quaniities
1s used in S1 to enhance recombination and increase the

operating speed of switching devices, and chromium (Cr),
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1s used to dope P - type GaAs, create deep donor levels
_ that cause compensation and turn it into a practical

insulator called semi-insulating GaAs. Such GaAs has
resistivities of uptp 109_ncm" and is used as a single

crystal substrate on which digital circuits or microwance

devices of GaAs are made.

{6 HIGH DOPING DENSITIES AND DEGENERATE SEMICONDUCTORS

In all our above diécussion. there 1s one implicit
assumption and that is that the 1n£pux'-i ty atoms are few
and far between 1n the semiconductor crystal. If their
concentration 1s made large enough for orbits of the
fifth distant electruons of neighbouring donor atoms
to start to overlap them they begin to be influenced by
each other and -then the semiconductor.

Properties.: such as the behaviour of its conducti-
vity with temperature, will change, Such a materials
is called degenerate, that is, one can no ]‘.ongeyr con'sidér
the allowed orbits of the olectrons independently.

They units into a single sysier;l in whcih the paui(i ex-
clusion principle, for-bi dding electrons to have the

same allowed state holds. We can obtain an estimate of
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the impurity concentration, N, above yhich energy levels
of impurity atoms become affected by the nearness of
other impurity atoms in their neighbourhood as fol}ows:
The average distance between neighbouring impurity
. atoms is N.‘/3 if N is their concentration. If this
" distance becomes comparable to the .diameter of thé fifth
electron orbit, degeneracy sets in . This leads to
a value of approximately 10'9 co™3 as the limiting
concentration (about three orders of magnitude less
than the gemiconductor atom concentration). The
technological 1imit to impurity inclusion is usually
higher and is called the s0lid solubility 1im1t; This

is property of the semiconductor, the impurity and ‘the
temperature at which ‘the impurity is introduced. _Attémpts
to increase the impurity concentration further will

fail because the excess impurity will segrate form
iqclusions in the crystal and will not be electrically
a;tive. that 1is,will not contribute carriers. High

doping densities also introduce ﬁschanical stresses in

the crystal because of accumulated difrerences in atomic

sizes and increase the number of crystal faults.
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CHAPTER _TWO

MOBILITY, ELECTRICAL CONDUCTIVITY, EXCESS CARRIERS,
LIFETIME, DI¥FU SION AND TRANSPORT PHENOMENA.

2.1 SCATTERING MECHANI SM

If a constant voltage source 1s connected to the
two sldes of a semiconductor chip, and electrical field
E i1g created in 1it. This field acts upon the free
?charge carriers and causes them to drift in the direction
of the force it applies; thereby creating a drift current,
When a charge carrier ic acted upon by a constant
electrical field in a vacuum, its ensuing acceleration

2 ig a = gk

and its velocity V at time t, 1f it started from rest:

T = jadt = Bt
M
() e

!
Inside a semiconductor, on the other hard, the

movement of the charge carrier is not smooth but is
perturbed by various obstacles, causing what'is known as
scdttering. There are two main types of scattering
mechanlsm: S

(a) Lattice Scattering is caused by colligions of

the moving carrier with.distrubances in the periodic internal
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potential inside the semiconductor crystéi. These
digturbances are due to fhe vibrations of the crystal
lattice atoms around their proper place in the lattice
because of. their thermal energy. The effect of the
internal periodic potential itself, which exists in any
crysta;, can be taken into consideration by assigning an
. effactive mass o’ to the moving electron or hole.
These usasses “re different from the mass M, of the
eiectnon outside the crystal. There fore it is 5ﬁiy the
dieruptions in the peribdic potential, caused hy the
thermal vibrations of the atoms, that scatters the drifting
free carriers: at a certain moment an electron can bump
into a region where thé crystal atoms are moré densely
packed than usual, yet a moment later it may find itself
in a spar sely packed region.

The dense and sparse iegions form pressure were
existing inside the crystal, The vibrational wave - particls
entitiesg are called Phonoms. )

The‘wave or particle nature that phmats exhibit depends
on the type of experiment performed, Their interaction
with current carries inside the semicondﬁctor results from
the local disturbances i@troduced_by the existence of

“'phonpus in the otherwise periodic lattice potential. The

interactions can also be looked upon as collisions between
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the current carries and phonogs. In these collisions,
the total energy and momentum are conserved, but become
redistributed, changing magnitude and direction of
darrier velocity. '

Following the colligion the carrier is again accelerate
in the direction of the field and, inevitably, scattered
again, and thls repeats all the time. ‘It is obvious
that lattice scattering will grow more severe with increa-

sing temperature.

(b) Impurity Scattering is caused by the presence of
ionized impurity atoms in various positions in the crystal
lattice. Due to their net charge, they exert a]force

on the free carrier passing nearby, causing it to chaﬁge
its direction. This type of scattering 1s less severe
it the free carrier 1s moving faster (that is, at higher
temperatures), and spends less time in the vicinity of ﬁho

ionized impurity atom.

. 242 AVERAGE DRIFT VELOCITY; MOBILITY

Consider a charge carriér under the effect of an

electric field E, when there is a scattering amechanism.
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Suppose we start with n, carriers at time t = O,
measured for each carrier from the moment of its last
collision, then atime t later. There are still
n(t) that have not sufféred a sec¢ond scattering colli-
sioh and that are still accelerating in the direction
of the field. Betweén t and t + dt an additional
dn carriers will suffer a second collislion and lose
their momentum in the field direction. The number
of still accelsrating carriere will therefore be reduced
by by dn which, to a first approximation, 1s proportionai
to the number of still uncollided carriers n and to the
time increment dt but not to the moving carriers'
energy L

- dn = % ndt PR 4 e

where 1 is a constant of proportionality. The
16

solution of equation  2.2.1, by separation of variables,

is n=n_ exp (- % )

o 24262

where T has the dimensions of time, the avérége

free time between colliglon, The probability” for a

colliston during the period dt is dn/no. There fore
2 sl

-dn =1 exp (-7 g 3.943

&5 T
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 The right - hand slde of 2.2.3 gives the distribution
of the time t that a carrier moves till it collides.

For instance, a relatively large fraction of the starting
jno ‘carriers will collide again near t = 0, at the
beginning of their mowément, because‘at t = 0, the

right -~ hand slde of 2.2.3 1s maximum. - But there will

be some, on the other hand, whose time t to the next
colligion will ve very long because exp( - %—) never quite
19aches zero in a [inite time, There fore some electron#
or holes will be accelerated to very high velocities, while
most will reach only a low velocity before colliding and
belng scattered again. To find an average tige betweeﬁ
collislons, we must sum the times to the second colliéion
for the various carrlers, assigning a proper weight to

each time t depending on the relative numbers'of carriers
B Tiiag b Thalk $Ena. '

The carriér drift velocity V= %£ E we obtain

a velocity that is proportional to the fleld and-is

consgtant in a constant fleld. The propor;ionality factor

15 celled MOBILITY and denoted by Je

B, n= & v, = BE.
[ 4 L M h
e, .
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where e, h refer to electron and hole respectively.
The net collislon time I between the lattice
scattering collision time T  and the impurity

collision iima Lo 1s:

® e
it

The resulting mobility 1s "“'_]. ) +1][_

where ,Ul 1s the moblility from acoustic phonon

lattice scattering and j,  the mbility. from :
,

lonized impurities. }]L and Uy eare temperature

dependant. N
The dependance of U on the témperature will
therefore be determined by by at low t;emperatures,
and by ,Ul at high temperatures, The higher the
doping level the lower A4 becomes, and consequently
the lower the becomes. . Infact it may become s0 small
that even at room temperature and above )Ji' would still

determine the total mobility.

2.3 <CONDUCTIVITY
The drift current densities of the holes and

clectrons are glven by

Je (drift) = qn (vVd)e = + qnf E

T 243610
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Jp (drift) = qP(V)y =+ aof E 2h3iete

"where Je is the electroh drift current density
and Jh 1s the hole drift current density. The

total drift current denslty is also glven as:

J = Jgt dy = quﬂe +'HUh)E 2e3¢3

The speclfic conductance 'J of the semiconductor is

deflna? as the ratlo orf the magnithdés/or J and E,

2e3aly

“ir %. = aq(oly + EBUy)

In the case of intentionally doped extrimsic
maternal, one of the terms 1n the bracket of eqhation
2.3.4 1s usually negligible compared to the other.

In the case vi an inirigsic materials, where tne number

of electrons equals the Aumber of holes,

26345

0; It Lue + By)
The speciric conductivity ‘varies with temperature
for two maln reasomns: One 1s the dependance of the
free charge carrlers concentratlon or temperature which

will be felt either at very low temperatures (when not

all the impurity atoms are ionized) or at very high
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temperatures (when the rate of generabtion of thermally
created free carriers becomes very high). The second
reason is the dependance of mobility on temperature,
which has less effect and detérmines the conductivity
in the intermediate range ‘if the doping 1§ high and
the material degenerate, the conductivity becomes more
or leés constant with temperature in the low and inter-
mediate rangeg. At low temperatures this results 7
from the ability of the extra electron or heole
agsoclated with the dopant atom to dr‘op from one
lerority atow to its very neaf“neigﬁbour without the °
necessity for thermal energy to ionize it,

The mobility obtained from conductivity measurements
is called conductivity mobility and refers to majority
carrier movement. The mobility of the min'orinty
species is usually termed drift mobility, and is
approxima teiy equai 10 the conductiviity mowility for

the same doping. .

24 EXCESS CARRIERS AND LIFETIME
The densities of carriers iu the semicanductors

and determined under thermal equilibrium, that -ig with

temperature uniform and equal to the surrounding ambient
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temperature, -and with .no external carrier injecting
mechanisms, such as irradiation by photoas, or forces,
suth as electricfied,'applied the homogenuity of the
doped semiconductor have .been dealt with un'der this
condition, only . the temﬁerature’ dopant density and
the semiconductor materilals ‘determine thé‘carrier con~
" centrations, which are uniform (Statistically) in time
and ‘position, since there is na reason fo} them to vary.
Equilibrium, however, can be disturbed: carrier con=-
centrations can be increased well above the values
appropriate to fhe temperature. When this happens we
say that the semicouducior contains EXCESS CARRIERS.
Let in denote the equilibrium value and n the

excezz value. There fore the  total carrier concentra-

tions is n =10+ n > 2.4.1a

—eeeeee

Similarly for holes, the total carrier concentrations

e —

ik P i=p RO wtpl o 2 2.441b

A common method to generate excess carrier is to
irradiate the ssmiconlucior by photous with a waveleasgth
short enough to ionize "the velence electrons, thereby
generating electron - hole pairs. In such a case

n = P, However, if the semiconductor is doped, say

type N, it has many more electrong than holes, s0 that
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the relative importance of the additional excess
electrons  ig much smaller than that of- the exce s
oinori ty holes, The number of these may be increased
by several orderg of magni tude, Oné can therefore
expect thut in any guch experiment on extrinsic material
most striking effect will bo the increase in minority
carrier density, The total genmeration is the sum of
the thermal gencration G, and the photon generation
Gph' In thermal equilibrium, Glh is balanceq by

the equilibrium recomination rate given by
R(T) = P(T) !-1 I-J = Glh (T) ______2.‘6.2

when the semiconduc tor is not in equilibrium and
the irradiation is suddently stopped. Sometimes will
pass before the excess carriers recombine and the gemi-
conductor returns to equilibrium. During tha_t time
the recombination zaté, being proportional to the inc rea sed
n and P 1s higher than thermal gene ration, which ig
unchanged because the temperature is kept constant,
The excess carriers will there fore graduaily di sappear,

During this period the excess of recombination

over generation is

R = R - §(T) = R = Gth =.rop = f‘ﬂp en e 2-“.3
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Substittuting n, p from 2.4.1, we obtain

R=r(pn+ pn+ PN gl

For N - type extrinsic'. material, where 0 Np 5.
n= P n, the only significant term in 'equation'
2sb.4 15 the one containing n:

R = rhp . _ 2.#;5 ;
'hig equation s.hOws that exce ss recombination
is proportimal to excess minority concentration.
If the light, after generating carriers for some time, -
is turned off at t = O, then the decay of excess )
minority carriers (here holes) during the time éegment
dt, t secods lat@y, will be-.

dp(t) ==R(t)dt = rap di 2.4.6
De fining Ih as
Ih“= BLR) # =
R(t) . ™= corstey, 2elte?
one gets dp _ -P s
at 7 g o 2.4.8
h Em—— ote

where 'I.h is called the ‘excess holes lifetime.
It controls the electronic behavidur of devices such

.ag transistors and diodes at high frequencies and during

switching.
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29 DIFRISION oF CARRIERS

Diffusion i 4 manifestation of the random

thermal motion of particles; it showsg up as a particle
current that appears Whenever mobile particlesg are

non uni formly distributed in a system. We base our
discussion of diffusion on the sketch below, showing
the concentration of the carrierS, taken to be holes
for this development, ag a function of the position
coordinate x ip a one - dimensional semiconductor
bar, Conelder a surface normal to the x coordinate

at Xy
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fig (a} Hole concentration

fig (b) Carrier distributions that produce the

same diffusive flow at x

0°

For the hole distribution shown in fig (a); above,
there 1s a diffusive flow of holes across this surface
in the + x direction, This'diffusive flow arises
s;mply because the hole concentration to the 1ef£ of

X, 1s greater than the hole concentration to the right

of Xge

We 1llustrate the dependance of the diffusive flow
of carriers on the concentration imbalance by focussing
on the carriers in the two bonlike volume elements

of cross-sections area A and width 0~ which 1lie on

elther side of the plane at X . In unit time some

fraction of the carriers in the volume element to the

left of X flow in the + X direction across the plane

at x as a result of their random thermal motion,
o

In the came time interval the same fraction of the carrilersg

jements are in the same thersal environ-

. in the wolume @

ment and are 5y£metrica1ly de fined,




becaug ;
uge thUI‘L are mOre carriers in the
ele

left volume
ment t} i
180 1n the right gpe. The net rate of flow
of holes 1
o 8 PPOP?rtional to the concentration imbalance
if P « deno "
téa the hale contraction in the left volume

element
nt and P, the concentration in the right volume

ele :
yent. the rate at which holes across the bOuRdary at

X, 1s

2e5.1

hole flux = (consténé) (P_-P )
- +

In the 1limlt, as 1 spproaches zero, this rate 1s

proportional to dP/d at x,. That 1s

- d
hole flux = Dy (ag) Xo

2.5:2

The constant of proportionality 1svéallea the |
diffusion coefficlent for holes., The negative sign I
appears because carriers flow do;h the concentration glope

- from regions of high concentration to regibns of lowar'.
concentration. - ‘

The hole current density assoclated with diffugion

is

e -d_B 2¢5. }
Jh = q?h dx . 3
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The
electrop current density agsociated with
diffusion 1isg

Yo = abe 4 2.5.4
These are cages of one - dimensional concentration

variations for holes and electrons,
Diffusion flows occurs simply because the number of
carriers that have velocity components dim;ted’frOm‘
the region of high concentration towards a region of
lower concentration is greater- than the number .of
carrlers that have oppositely - directed velocity
components. ‘.

The particle flux density that results from

di ffusion depends on the carrier - concentration gradient

and not on concentration itself.

2.6 THE TRANSPORT AND CONTINUITY EQUATIONS
In the general case where both concentration gradients

and electrical fields are present the current carried ‘

by each type of charge carrier has two components: a

y I

diffusion due to concentration gradients and drift due
u

to electric field. .From equations 2.3.3, 2.5.4 and

densitles ars
. tho-: current
e ) 2.6.1

dx

- gqp, 4P j
Jh___qphPE Q}.l‘ - !
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J, =

f-) tunE. - qDe QQ
dx

IR TN 2Gee
and the total conduction current will be
J o= Jy + Jge

”

This is a Current - transport equationg, It

forms a starting point for semiconductor device analysig. |

Region of 1ight absorption

and carrier generation1

: o
j ;-
.;1“‘)" — g (¢ +tx )

f
P(x)

Fig, 2.6.1: Hole flows 1n and out:- of an infinite-
slignal region to demonstrate the conti-

nuity edu&tion.l |

Lignt
f i L
7 ,/

hAr st el £+ A
e hm—— ]

S

MEN TS 2
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Fig. 2.6 e:
. Type N Semiconductor, partially
exposed
posed to lignt, Electrong (the majority) are. not
k .
marked Holeg ( the minority)-are garked with .

Referring to fig 2.6.2, how deep the excess
arriors can penetrate ‘tne coversd region before their
number 15 reduceg back to equilibrium.due to recombi-
natio‘n.

In order to soive this question, the continuity
equation for the charge carriersg must first de developed,
From fig, 2.6.1:, We examine a narrow, differential
section of our unit-are semiconductor bax;, between
X and x + dx in the covered region, |

Equating the time change in hole concentration |
ther: to the difference in hole flows into and out of
this section, adding the‘thermally generated new holes
and subtracting those recombining, all per unit time,

will get us the continuity equation,

ax = (1 Jeer_ L Jfxrex,t)) +
o y A g

(Gey _'%. )\dl

2.643




th © P/lh» where
P 15 the time . indepengent equilibrium hole concen-

tration, Substituting this andp - p , P into the

Similarly for electrong,

dn (Xpt) =+ 1 dle(x ’t) - .’l(x,t) \2.6'.5
dt § &

Restricting our attention to the static, time - indepen-
dent, field ~ free sltuation of fig, 2.6,2, The

concentration in the covered region at g depth x will f
be governed by equation 2,6.4, which reduced to =

-ld, --P=0 FN :
q dx Th ; ;

substituting Jy from» 2.6.1 we obtain

y . s : .I
_fﬁg-g=o : 2647 |

2.647 contains two

= % |

The solution of equation

integration constants:




S e

L;, = T, D)3

diffusiop lengths,

257, INTERNAL FIELD IN A SEMICONDUCTOR WITH A NON-
UNIFORM DOPING, [
Al =Xang, only semiconductors, whoge impurity }
doping density 1s uniform vere discussed. et yg !
examine a case where. there is a concentration gxadieni |

of the dopant along the X - A:xis.
. |
If the outside current clrcuit 15 lert open, .

" then we must have ; I ;
J =J6*Jh3 (0} 2.7.1 4
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5 in theMmaﬂliC
en

alsgo the currept of each 1ndiv1dual
._carrier type must be zero,

1f the Bemicoﬂductor is al (o]
8
equilibliuml

Je - Jh 3 O \207.2 -
S t
ubstituting 2.6.1 and 2,6,2 14nto 2.7.2, we then
find that
in the case of a nonuniform, semiconduc tor

>

at equilibrium, y4n internal 1built-qin? electrical field

must exist

E :"m]_

L dp
: = ~ De dn
B P g 7 e 2.7.3
Einstein's relations i1g written as .
De,h = KT i 2.7.4
Ne ,h q
Applying L£instein's relations
E= KT 1 dp =~ KT | da ’
q P dx q §p dx . 2.7.5

The physical reasons for this internal field,
dependent on carrier gradients, are as -follows: Assume

the dopant concentration, say that of donors, decreases

with x. The free electrons cqntribute by the donors

tends to diffuse towards the .lower concentration. bR

-dn the +x direction.

ionized, cannot move from their_lattice positions.

The donors, which are positively

i
i
!
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consequently. a net

Positive charge.will be created
gRidtie dott, oquq) o W) - &%) ), while on the
eight, there are more electrong than donors and the
net charge will pe negatiye, 80 that a'fieid cause arise,

The diffugioq and the riejgq cause two oppoging currents

and equilibriypy is redched when the two errects Just

balance each vthep,
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CHAPTRR pyippp

N__JUuNcrron
3.1 Introdyction,

‘ A PN Junction OCcurs whenever the lampurity con-
centration Changes fron a predominance of donors to a
pre_dom_inance of acceptorg over a sufficliently small
distance, Under gych conditioﬁs a region deveiops.
in which the mobile . carrier concentrations are much
s@xller than the immopile - impurity concentrationg
and their local deviations from electrical neutrality,
accoampanied by intenge eloctric fields, The’ charac-
teristic behaviour assoclated with P N junctiong 15 a

consequence of these deviations from neutrality, in

sllicon and Germanium, this change must occur over a

distance not significatly greater than about 10~7g £o

produce a PN Junc;ion. :
If the change in impurity concentration occurs more 4

‘gradually, there will be no substantial deviat10q from
neutrality, and the structure will behave gimply as a

two carrier conductor in which the carrier concentrationg
WO car

,vary from point to point.
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(b) electron and hole ~N i =
flows; =~===- diffusion Depletion region ;
flow, drift flow; (c) . !
!

(c) distribution of lonized .
= }

lmpurities and free carriers in equilibrium,
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Fig. 3.2.1 (a)
sides of the

shows the impurity atoms on both
Junction, together with the contributed:

c

arriers as though complete. neutrality existed everywhere.

At :
t any polnt the ionized impurities charge is balanced

by the 9ppoaite charge of the free carriers.

3.2.1

ND +’F = Np+ n
Such a situatioﬁ cannot really exist. The

electrons, which are in ®&xcess on the N-éidé, diffuse
into the P side, when there are few of them. Holes
diffuse in the opposite direction, A momentary
di ffusion current flow arlses, as marked by the dashed
line in fig. 3.2.1 (b). But this flow causes an
immediate loss of neutrality; the N eide, loaiﬁg
electrons, is charged positive becuase of the net
donor chiargs  tele Ushiad, the P aside similarly bechass
negatively charged. A potential barrier builds across
.the junction which obstructs any further majority carrief
di ffusion and makes the current zero, as it would be
in equilibrium, For each carrier type, there must

be two current componentss diffusion and drift, which

h other to zero thermodynamic equilibrium.
eac

balancﬁ




- !‘20

A regi o
gion must there fore exist, on both sides of

$ho mstallurgical Juscilon, 1n which thore is s hutlie

in field
in equilibrium and.in which there is a depletion

of mobile carrierg, gince the field gweeps them away.
This region is called the DEPLETIbN LAYER, it 1y
a gpace =~ charge region becauge of the net ionized impu-

rity .charge in it. This is shown in fig. e 2e e

To qbtain expressions for the built in field and
the width of the depletion layer, we need the transport
equa.tions (2.6.1), (2.6.2), that 1s

Jh = qp);PE = q.]_)h

[
n

dp
g0 ==

qenk - gDy dn
dx

and poisson's equation (in one dimension) which relates

the rate of change Of the electric field E to the net

charge denaity ( amd dielectric constant EE

_-d% = P
g = - 4V £

ax axe - D e ————
From the discussion

3.2.2

vV is the potential.
= 0 1in equilibrium.

where

Jh:Je

above, we must have
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From J =0 s
h We §
‘ get de = Dh 1dP
TSP

. 323
Inte .
grating E frop BEto BN silde, between points
1 ' '
ar enough from the Junction for 1tg infiuence to be
negligible and for neutrality to hold, where P = Ny
on the P aig N |
e and P - ny/Ny on the N gide, one gets

the buillt - ip voltage denoted by Vie

S - Edx = - Dn N B, o P;
By dp = sip
p e 1)
2 Py L
L Vs = Dhogn Ny N
)Jh e Ty 3.2.26

Similarly, 1if we start from the J, = O

equation we obtain similar result

, D
Vg =~ Edx= e 14, _ Do, N Ny
Iua n }Je 2
n
l
34245

Since it 1s the same Vg irrespoéctive of whether

or (3.2.9) 1s used, we must have

(3.2.4)

3 P

=5 ;E o sn R
=

e s g

|
b
!
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which 4§
5 part of Einstain's relation
8.

The built-j ] en~-
n vyol ta e V [}
4 B depends on the con

930,59 lhe Depletion Region in Equilibrium ang under
KReverse bias. Ry

In order to find hpw the potential, eiectric field ‘
and charge depend on Xs the ' distance from the injuction
pPlans, poisson's equation must be used because of the

net impurity charge in the depletion region,

3.3

E_.+= E i n
F !‘i¢ K;lnp

where EF 1s iterui energy, EFi S0 omml

level irn the intrinsic semiconductor. Let us obtain

the polsson's equation. Use of ' (3.2.7) yields for

the N side of the junction,
an = EF . EF‘i 5 311:1 ﬂ]_ 2,3,2

Py

r—

i
?
:
-1
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where Vn dependg op X

Use of pp - nf
glves an = KT 1n N i
n

n

1 ——— i 3.3.3
Similarly, for the p A

‘ Pu='ty onpf V)
P 1 avp
5 : XT —.._,3/-3'5

Equations <3'3~‘?). and (3,3.5) are called ,Bo.ltz.m‘ann
relations, Using them we can express the carrier
concentrations asg functions of the potentialg Vn and
Vp. The two separate potentials can »e combined

into one by taking the intrinsic Fermi and Bp Sy

o

the junction plane x = O as the common reference level - °

of zero potential, This cembined potential V(x)

would then revert to Vn(x) for x "o and to Vp (x)

0 The total charge dengity in the de_spletion region
1s therwfore: .
Q= qU@D 4 P—.NA—H)

= q( Ny+ Ny - 2ni sinh 9%(;) 3.3.6

(B3l and) 3345 have been used.

where g
equation can now be w'ritten for our

Poisson's

one dimensional junction

Q.

s —
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This is a second

= Order nonlinea p differential
°quatlon for y(yy, '

To solve 1t ¥e must know ‘the
1mpurity progiles

Ni(x)  ang Np(x), ‘Analytic
solutiong

can be obtaineq

conly gor simple cases
suth ag the ideal step jun '

ction where
Np = Constant Ny=6 for xyzo0

= Congtant fop x> 0

ND=O N

=
M

or for linearly graded Junction, where

Ny = glx) (x > 0) ang Np==-gx) (x¢ 0),

go™%) is a pPositive constant.

bt
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Fig, e
00 4 TS The charge = fye14 Thfeaity and

potentiagl 1, the depletion e e |

step Junction ( or Abrupt junction),
The bour;dary condition for (3.3.7) 1s that’
the total voltage across the junction vt from
X = = Xn on the N gide to x = Xp .‘on ‘the P side,
is the sum of the external voltage VA and the
internal built in voltage Vg &iven bys. (Beas5)
In equilibrium V, = O. ITdn external voltage

VA 1s applied 1t changes -V, and with it X, and

Xp. If Vv, has the same polarity as Vg (+ to N side,
= to P side), it is called Reverse Blas and is then i
' ‘ B
El
a4 negative number, There fore i
Vt s VB - VA

Now &c:ving polsson's equation for any vt'

Because of the full depletion assumption, (3¢3.7)
: N eide (n= P =z 0;

e

hag the following form on the

. o |
i NSs 0; N, = coustant): 4L = @g. X, s xS0 __3.3.8(a)
l e 0 dx? Ee

|
:
g
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and on the 1 4 51dc (11 P = 0; Nn = constaﬂt,

-] - )
dx EEO 4 ORIV < xp h__jcjoﬁ(b)
Integrati_ng equationg (3.3.8) Piis

dVTic : i
q_rigiu Cyi - X, X <o 3.3.9(a)

3 EE,
? = qNA . ; ) . Hon .
2 o Xow TRl ol i 30l

. EEQ L N xp 3 9(b)

The integration constants C, and C2 u;ay be

replaced by expressions involving X, and Xp_ becauée
the field E = ~ dV/dx becomes zero at the depletion

and X =» + Xp. Thare fore

edges x = = Xn \

Cy =~alp g Cp= -l X

n
EEO ’l . Eg-
E=z -gV = ~-qgN B . &
dx E‘f (X =Xi 0€X g X 3.3.10( ).

The field E is shown in fig 3.3.1.

A Second integration yields
XS0 sl

V=>-aiip (¥, x4 3)¢Di-XS
EE, -

d,SX$ X 3.3.11(b)

:
i
ﬁ
i
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At Fer 5o, bant.
‘ = two ¢
Quations yie)4 the
same potential-
Thereforg Dy= Ds. Since J
e took x - 0 as the reference

plane for zep¢ Bt
t Potential e also have p, - D, =0,

The potential V(x) is also shown ip rig 50500 0 ¢

e since it 15 only in this region
that there 1s a rie1q, Ly

Vo= v (=X} -v (+Xp)

= qa r'n 2 2
\’\. Xn + NA Xp)

= 3 B2
2EE

In order to obtain X, and Xp separately, we
impose a condition that the net positive charge on the
N side equals the net negative on the P slde, or that
the field at X = O, obtained from 3.3.10(a), is, the

same as that obtained frem 8.15(b) (which by Gauss's

luw amounts to the same thing) .-

' W3
q . aNp X, = Ak, 3.3.13
A

here A is the junction area, the charge Q is
w

shown in fig. 3.3.1. il
For. e.g (3.3.12) and (3.}.)3? X, and X, ca

be obtaln:

bl
g

I T

|
i
5
]
§




R —

i
B
£
E
b

e T
Ny( *N )) — 3.3.14(a)
Pt EEEQ Yy Ny %
Q ﬁ; ;
My + ) 3.3.14(b)

X = X fX=(2EE, \]t )} )i(N ;
g (ETN;‘I”N))i ZV( A) D g

it 1
shou}d be noted that X, and xp aré propor-
tional to Vt » which is characterigtic of a step
Junction,
Tha maximum fileld occurs at the metallugical

Junction, at X = 0o ;

Foax = 9 o N, X
EE, = W 4y
b
(6]
= (29Vy NNy
EE, N+ np)

e THE JUNCTION UNDER FORWARD BIAS

If two olimic contacts are attached to the opposite
P and N regions and an external positive.

sides of the

voltage VA applied,
v = VB b’ A ——

the total potential barribr is

30‘0-1
t

reduced to

it
[

T e
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Thig is fOrwapd 'l

c~onnect;on and it oo

the en?rgy-bandg bending. I

Fig, 3.4.1:  The forward bias
Junction connection,
Even a gsmall reduction of the barrier VR by VA
imbalances the drift and diffusion components in the
Je and Jn expressions, the drift being reduced and the
diffuslon inchanged. A net current I now flows in the
¢ircuit of fig. 3.4.1 because of diffusion of sajority

carriers. Let us examine the changes in minority

carrier concentrations at the boundaries of thg deple~

tion layer. The imbalanced components in the current :

equations (2.6.1) and (2.6.2) are two very large quanti- i

ties. Taking (2.6.1), for example, they are U, PE -

and thdp/dx. ) i
| Dx g
Une cau approximate dp/dx by (Pn” Pp)/Dx,
ion layer
: f the deplet
where Dx is the‘width o k

‘ P, n ab, A
J, (diffen) - Qb Pan p T

e

3e4.2
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Since p A~ N
‘ ad and _ 2
. ' p A &nd B _ g /Ny << N,.
u .
Suppose, in ®Quilibrjug, = 10'8gg=3 o o)
and aseuming D A om -, Dx' =10 cm,

B
h = 15cm< S‘ in 31' T »

' 8et J, (diffsn
= 24000Acy™2, h.( gL )

by

T g W e
w (AR = el

| flowing in the Opposite direction, With two such
large quantitieg ‘only a very small unbalance is necessary
to obtain a sizable net current. We restrict our
attention to such small umbalnces and we assume that

the functional relationship between E and P orsm

| regains the same in forward bias as it was in equilibrium

‘- when Je = Iy = 0. EguaatiOns (2.6.1) afnd (2.6.2)

then yleld respectively.

HIE 1 = KI 1 dr S
Frh 5 & TT P & —heua
] h
i
= - Da dilg= =SRm- iyl 2o 4
A clle oL T OF J —— b
-]

p side to the N side boundary

Integratin&l from .
the total voltage Vt

1d
of the depletion layer will yield

H = L = - Edx
as before: V, = VB Va

b -]




n
') o K'P ‘
% =, & 1 |
q ndn = Mln Nn [
4 N~  ——— 3.4.5.(b) j
3 i

But nn and pp

are thg majority concentrations at

the depletion boundaries, ang Provided

the forward bias
LR high, they are not affected by the flow eland

.retain their equilibrium values, namely 1 Np and

'Pp NA' Equations. 3.4.5 can be used to obtain

the enhanced monority concentrations at the depletion

1 boundarissg;

|

i ip B ex (

| = -qV,) _

I n t P }va) = N}'L exp ( ;\,ITE) exp qV

*K%z_ 3.406
f

n, exp (=~ qV') , —fl/g exp?i/"
'K_'l'_& :NDCXP( /'r) =

K
1 concentrations are
For pogitive vA the minority

o
]

; :
th f increased This 1s called carrier injection,
ere fore 1in .
“ Th minority concentrations near the depletion
e excess
se as distance from the

ually decrea ‘ p g
boundary must grad . g seccalas LSO 3
because

Junction increases,

Dajorities.




n order o

a i B2gnituge lower than th, Bajority on that
ide.

8 s Under )4, injectyoy the mjority contors
SR e Practicalyy unchangeq ¢

brium values,

Vo 1s high ®nough to incrsage the exce sg minority
on at lsast one slde of the Junction to the sému
Order of magnitude as the majority on that eide. In
thig case an appreciable rield will build 'up in the
bulk gemiconductor on that slde, taking up part of

the externally applied voltage Vy, 80 that the junction

- voltage 1s no longer Vg '~ Vp




re-
de fined get of boupdary ol ons

over a specified domsin, Although generalized

solutions are not available for all devices there
4re muny analytical solutiong available for a wide
variety of devices. They are severely limitedAin
thelr range of application and acuracy because of the
multl-dimensional non-linear nature of most modern
devices. A more generallzed method of solution

frequently applied to the semiconductor equations 1s

to golve them using numerical techniques.

byl ANALYSIS OF A P N JUNCTION
A PN junction perform & wide variety of junc-
tioms such as current rectifications amplification,

1latione Hence a P N junction

switching, and osél
tion unit in constituting a

ex basic Junc
seI'ves as a as
o forms of
dcinductor device Dhe two Dost common &
segdcinduc . »
a linearly
t1 are the abrupt junction and
-8 P N Junction

graded junction.
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SQmiconductor
dGVice m ;
Odelling
requi
device
by obtalning 80lutiong

Tes that
Probleg shoulq pe s01ved
f

or the 3 88t of gomi-

every semicongyc tor

conductor #qQuationg

Lets consq der polgsop

_gt‘_l
A = - ..l - N P
2 | (N i + 1 )

]
.e equation ip oné.dimension,

dx

In thi :
& case of a linearly graded junction, the pet

impurity concentration ig given by ;
)

Ny =Ny= ax 4.2

The hole - current equation

J = -
p qppP grad gp

reduces in the one - dimensional case to

—P _ _ b
da = =R N
QSR pree—as==—

Unless the hole demsity P 1s extremely low,
the gradient in ﬂp ig essentially zero for non-signi-
Thus, 1f voltage V is app
1g flat and equal to V

_ gimilarly, @, is shown

lied across
ficant \Jpo ‘

the P N junction, them &
p - regi.n'

for most of the




equili.
(P - regton) apg g .

ationg thét are guffi.

The glectiog '
and hole geng
itisg ip the d
epletion

layer are wrilten g...
=y

_ . R

where Q = /KT

Subgtituting equations (4.1,2) and (helaly)
into equation (4,1.1) we obtain .

2y ¢

B o . H [y QCV-) '

FE Bty g e w)}_ 415
i

Boundary conditions for Qare established at

locations that are sufficiently far from the junction

located at X = O g0 that the space charge meutrality

holds with good approxim&tioﬂ locations for theése polnts j
8re determined as X = - & - Charge neuntrality at '

thege pointg are expressed asi

S
it . nie Q( v-ql(-a') )'nie

@ (-a)-Y o

4,1.6(&) {




and
male niehq‘y(a') = 0
ba1.6(p)
| equilibriyy condi-
POinte; thay 4, '
v nd
’ a ﬂp (aty - B.(av)a 0

simultaneoualy, the therma]
tions are assumed gt thege

P-a') = B (=ar) .

Substituting thig equation 1pte equation (4,1 6)

¥e obtaln explicit foruulag for W+ar):

'_|)= \
. A %1’2/(?—'- 5 o 4 - ma!

n
+ ) 2ny ; s —_— 4.1.8(a)
R TR ey s S ,
of [emnd T m
ni Zni ; — e 1e 81 (D)

Neglec'ting the free carrier terms, equations |
(4.1,5) becomes

2y
d - q .- agxga y 4e149 -
-_dxe = = = mx N AN -

where 'a' is the extent of tha depletion layer.
(4.1.,9) yteldss

Integrating equations
2 2

_d_&J= o i1 (x . @ )

dx gE - . d

ing equation (4e1.10) lea

41,10

s to

Again, integrat
3 w( -a) Lelo1d
qx)ng(x3-382x_2&)+ —_—

' =0
rield 18 located &t X ’

A maximum electric

3 b .
"0ge gphgolute value is £iven 0V
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This 15 a nonlinear equation for a

It can be so0lved numerically using, for exampie,

Newton~-Raphson's 1teration method, From the solution,

w8 ghall obtain the extent of the depletion layer under

nonsigni ficant = current assumption

42  NEWTON - RAPASON ITERATION PROCEDUEE.
This method is a second order iteration
Procedure for simple roots.
i

|

| : 4l
7|

i \
4 |

|

7/,-.v/'{x)/
1

ftx.)

E = 9y
/2D ¢ ax (x ¥ 0) .
S
Putting x = —— b.1,72
g a in €quati gy SR
- *ietl ang
i e 2 1n equatigpq 4.1.8 e bt e
4 e .0
£ o P 'nn i*ﬁ‘j e
n; i EMaL ]
- oy
mn
. ane Ve - ma/;m(—j
P S e




Fige ‘0.2.] Shows the origl.nal
-]

= Quaty
ypo desired root X gg ¢ypg n- Flsdead

curve f(x) crosses the.

We start by picking an initia) Bless val
ue X,

fo.get @ ReW value Xy, we draw the tapgens to th
(-]

curve_at the point e e e

£(x o) and foll ow

the tangent down to its intersection yith the x axtg,

To get X, We repeat thé process, starting from X

x] = XQ -VDX R LI
The glope Of the tangent to the curve at the point
(xo. (X)) 1s

f'(xo) = f (XO)

D)(
So that
£ f(igl he2e2
f1(Xy)  ———
tion heZels
Substitutin thig equation inte s e2.3(a)
¥e obtain Bl i £y I :
! £ TE,)
. %% 1in general e ) ‘ e203(P)

xi + 1 l-" i £ (xi)
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fREL scting higher terug are

Obtain
S(l + R)} <

S+ .}R),

Da(1 + % (Da)?2

Therefore

(H(Da)) 2%1‘)3) At

-Substituting tnlb equation 1nto (“_2.'“) yredal

= 1
g0 20 ot

1

2(Da)

=g (4P e 1) - v

S

where Q = q/KT
Equs tion (4.2.7) is the simplified form of equation

1

{he1.13),

fn 4 (Da)2 4+ 1) - Ca® =V = 6(a) 4,28 :
Difi‘erntiat‘ing equation (4.2.8) with respect to
a, one obtalns y E

,= _]_ Dza. .. 3(;5 Q.2.9
Geled. %?“) R 4%2:2 +1 T a

From equation 4¢2¢3 : '
n(hDZ v waad .y

2

a; =

1

- Q

l___.-—-——-" 5 BCa
Q Tap2, a, 9 o




the blasing voltage, Newton-

Raphgsoa 1teratioy mOthod wag ygeq to solve the equition

o 4

Ca”m & Inof 4epa)2 &
Q g 4( a) 0 )} -V 1913'1'

The congtants ¢, p a2d Q were introduced 1a the

programs, where ¢ .. 2qm
An initial guess value of the dedetion width

D= MWoanm, q. /KT’

le 942 x 10'5 was used.- An appropriate Do 1loop

Was used to ensure that the stipulateq conditiong

were not exceeded,
Y = A -~ G/G3 in the Newton - Raphgon 1terative

formula, where Y 1g the width of the depletion layer,

Statement; 35 in the programs ensures that the derl-

vative of equation (4.3.1) 18 never zero elge it goes

: & \
back to A = A+ 1.0 x 1077,
| 2 15 the difference between the new value of the

‘ If the difference
the guess value. :

Hepletion width and (If .

% then the new value

1s less than or equal to 1.0 x 10
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Y i8 equal ¢, the 014 valug 5,

The 1lag¢ WRITE statementg Writés the values

layer widty y and . the applied

potentialg, The Procedu rg continueg uyptiy the Do

loop ;s 8xhEuslyy, -Ths gtatment STOP termingtes

the iteration gng it impiieg that the values have

converged,

The computer Programs and the obtained resultg

&r¢ ghown on the next page,
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PROGRAM ZERO B1pg VOLTAGE CONDITION

INEWT QN RAFHS METH F ok
Hu0ht4-”‘(b’ﬂ)*'2r1>/m -

=1 /KNT, 7-U'qIJM/3.0wsﬂp:w/;'un"
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» A

REAL M, LY oA
OPENSLINDT FLi.
IATH 31,

L QAT )
AL B

Iﬂsﬂﬂﬂu,I.ﬂEzr,J,amﬁiu,1.ﬂ&4gn19,

LY 70 Y= 4p o
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WEITE (3, N2 e =
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L= 0k ifiag) . V28]
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il /010
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3RAM I

PROGBRAM FLR FINLT N‘w THE
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: 5.1 DiBCstiOns

PN Junction, the main featureg

Numerica) techniqueg ape used in 80lving the
set of non-linean partial diffefeutial equations,
which constitute the semiconduc tor equa-tionsg,

However, in many circumstances it 1s possible to simplirfy

the model ang transport equations to an extent which
allows useful closed - form expressions to be extracted =
which describs the electrical behaviour of the device,

The semiconductor poisson's equation to be

s0lved ig : : -
Qﬁp =) S (mx + P = n)
dx2 E i o !

where mx is the net impurity concentration

glven by MX = N, - N,

for the case of a linearly graded junction,




-

on the di f . :
ffer ential _equa tion and the ne 3
| . cessary gubsti-

We then obtain. an expregsion

2am 3 _ s i
=k * “
STl Q" f( me/208, 32 & i ima /o

Jwa/2ni Yo 1 - majon
’lfhe equation is non-linear ig ae
However, this form of the equation ‘may be very‘ diffi~

cult to golve, hence need for further simplification.

ca® = Fn b ()24 1y v

whore the parameters C, D and Q have been
de fined in the previous chapter, Th'e above equation
was golved using Newton - Raphson Iteration method.

It wag observed, however, that numerical integration
tends to diverge rather than to converge unless the

electric - field magnitude at the junction point is

given an extraordinary accuracy. BEven then, the

solution is obtained only for a very localized region

around the junction point, which suggest an unpromising

1 device analysis.

future for numerica
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52 SUGGESTION

SemiconductOP deviceg 4
trical circyit model g and

The importance Of physica)

modelling, what Temaing is the need for 4 high perfor-
@ance computers to be able to yleld gplutions to a
lumber of sophisticated ney deviceg,

I suggest that researchers should use the kpow-
ledge of numerical analygis in contributing to preqic-

. ting characteristics of some of the devices that will

appear in the near future,
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144 is the scaled thermal voltage. The half-point values of the diffusion coefficients

and carricr mobilities are obtained by linear inlerpolation.
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