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ABSTRACT 

Since Sturm's famous memoir in the 17th century, it is observed that a great 

deal of interest has been focused on the behaviour of solutions of ordinary and 

delay differential equations in spite of the existence of extensive literature in these 

fields. Still more interesting, the theory of impulsive differential equations has 

brought in yet another dimension to the whole scenario and has helped to usher 

in a new body of knowledge for further considerations. The effects of these 

new inputs can be observed in the study of oscillatory properties of impulsive 

differential equations with deviating arguments as well as the investigation of 

neutral impulsive differential equations which have recently captured the attention 

of many applied mathematicians as well as other scientists around the world. This 

work considers second order neutral delay impulsive differential equations and 

investigates the oscillatory properties and asymptotic behaviour of its solutions. 

Here, we demonstrate how well known mathematical techniques and methods can 

be extended in the prove of theorems for the oscillation and non-oscillation of 

all solutions of linear and nonlinear neutral differential equations with constant 

and variable coefficients and retarded arguments, prove of theorems for the 

oscillation and non-oscillation of bounded solutions of unstable type neutral delay 

impulsive differential equations with constant and variable coefficients, prove of 

the existence of positive solutions for stable and unstable type neutral delay 

impulsive differential equations, prove of theorems for the oscillation of all solutions 

of impulsive differential equations with advanced arguments and classification 

of non-oscillatory solutions of the generalized form of non-linear neutral delay 

impulsive differential equations. all within the framework of impulsive differential 

equations. 

Word count = 271 
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1.1 Int r oduction 

CHAPTER ONE 

GENERAL INTRODUCTION 

Oscillation theory of the solutions of differential equations is one of the 

traditional trends in the qualitative theory of diff Prential equations. Its essence 

is to establish conditions for existence of oscillating (non-oscillating) solutions, to 

study the maxima and minima of the solutions, to obtain estimates of the distance 

between the neighbouring zeros and the number of zeros in a given interval, to 

describe the relationship between the oscillatory and other basic properlies of the 

solutions of various classes of differential equations, etc. 

T he development of oscillation theory for ordinary differential equations dates 

back to the 1840s when the classical work of Sturm {1836) appeared. In the 

said work, the theorems of oscillation and comparison of the solutions of second 

order linear homogeneous ordinary differential equations were proved. The first 

oscillation results for differential equations with a translated argument were 

obtained by F ite (1921). He paid attention to the great differences between the 

oscillatory properties of the solutions of <litfert>ntial equations wilh a translated 

argument and of the corresponding equations without a translation of the 

argument. 

Differential equations of neutral type, to whose aspect the present research 

work is devoted, play an important role in the theory of functional differential 

equations. In recent years, the theory of t his class of equations has become an 

independent entity. Unfortunately, the number of research results on this subject 

continues to be elusive. Neutral equations find numerous applications in natural 

sciences and technology but, as a rule, they enjoy specific properties which make 

their study <lifficult. but interesting both in aspects of ideas and techniques. 

These difficulties explain the relatively small number of results devoted to the 

investigation of the oscillatory properties of the solutions of neutral equations. 

Norkin {1977) published a paper concerning the oscillation theory of neutral 
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functional differential equations. The heavy restrictions imposed on it, however, 

practically eliminate the influence of the neutral member. The first work in which a 

criterion for oscillation of the solutions of neutral equations that proved essentially 

different from the classical criteria, was published by Zahariev and Bainov (1980). 

Some general approaches to the investigation of the oscillatory and asymptotic 

properties of the solutions of the neutral equations were later given by Bainov, 

Myshkis and Zahariev (1987, 1989), Myshkis , Bainov and Zahariev (1984), Gyori 

(1989) and Ntouyas and Sficas (1983). 

The development of the theory of impulsive differential equations is yet another 

mile-stone in the history of qualitative theory of differential equations (Bainov, 

Dimitrova and Dishliev, 2000; Bainov and Simeonov, 1985; Bainov and Simeonov, 

1986; Chen and Feng, 1997;Dishliev and Bainov, 1990; Gurgula, 1982; Krishna, 

Vasundlara and Satyavani, 1991; Kulev and Bainov, 1989; Kulev and Bainov, 

1991; Lakshmikantham, Bainov and Simeonov, 1989; Lakshmikantham and Liu, 

1989; Peng and Ge, 2000; Samoilenko and Perestyuk, 1977; Zabreiko, Bainov and 

Kostadinov, 1988; Zhang, Zhao and Yan, 1997; Isaac, Lipscey and Ibok, 2014). 

There are many monographs related to this subject (Bainov and Simeonov, 1998; 

Samoilenko and Perestyuk, 1995; Agarwal, Benchohra, O'Regan and Ouahab, 

2004; Deo and Pandit, 1982), etc. In this direction, credit must be given 

to Professor Drumi Bainov, Lakshmikantham and Pavel Simeonov, to mention 

just a few, for their contributions in the development of the oscillatory and 

non-oscillatory properties for variom; clas:;e:; of impulsive differential equations 

with delay and with advanced arguments. 

It is worthy to note here that the theory of impulsive differential equations 

in general, and that of impulsive neutral differential equations in particular, were 

first brought into the Department of Mathematics, University of Calabar, by Isaac 

(2008) while presenting his Ph.D. dissertation. 

The pioneering efforts of Isaac and Lipcsey over here in identifying some 

of the essential oscillatory and non-oscillatory conditions of neutral impulsive 
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differential equations of the first order is also worth commending (Oscillations 

in Systems of Neutral Impulsive Differential Equations, Isaac and Lipcsey, 

2009d; Oscillations in Non-Autonomous Neutral Impulsive Differential Equations 

with Several Delays, Isaac and Lipcsey, 2009c; Linearized Oscillations in 

Nonlinear Neutral Delay Impulsive Differential Equations, Isaac and Lipcsey, 

2009a; Oscillations in Neutral Impulsive Logistic Differential Equations, Isaac 

and Lipcsey, 2009b; Oscillations in Neutral Impulsive Differential Equations 

with Variable Coefficients, Isaac and Lipcsey, 2010b; Oscillations in Linear 

Neutral Delay Impulsive Differential Equations with Constant Coefficients, Isaac 

and Lipcsey, 2010a; Nonoscillatory and Oscillatory Criteria for First Order 

Nonlinear Neutral Impulsive Differential Equations, Isaac, Lipcsey and Ibok, 

201la; Oscillatory Conditions on Both Directions for a Nonlinear Impulsive 

Differential Equation with Deviating Arguments, Isaac, Lipcsey and Ibok, 2011 b; 

Linearized Oscillations in Autonomous Delay Impulsive Differential Equations, 

Isaac and Lipcsey, 2007). The results of their subsequent investigations reveal 

that neutral impulsive differential equations are dependable tools. not only in 

applied mathematics, but also in science in general. For example, in the present 

drive to improve information and computer technology (JCT), neutral impulsive 

differential equations remain at the center stage. Indeed, neutral impulsive 

differential equations appear in networks containing lossless transmission lines 

(as in high-speed computers where the lossless transmission lines are used to 

interconnect switching). They are involved in the study of vibrating masses 

attached to an elastic bar, and also as Euler equation in some problems of variation 

(Gyori and Ladas, 1991).Therefore, through the study of oscillations of neutral 

impulsive differential equations, one gets deeper insight into the dynamics of 

solutions to equations modelling applied problems in engineering, technology and 

natural sciences. 

There is no doubt that this study will further improve upon the existing results 

in view of its role and timing of the oscillatory and asymptotic properties of neutral 
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impulsive differential equations of the second order. 

At this point we define a general second order neutral delay impulsive 

differential equation as follows: 

{ 
[y(t) + p(t)y(t - T)]" + q(t)y(t - a) = 0, t =/; tk 

8,. [y(tk) + PkY(tk - T)]' + QkY(tk - u) = 0, t = tk, 1 ~ k ~ oo. 

This is an equation with the impulsive conditions in which the second order 

derivative of the unknown function appears in the equation, both with and 

without delay. It is worth mentioning here that our aim is not to find the 

unknown function or solution y(t), but to determine its nature and behaviour in 

oscillatory sense. 

1.2 Basic definitions 

Let E be our set of subscripts which can be the set of natural numbers N or 

the set of integers Z. Except otherwise stated, we will assume that the elements 

of the sequence S := {tk}keE are the moments of impulsive effects and satisfy the 

following properties: 

Hl.2.1: If tk is defined 'ti k E IN then 0 < tk < tk+i, 'Vk E IN and lim tk = oo; 
k-+oo 

Hl.2.2: If tk is defined 'ti k E Z then tk < t1.:+i, 'Vk E Zand lim tk = ±oo. 
k-+±oo 

D efinition 1.1. The differential equation 

where 

{ 
y(n)(t) = J(t, y(t) , y'(t), y"(t), .. ., y<n-l)(t)), t <t S 

8,.y(n-l)(tk) = fk(y(tk), y"(tk), ... , y<n-l)(tk)), tk E S, 
(1) 
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and 

y(tk + 0) = lim y(tk + c:) and y(tk - 0) = lim y(tk + c:) 
c~O c?O 

is called an nth order impulsive differential equation. 

D efinition 1.2. The function y(t) is said to be the solution of equation (1) in the 

interval J = (a, [3) C R if 

i) the function y(t) admits nth order derivative yCn)(t) and satisfiei:; the equation 

y(n)(t) = J(t,y(t),y'(t),y"(t),. .. ,y<n-l)(t)) fort E J, t ¢ S; 

U) the functions y(t) and y'(t), ... , y<n-l)(t) satisfy the relations 

Usually, the solution y(t) for t E J, t rt. S of the impulsive differential 

equation or its first derivative y'(t) is a piece-wise continuous function with points 

of discontinuity tk, tk E Jn S. Therefore, in order to simplify the statements of 

the assertions, we introduce the set of functions PC and per which are defined 

as follows: 

Let r E N, D := [T, oo) C R and let the set S be fixed. We denote by 

PC(D, R) the set of all values 'If; : D ~ R which is continuous for all t E D, t <f. 

S. They are functions from the left and have discontinuity of the first kind at 

the points for t E S. By PCr(D, R), we denote the set of functions 'If; : D ~ 

R having derivative ddi~ E PC(D, R) , 0 ~ j ~ r. To specify the points of 
tJ 

discontinuity of functions belonging to PC and per, we shall sometimes use the 

symbols PC(D, R; S) and PCr(D, R; S), r EN. 
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1.3 Scope and objectives of the study 

Whereas Isaac's work (2008) focused on first order neutral impulsive 

differential equations, the present investigation is deeply concerned with the second 

order neutral delay impulsive differential equations and is intended to investigate 

the oscillatory properties and asymptotic behaviour of their solutions. The reason 

for the choice of this topic is that the area presently attracts very little attention, 

and as such, very few results are known. Also, one of Isaac's recommendations was 

the extension of his oscillation results to second and higher order neutral delay 

impulsive differential equations. In view of these, we systematically present the 

results and demonstrate how well known mathematical techniques and methods 

can be extended in the 

i) Prove of theorems for the oscillation of all solutions of linear neutral impulsive 

differential equations with constant and variable coefficients and retarded 

arguments; 

ii) Prove of theorems for the oscillation of all solutions of nonlinear neutral 

impulsive differential equations with constant and variable coefficients and 

retarded arguments; 

iii) Prove of theorems for the oscillation and non-oscillation of bounded solutions 

of unstable type neutral delay impulsive differential equations with constant 

and variable coefficients; 

iv) Prove of theorems for the existence of positive solutions for stable and unstable 

type neutral delay impulsive differential equations; 

v) Classification of non-oscillatory solutions of the generalized form of non-linear 

neutral delay impulsive differential equations. 

vi) Prove of theorems for the oscillation of all solutions of neutral delay impulsive 

differential equations with nonlinear neutral term; 
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vii) Prove of theorems for the oscillation of all solutions of neutral delay impulsive 

differential equations with a forcing term; 

viii) Prove of theorems for the oscillation of all solutions of neutral impulsive 

differential equations with advanced argument:;; 

within the framework of impulsive differential equations. AppJications will be 

considered in those cases where they are possible and needed to drive home the 

understanding of the expected results. 



CHAPTER TWO 

LITERATURE REVIEW 

In this chapter, we present a review of literature on various studies carried 

out in the fields of related disciplines, namely, the oscillation theory for ordinary 

differential equations with delay and the oscillation theory of neuLral ordinary 

differential equations. 

2.1 Introduction 

In chapter one, we remarked that since Sturm's famous memoir in 1836, 

oscillation theory has become an important area of research in the qualitative 

theory of ordinary differential equations (Angelova and Bainov, 1981 , 1982a,b; 

Brands, 1978; Burkowski, 1971; Burton and Haddock, 1976; Chen, 1977, 1978; 

Foster and Grimmer, 1979; Garner, 1975; Graef, 1983; Grammatikopoulos, 1977; 

Hino, 1974; Isaac, 2008; Ivanov and Shevelo, 1981; Kartsatos and ~lanougian. 

1976; Kung, 1971; Lillo, 1969; Lim, 1976; Liossatos, 1970; Onose, 1982; Graef, 

Katamura, Kusano and Spikes, 1979). 

Oscillation theory of ordinary differential equations with delay is a natural 

extension of oscillation theory of ordinary differential equations, being that 

some results from oscillation theory of ordinary differential equations carry 

over to the said differential equalions with delay. By this, some fundamental 

knowledge in oscillation theory for ordinary differential equations is essential for 

an understanding of the oscillation theory of ordinary <lifferential equations with 

delay. 

Some facts about ordinary differential equations are now presented here. 

8 
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2.2 Definitions of oscillation 

There are various definitions of the oscillation of solutions of ordinary 

differential equations (with or without delay). Here, we shall list some definitions 

used most extensively in this context and which are similar to those most 

frequently used in literature. 

To achieve our goal, we shall restrict our discussion to those solutions y(t) of 

the equation 

y"(t) + a(t)y(t - T(t)) = 0 (2) 

which exist on some interval [Tt.,, oo), Ty~ 0 and satisfy sup {jy(t)l: t ~ T} > 0 

for every T ~ Ty. In other words, jy(t)I =I 0 on any unbounded interval [T, oo). 

Such a solution sometimes is said to be a regular solution. 

We shall assume that a(t) ~ 0 or a(t) ~ 0 in equation (2), and in doing so 

we imply that a(t) =I 0 on any unbounded interval [T, oo). 

Definition 2.1. A nontrivial solution y(t) (implying a regular solution always) 

is said to be oscillatory if and only if it has arbitrary large zeros for t ~ t0 , 

that is, there exist a sequence of zeros {tn}~=i [y(tn) = O] of y(t) such that 

lim tn = +oo, otherwise y(t) is said to be non-oscillatory (Isaac, 2008). 
n-too 

For non-oscillatory solutions there exist a ti such that y(t) =I 0, for all t ~ 

ti. This means that throughout the range, y(t) must be eventually positive or 

eventually negative. That is, y(t) is positive for all t ~ ti or is negative for all 

Definition 2.2. A nontrivial solution y(t) is said to be oscillatory if it changes 

sign on (T, oo), where Tis any number (Isaac, 2008). 

Notice that when T(t) = 0 and a(t) is continuous in equation (2), the 

two definitions are equivalent. However, for higher order equations where the 

possibility of multiple zeros of non-trivial solutions is likely, it becomes increasingly 
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difficult to sustain this balance. The above definitions can be extended to include 

systems of equations with delays. Let us see how this is demonstrated in the case 

of two-dimensional first order systems. 

Consider the first order system of equations with deviating arguments 

{ 

x'(t) = f 1(t, x(t), x(T1 (t)), y(t) , y(T2(t))) 

y'(t) = h(t, x(t), x(T1(t)), y(t), y(T2(t))). 
(3) 

The solution (x(t), y(t)) is said to be strongly oscillatory if each of its components 

is oscillatory and weakly oscillatory if at least one of its components is oscillatory. 

2.3 Oscillation t heory for ordinary differential equations 

As mentioned earlier, we shall recall only those facts concerning oscillation 

theory of ordinary differential equations that will be useful in our discussion. 

We consider a second order linear ordinary differential equation 

y"(t) + a(t)y(t) = 0. (4) 

Sturm's comparison theorem for equation ( 4) is very important in oscillation 

theory (Leighton, 1981). Using this comparison theorem, it is easy to draw the 

following conclusions: 

i) For the linear ordinary differential equation ( 4), solutions are either all 

oscillatory or all non-oscillatory. Equation ( 4) is said to be oscillatory if 

every solution of it is oscillatory and it is said to be non-oscillatory otherwise. 

ii) We consider another second order linear ordinary differential equation 

y"(t) + b(t)y(t) = 0. (5) 

If a(t) ~ b(t) for all t;::: t0 and equation (4) is oscillatory, then so is equation 

(5). Moreover, from (i), if equation (5) is oscillatory, then so is equation (4) 
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(Domshlak, 1982; Grace and Lalli, 1989; Sibgatullin, 1980; True, 1975). 

Using Sturm's comparison theorem, we can obtain the oscillatory property 

of an ordinary differential equation from some other ordinary differential 

equation with known oscillatory behaviour. In fact, many good oscillatory 

criteria have been obtained from Sturm's comparison theorem. 

iii) Assume that a(t) ~ 0, then equation (4) is non-oscillatory. This follows from 

(ii). 

The comparison method is one of the important methods in oscillatory theory 

of second order linear ordinary differential equations (Barrett. 1969; Swanson, 

1968; Willet, 1969). There is much literature on the extension of the comparison 

method to nonlinear and higher order differential equations. Most relevant among 

them include studies by Atkinson (1955) , Butler (1979), Macki and Wong (1968), 

Wong (1968), Wong (1975), Philos (1984) and Isaac (2008). 

~ow we consider a second order non-linear ordinary differential equation 

y"(t) + a(t)f(y(t)) = 0. (6) 

The interest in nonlinear oscillation problems for equations of this type began 

with the publication of the pioneering work by (Atkinson, 1955). We would like 

to point out that the nonlinearity of equation (6) may generate both oscillatory 

and non-oscillatory solutions (Liossatos, 1970; Lovelady, 1975; Macki and Wong, 

1968; Yan, 1983; Yeh, 1980; Yoshizawa, 1970; Zhang, 1980; Zhang, Ding, Feng, 

Wu and Wang, 1982 ). 

A special case of equation ( 6) is represented as 

y"(t) + a(t)y°'(t) = 0. (7) 

Equation (7) is said to be superlinear if a > 1 and sublinear if a < 1. 

(Ladde, Lakshmikantham and Zhang, 1987; Burkowski, 1971). We usually need 
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to distinguish between these cases in our study because of the difference in the 

type ofresults that are known (Isaac, 2008; Kusano and Onose, 1974; Kusauo and 

Onose, 1973; Sficas and Stavroulakis, 1987;Graef, Grammatikopoulos and Spikes, 

1980 ; Grammatikopoulos, Sficas and Staikos, 1979 ) 

For instance, consider the equation 

y"(t) + a(t) ly(t)l0 sgny(t) = 0, (8) 

where a(t) E C(R+) and a(t) ~ 0. Then, for a =I= 1 (superlinear) , equation (7) 
00 

is oscillatory if and only if f sa(s)ds = oo. 
0 

2.4 Second order linear differential equations with delay 

Mathematical modeling of several real-world problems leads to differential 

equations that depend on the past history rather than only the current state. 

The models may have discrete time lags or delays. 

In recent years, there has been much research activity concerning the oscillation 

of solutions of delay differential equations and, to a large extent, this is due to 

the realization that delay differential equations are important in applications. 

New applications which involve delay differential equations continue to arise with 

increasing frequency in the modeling of diverse phenomena in physics, biology, 

ecology and physiology. 

Much of the work in the theory of oscillations center on second order or 

higher order ordinary differential equations, but in this section, we'll be looking at 

second order linear differential equations with delay. The oscillatory behaviour of 

functional differential equations with delay has been the subject of intense study in 

the last three decades (Dosly and Rehak, 2005; Gyori and Ladas, 1991; Agarwal, 

Grace and O'Regan, 2002 ) 

The oscillatory behaviour of a functional differential equation with delay and 

of the associated ordinary differential equation are not always the same. Indeed, 
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the delay differential equation 

y"(t) + y(t - 7r) = 0 

admits sin t and cost as oscillatory solutions. On the other hand, the associated 

ordinary differential equation 

y"(t) - y(t) = 0 

has the non-oscillatory solutions e-t and et. Conversely, we see that the delay 

differential equation 

y"(t) - 2~2y (~) = 0, t > 0 

has a non-oscillatory solution y(t) = ./i, while the associated ordinary differential 

equation y"(t) - ~y(t) = 0 admits t cos ln t and t sin ln t as oscillatory solutions. 

Such a change in the oscillatory behaviour of a differential equation is obviously 

generated or disrupted by the delay, and so the study of oscillatory solutions of 

differential equations with delay is very important in applications. As an example, 

oscillations caused by delays should be seriously taken into account in studying the 

motion of a controlled craft moving with increasing velocities, where it is possible 

to have a sudden release of oscillations leading to instability (Minorsky, 1962). 

In this section, we attempt to uncover relevant literatures and as well present 

the state of the art in this rapidly growing area. We shall begin with second order 

linear ordinary differential equations with delay and proceed to the non-linear 

equivalent of it exposing, where possible, the various techniques of extracting the 

oscillatory properties of the solutions. 
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2.4.1 Clru>sification of solutions of linear equations 

Consider the second order linear differential equation with delay in the general 

form 

f(t, y(t), y'(t), y"(t), y[t - T(t)], y'[t - T(t)], y"[t - T(t)]) = 0, (9) 

where T(t) > 0. Let t0 be the given initial point. The delay T(t) defines the initial 

set Et0 given by 

Eto ={to} LJ{t - T(t) < t for t >to}. 

On Ei0 we shall assume that continuous functions 'Pk(t), k = 0, 1 are given. 

Furthermore, for equation (9), we shall assume that the initial values y~k)(t), k = 

0, 1 are known, and ip0 (t0 ) = y~0). Also, for equation (9), the basic initial value 

problem consist of finding a continuously differentiable function y that satisfies it 

fort ~ t 0 and conditions 

and 

y(k)[t - T(t)] = 'Pk[t - T(t)] if t - T(t) <to, k = 0, 1. 

In oscillation theory, we study solutions which are defined on an half open 

interval [t0 , oo) . Therefore, we are interested only in those equations for which 

global existence theorems can be established. 

A non-trivial solution y(t) of equation (9) is said to be oscillatory if it has 

arbitrarily large zeros. Otherwise, y(t) is said to be non-oscillatory, i.e., y(t) is 

non-oscillatory if there exist a ti ~ t0 such that y(t) =I= 0 fort~ t 1 . In other words, 

a non-oscillatory solution must be eventually positive or negative. Equation (9) 



-~ 

15 

itself is said to be oscillatory if all its solutions are oscillatory (Agarwal, Grace 

and O'Regan, 2003). 

In this section, we extend the results of Norkin (1972) in the classification of 

solutions of initial value problems of the type 

(r(t)y'(t))' = p(t)y(g(t)), (10) 

where p(t), g(t), r(t) E C(R+, R+), g(t) ~ t , r(t) > 0 and g(t) is the general 

delay function. 

Initial conditions are given as follows: 

y(s) = <p(s) for s E Et0 , y(to) =Yo, y'(to) =Yb, 

where 

Et0 ={to} U {g(t) <to, t >to}, <p E C(Et
0

). 

Definition 2.3. Let S denote the set of all solutions of equation (10). We define 

the following subsets of S : 

s+oo = {y ES: lim y(t) = oo}, 
t~oo 

s-oo = {y E S: lim y(t) = -oo }, 
t-too 

Sk = {y ES: 0 < lim y(t) < oo }, 
t~oo 

s-k = {y E S : - oo < lim y(t) < O} , 
t~oo 

s0 = {y ES: y(t) -j. 0 and lim y(t) = 0 monotonically }, 
t~oo 

S"' = {y E S: y(t) is oscillatory }. 

We now present some sufficient conditions for the qualitative behaviour of the 
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solutions of equation (10) . We begin by considering the following lemma: 

Lemma 2.1. Assume that 

i) p ~ 0, r > 0 are continuous; 

ii) g E C(R+, R+), g(t) is non-decreasing, g(t) ~ t and lim g(t) = oo; 
t-+oo 

t 
iii) lim J ds( ) = oo. 

t--+ootn r s 

Then it can be shown that 

i) cp(t) ~ 0 on Et0 and Yb > 0 imply y(t, cp, Yb) E S00
; 

ii) cp(t) ~ 0 on Et0 and Yb < 0 imply y(t, cp, Yb) E s-00
. 

Again, let conditions (i) and (ii) of Lemma 2.1 be satisfied and further assume 

that 

00 

j (R(t) - R(s))p(s)ds = oo, 
0 

t ds 
where R(t) = J -( ) , 

tn r s 
then, it is readily seen that 

i) cp(t) ~ 0 on Et0 , cp(t)¢0 and Yb ~ 0 imply y E s+00
; 

ii) cp(t) ~ 0 on Et0 , cp(t)¢0 and Yb ~ 0 imply y E s-00 (Ladde, 

Lakshmikantham and Zhang, 1987). 

A very strong condition ensuring the correctness of the above statement is the fact 

that 

t 

1. I ds 
lm -() = 00. 

t-+oo r s 
tn 

Note that here we have imposed the continuity condition on g(t), r(t) and p(t), 

where g(t) is further restricted to be non-decreasing. 



Now, assuming that Lemma 2.1 holds and assuming that 

00 

j R(s)p(s)ds = oo, 
0 
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it can also be seen that every solution of equation (9) belongs to either S0 or S"'. 

In a related development, Professor Agarwal observed something similar. He 

considered the second order linear delay differential equation 

non-negative numbers. The characteristic equation of equation (ll)is 

(12) 

The oscillatory behaviour of solutions of equation (11) depends on the location of 

the roots of equation (12). In fact, the following theorem provides necessary and 

sufficient condition for the oscillation of equation (11). 

Theorem 2.1. The following statements are equivalent: 

i} Every solution of equation (11) is oscillatory. 

ii) The characteristic equation (12) has no real roots (Agarwal et al., 2003}. 

2.4.2 Existence of bounded oscillatory solutions 

The methods of ordinary differential equations are adapted to delay differential 

equations to obtain oscillation and non-oscillation criteria for linear delay 

differential equations which are similar to known criteria for ordinary differential 

equations (Bradley, 1970; G., 1971; Gollwitzer, 1969; Odaric and Sevelo, 1971; 

Sevelo and Odaric, 1968; Shere, 1973; Staikos, 1970; Staikos and Petsoulas, 1970; 

Travis, 1972; Waltman, 1968). In particular, the second order linear delay 
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differential equation 

y"(t) + q(t)y(g(t)) = 0 

with q(t) > 0, g(t) ~ t, lim g(t) = oo has been investigated by a number 
t-+oo 

of authors (Bradley, 1970; G., 1971; Gollwitzer, 1969; Odaric and Sevelo, 1971; 

Sevelo and Odaric, 1968; Shere, 1973; Staikos, 1970; Staikos and Petsoulas, 1970; 

Travis, 1972; Waltman, 1968). 

In the study of oscillation and non-oscillation of differential equations the 

restriction on the solution to be continuous is required. Consider the equation 

y"(t) - y(t) = 0 (13) 

As we know, equation (13) has no oscillatory solution. On the other hand, consider 

the same equation with delay 7r, so that we have 

y"(t) - y(t - 7r) = 0. (14) 

It is easy to check that Y1 = sin t, Y2 = cost are oscillatory solutions of equation 

(14). 

Now, let us consider the general linear equation 

y"(t) - p(t)(t - T(t)) = O; p(t) ~ 0, t ~ t0 ~ 0. (15) 

We pose the problem: What conditions guarantee the presence of oscillatory 

solutions for equation (15)? It can be immediately noticed that this problem 

has no meaning when T(t) = 0. Ladde et al. (1987) obtained some sufficient 

conditions for every bounded solution to be oscillatory. The following results were 

obtained. 
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Theorem 2.2. Assume that the hypothesis {i),{ii) and (iii) of Lemma 2.1 are 

satisfied. Further assume that 

1 t 

lim sup-( ) J (z - g(t))p(z)dz > 1. 
t--+oo r t 

g(t) 

(16) 

Then every bounded solution of equation (10) is oscillatory. 

Gustafson (1974) verified this by proving a contradiction. The ~mlution y(t) > 0 

is assumed unbounded, and on integrating equation (10) by parts from s to t 

and applying the monotonicity condition of y(t), we arrive at a contradiction to 

equation (16); i.e., y(t) is a bounded oscillatory solution. 

Closely related to this are the following results: 

Corollary 2.1. If T 2: 0, p(t) 2: 0 is continuous, and T 2p(t) 2: 2 for t 2: 0, then 

bounded solutions of the equation 

y"(t) - p(t)y(t - T) = Q 

are oscillatory (Ladas and Lakshmikantham, 1974). 

Corollary 2.2. If k > 1, p(t) 2: 0 is continuous and 

2k2 

p(t) 2: ((1 - k)t) 2 

for large t, then bounded solutions of 

y"(t) - p(t)y (~) = 0 

are oscillatory. 

The results of these two corollaries can be made clearer by considering these 

examples: 
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Example 2.1. The equation 

1 I 

Cty') - 4tyJt2 - 7r = O; t ;::-: 2 

satisfies the condition of Theorem 2.2. Therefore, all bounded solutions are 

oscillatory. In particular, y(t) =cos t2 is a bounded oscillatory solution. 

Example 2.2. Again, the equation 

y"(t) - p(t)y(t - 7r) = 0, 0::; T ;::: 2e-l (17) 

does not satisfy the conditions of Theorem 2.2 as expected. Equation (17) has 

a bounded non-oscillatory solution. Indeed, the characteristic equation F(>..) = 

)..2 - e - i.h = 0 has negative real root >.., and hence y(t) = e>-t is a bounded 
00 

non-oscillatory solution. Note that if we do not require that J ds( ) = oo , but ensure 
0 

rs 

that r(t) is non-decreasing and equation (17) is satisfied, then the conclusion of 

Theorem 2.2 remains valid. 

Now, there exist many relevant interesting conditions for the theory of 

oscillation associated with differential equations with several delays. Let us 

consider the linear equation with several delays 

n 

y"(t) - LPi(t)y(gi(t)) = o. (18) 
i =l 

The following result is obtainable. 

Theorem 2.3. Assume that 

1. Pi, 9i E C((O, oo), R), Pi ;::: 0, i = 1, 2, n , and for some index 

io, 1 ::; io ::; n , Pio(t) > 0 fort;?: O; 

2. 9i(t) ::; t and lirn 9i(t) = oo for i = 1, 2, · · · , n ; 
t--+oo 

3. There exist a non-empty set of indices K = { kll k2 , 
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k2 < · · · < kt < n, such that for t ~ to, 9k(t) < t and gHt) ~ 

0 for k EK and 

t 

lim sup L j [gk(t) - 9k(s)]Pk(s)ds > 1, 
l--+oo kEK g• (t) 

where g*(t) =max 9k(t). 
kEK 

Then every bounded solution of equation (18) is oscillatory (Ladas, Ladde and 

Papadakis, 1972). 

This verification is done by assuming the non-boundedness of the imlution y(t) 

of equation (16), and without loss of generality we can say that y(t) > 0. Due to 

the condition on gi(t), there exist a ti ~ to such that y(gi(t)) > 0 for t ~ ti 

and for i = 1, 2, · · · , n. In view of equation (16), we have that y"(t) > 0 

for t ~ ti. From the boundedness condition on y(t), it can be seen that there 

exist a t2 ~ ti such that y'(t) < 0 for t 2:: t2 • From these observations and 

knowing that y(t) is concave up and decreasing for t 2:: t 2 , we finally arrive at a 

contradiction to equation (16) which shows that every bounded solution y(t) is 

bounded. 

One must note that the result of Theorem 2.3 can be extended to a more 

general equation of the form 

n 

(r(t)y'(t))' = LPi(t)y(gi(t)) = 0, 
'1=1 

where r(t) > 0 and f0
00 r~~) = oo. 

~ow, consider the general second order differential equation 

(a(t)y'(t))' + p(t)y'(t) + c(t)y(t) + q(t)f(y[g(t)]) = e(t) (19) 

under the assumption that 

i) c, e, p, q E C([to, oo ), R), to 2:: 0, f E C(R, R) and y J (y) > 0 for 
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yf 0; 

ii) a, g E C1([t0 , 00) 1 R+), a'(t) 2: O; 

iii) g(t) ~ t, g'(t) ~ 0 and tlim g(t) = oo; 
-too 

iv) there exist a number k such that f(y)sgny ~ k IYI for y f 0, and f(y) is 

increasing in y. 

Agarwal et al. (2003), in their work titled Oscillation Theory of Second order 

Dynamic Equations, provided sufficient conditions for all solutions of equation 

(19) to be continuous or bounded. The following results are valid. 

Theorem 2.4. Let conditions {i}-{iv} of equation (19) hold. Then any non-trivial 

solution of equation (19) can be continued indefinitely on R+ {Singh, 1980}. 

Do note that condition (iv) in equation (19)can be replaced by 

J(y)sgny ~ k IYl'"Y , 0 ~ 'Y ~ l. 

The following result provides a bound on the growth of non-oscillatory solutions 

of equation (18) . 

Lemma 2.2. In addition to conditions (i)- (iv) of equation (19) , suppose that 

p(t) ~ 0, 

c(t) - p'(t) ~ 0 fort~ to, (20) 

Joo p(s) 
a(s) ds < oo, 

J00 

le(s)I ds < oo (21) 
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Joo ds 
a(s) < 00 

and 

J00 

c(s)ds < oo. 

Then all oscillatory solutions of equation (19) are bounded above. 

:\ext, we now use Lemma 2.4 to find a criterion so that all solutions of equation 

(19) are non-oscillatory. 

Theorem 2.5. In addition to the conditions of Lemma 2.4, suppose that p(t) = 0 

and f 00 e(s)ds = oo, 

then all solutions of equation (19) are non-oscillatory {Singh, 1911). 

This is illustrated by the following example. 

Example 2.3. Let us consider the equation 

(ety'(t))' + 2e-3t+1fy(t- 7r) = 4cosh2t, t ~ 0. 

It is easy to verify that the conditions of Theorem 2.5 are satisfied. All solutions 

of this equation are non-oscillatory. In fact, y(t) = et is one of such equations. 

2.5 Second order nonlinear differential equations with delay 

We wish to extend in this section some results of section 2.4. l to the 

nonlinear equation 

y"(t) - f(t, y(t), y(g(t))) = 0 (24) 

subject to the following conditions: 

i) f E C(R+ x Rx R , R] and f(t, u, v) is non-decreasing in u and v for fixed 

large t , 
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ii) f(t,u,v)u > 0 if u·v > 0, 

iii) g E C(R+ x R] , g(t) < t, g'(t) > 0 and lim g(t) = oo, 
1-+oo 

iv) for any constant c =J 0, f'° f (s ,g(s)c,g(s)c) ds = ±oo. 

As a nonlinear delay differential equation in this form, we examine the conditions 

for the oscillation of the solutions via the following theorems provided by Ladde 

(1972, 1973). 

Theorem 2.6. Assume that equation (24) satisfies its conditions (i},{ii}, (iii}. 

Furthermore, let y(t) be a bounded solution of equation (24) , urith ly(t)I :::; /3 for 

large t, and f3 > 0. Let us assume that there exist a functionGp E C[R+ , R+] such 

that 

(25) 

for sgnx = sgnz, x · sgnx :::; z · sgnz :::; /3 , and sufficiently large t. Further 

assume that 

lim sup r [g(t) - g(s)] Gp(s)ds > 1. 
H oo }g(t ) 

(26) 

Then y(t) is oscillatory. 

Corollary 2.3. Assume that equation (24) satisfies its conditions (i) . (ii) , (iii). 

Furthermore, assume that for any f3 > 0, there exist a function Gf3 E C [R+, R+] 

such that inequalities (25) and (26) hold , then every bounded solution of equation 

(24) is oscillatory. 

A similar result to this is the following: 

Corollary 2.4. Consider the equation 

y"(t) - P1(t)y(g(t)) - P2(t)y(t) = 0, (27) 



where p1(t), p2(t) ~ 0 and are continuous on R+, and 

lim ft [g(t) - g(s)]P1(s)ds > 1. 
Hoo }g(t) 

Then every bounded solution of (27) is oscillatory. 

This can be made clearer to the reader with the following illustration: 

Example 2.4. Consider the equation 

26 

(28) 

y"(t) - y(t - 7r)[(k + 1) + ky2n(t - 7r)] - ky(t)[l + y2n(t)] = 0, (29) 

where k ~ 0, for any integer n > 0. For any f3 > 0, G11(t) = (k + 1) satisfies the 

condition (25). Then equation (26) reduces to 

t k + 1 j (k + l)(t - s)ds = -
2

-7r2 > 1, 
t-?r 

and by Theorem 2.6, every bounded solution of equation (29) is oscillatory. In 

fact, equation (29) has bounded oscillatory solutions A cost + B sin t, where A 

and B are any arbitrary constants. 

2.5.1 Nonlinear equations with It: rt) = 00 

We consider the second order nonlinear delay differential equation expressed 

in the form 

(r(t)y'(t))' + J(t, y(t), y(g(t)), y'(t), y'(h(t)) = 0. (30) 

Now, with respect to equation (30), the following results follow the development 

of Zhang (1981). 

Theorem 2.7. Assume that 
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i} the conditions 

r E C[R+, R+J, r(t) > 0 for t 2: to, to E R+, lim R(t) = oo (31) 
t--+oo 

hold, 

where R{t) is defined by R(t) =ft': rt) , 

ii} g, h E C[R+, R+J, g(t) :::; t, lim g(t) = oo, 
t--+oo 

iii} f E C[R+ x R4 ,R] and uf(t,u,v,w,z) > 0 for u·v > 0, t 2: to, 

iv) there exist a constant {3 such that 0 < {3 < 1 and 

1
00 R/J(g(t)) lf(t, y(t), y(g(t)), y'(t), y'(h(t))I dt = +oo 

to ly(g(t))l/J 
(32) 

for every positive non-decreasing or negative non-increasing function y(t). Then 

every solution of equation (30) oscillates. 

One must note that the strict inequality in condition (iii) of Theorem 2.7 can 

be relaxed. Again, Theorem 2.7 remains valid if the argument g(t) is of mixed 

type, that is, it is advanced or retarded for certain values oft. 

Example 2.5. To understand Theorem 2.7 better, we consider 

(ty'(t))' + p(t)y! (ln t)(l + y12
( ./i,)) = 0, (33) 

where p(t) 2: 0 and Jt='p(s)ds > 0. 

According to Theorem 2.7, if J00(lnlnt)!p(t)dt - oo, then every solution to 

equation (30) is oscillatory. 

Consequently, in equation (30),if 

n 

f(t, y(t) , y(g(t)), y'(t) , y'(h(t))) = LPi(t) ly(g(t))r sgny(g(t)), (34) 
i = l 
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then by Theorem 2.7, we have the following results: 

Corollary 2.5. Assume that r(t), g(t) satisfy conditions (i) and (ii) of Theorem 

2.7, and Pi E C(R+, R+J, 0 < ai < 1, i E In· Further assume that 

(35) 

Then every solution of equation (34) is oscillatory. 

Theorem 2.8 . Assume that conditions (i}, (ii}, (iii} of Theorem 2. 7 hold. Further 

assume that there exist a positive number c such that 0 < c < 1 and 

r)O Rl-E(g(t))J(t,y(t),y(g(t)) ,y'(t),y'(h(t))) dt = 
00 

)to y(g(t)) 
(36) 

for every positive non-decreasing or negative non-increasing function y(t). Then 

every solution of equation (30) is oscillatory. 

Now consider the equation 

n 

(r(t)y'(t))' + LPi(t)y2
i+

1(g(t)) = 0. (37) 
i=O 

The following result is valid. 

Corollary 2.6. Assume that r(t) and g(t) satisfy the conditions (i) and (ii) of 

Theorem 2.7, and Pi E C[R+ 1 R+] for i E In. Furthermore, 

J
oo n 
R1-E(g(t))(~Pi(t))dt = oo, 0 < € < 1. 

i=O 
(38) 

Then every solution of equation (37) oscillates. 

It is easy to see that equation (37) satisfies the conditions of Theorem 2.8. In 
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particular, for n = 0, equation (37) becomes 

(r(t)y'(t))' + p(t)y(g(t)) = 0 (39) 

and condition (38) becomes 

/

00 

R1-~(g(t))p(t)dt = oo, 0 < c < 1. 

We note that ccannot be equal to zero. In fact, this is seen in the equation 

"(t) -
1 ! (!) - 0 y + 2V'J,t2 Y 2 -

which satisfies the condition f 00 R(g(t))p(t)dt = oo, but it has a non-oscillatory 

solution y(t) = d. 

Theorem 2.9. Assume that conditions {i},{ii},{iii} of Theorem 2. 7 hold. Further 

assume that there is a constant /3 > 1 such that 

1
00 R(g(t))/(t, y(t), y(g(t)) , y'(t), y'(h(t))) dt = oo, 

to ly(g(t))lp 
(40) 

for every positive non-decreasing or negative non-increasing function y(t). Then 

every solution of equation (30) is oscillatory. 

Corollary 2. 7. Consider the equation 

n 

(r(t)y'(t))' + LPi(t)y2
i+

1(g(t)) = 0. (41) 
i=O 

Assume that r(t) and g(t) satisfy all conditions of Theorem 2.9, 

Pi(t) ~ 0, (i = 1, 2, .. ., n) 
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and 

/

00 

R(g(t))(tPi(t))dt = oo. 
i=l 

(42) 

Then every solution of equation ( 41) is oscillatory. 

We observe that the condition (42) cannot be improved. Equation (41), 

including the equation y"(t) +p(t)y2n+l(t) = 0, n ~ 1, was discussed by Atkinson 

(1955), but condition ( 42) is a necessary and sufficient condition for the oscillation 

of Atkinson's equation. 

These illustrations are of importance to help in the understanding of these 

concepts. 

Example 2.6. Consider the equation 

1 
y"(t) + 4a2t2y3(t) = 0. 

It is well known that every solution of equation ( 43) oscillates. 

Example 2.7. The second equation, 

1 3 I 
y"(t) + --y (ta) = 0 

4a2t2 

1 
has a non-oscillatory solution y(t) = at2, but for the equation 

y"(t) + 
4
a;t2 y3 (>,t) = 0, 0 <A< 1, 

(43) 

(44) 

(45) 

every solution of equation (45) oscillates (according to Corollary 2.7) . These 

examples show that the order of the deviating argument g(t) is very important for 

the oscillation of the solutions. If g(t) is of the same order as t, then we can obtain 

a necessary and sufficient condition for the oscillation of a functional differential 

equation. The following result is based on the above idea. 
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Theorem 2.10. Assume that conditions {i},{ii} and {iii} of Theorem 2. 7 hold, 

and further assume that lim g'(t) = c, c > 0, r(t) and r(g(t)) are of the same 
t-+oo 

order if t ~ oo, and 

[
00 R(t) lf(t , y(t), y(g(t)) , y'(t), y'(h(t)))I dt = 00 

lto ly(g(t))lp 
(46) 

for some (3 > 1 and every positive non-decreasing or negative non-increasing 

function y(t). Then every solution of equation (30) is oscillatory. 

T heorem 2 .11. Consider the equation 

(r(t)y'(t))' + p(t)(y(t) + y(g(t)))2n+l = 0. (47) 

Assume that p(t ) ~ 0, r(t), g(t) satisfy the conditions of Theorem 2.10. Then, 

a necessary and sufficient condition for ( 47) to be oscillatory is that 

J00 

R(t)p(t)dt = oo. 

Corollary 2.8. Under the conditions of Theorem 2.11, equation (47) has a 

bounded oscillatory solution if and only if 

J00 

R(t)p(t)dt < oo. (48) 

Corollary 2.8 gives birth to the following theorem. 

Theorem 2.12. Assume that r(t) and g(t) of equation (41) satisfy the conditions 

of Theorem 2. 10 andpi(t) > 0, i = 1, 2, · · · , n. Then a necessary and sufficient 

condition for equation ( 41) to be oscillatory is that 

J
oo n 

R(t)(L Pi(t))dt = 00. 
i=l 

(49) 

Corollary 2.9. Under the conditions of Theorem 2.12, equation (41) has a 
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bounded oscillatory solution y(t) if and only if 

/

00 

R(t)(tPi(t))dt < oo. 
i=l 

(50) 

Now, observe that for the equation 

(r(t)y'(t))' + p(t)y(t)2n+l(g(t)) = 0, (51) 

where n is a positive integer, if p(t) ~ 0, r(t) and g(t) of equation (51) satisfy the 

conditions of Theorem 2.12, then a necessary and sufficient condition for equation 

(50)to be oscillatory is that 

/

00 

R(t)p(t)dt = oo. (52) 

This is an extension of Atkinson's theorem. 

The following results are also known to be valid. 

Theorem 2.13. Every solution of equation (30) is oscillatory if and only if 

J00 

R(t)p(t)dt = oo. (53) 

Corollary 2.10. Under the conditions of Theorem 2.13, equation (30) has a 

bounded non-oscillatory solution if and only if 

J00 

R(t)p(t)dt < oo. 

Theorems 2.4.7 -2.4.13 are quite recent and are the results of Ladde's work 

(Ladde et al. , 1987). 
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. h J'OO ds < 00 
2.5.2 Nonlinear equations wit to r (s) . 

Joo ds < 00 relative to 
. h 11 discus.5 the case where to r (s) 

In this section, we s a . . di ion to the equation 

t
. (30) For simplicity we shall restrict our scuss 

equa ion · 

(54) 
(r(t)y'(t))' + f(y(g(t)), t) = O. 

Definition 2.4. Equation (54) is called: 

i) Superlinear if, for each fixed t, f(~,t) is non-decreasing in Y for Y > 0 and 

non-increasing in y for y > O; 

ii) Strongly superlinear if there exist a number CJ > 1 such that, for each fixed 

t, 11~;!) sgny is non-decreasing in y for y > 0 and non-increasing in y for y > O; 

iii) Sublinear if, for each fixed t, 

non-decreasing in y for y > O; 

full is non-increasing in y for y > 0 and 
y 

iv) Strongly sublinear if there exist a number T < 1 such that, for each 

t , 11~1) sgny is non-increasing in y for y > 0. 

Let us look at some important results obtained for equation (54) under the 

stated condition. 

Lemma 2.5. Assume that 

i) r(t) is positive continuous for t > a and roo ..sk.. < oo· - Jto r (s) ' 

ii) g(t) is continuous for t ~ a and g(t) ::; t, lim g(t) = oo· 
t~oo ' 

iii) f(y , t)is continuous for IYI < oo, t ~ a and y . f (t , y ) for y =/; O, t ~a. 

If y(t) is a positive solution of equation (54) , then it is bounded above and satisfies 

y(t) ~ -r(t)y'(t)p(t) (55) 
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for all sufficiently large t, where p(t) = ft' rt) for all t > 0. 

A follow up to this are the following theorems. 

Theorem 2.14. Assume that equation (54) satisfies assumptions (i) to (iii} of 

Lemma 2. 5 and furthermore that it is either superlinear or sublinear. A necessary 

and sufficient condition for equation (54) to have a non-oscillatory solution which 

is asymptotic to a non-zero constant is 

J00 

p(t) IJ(c, t)I dt < oo for some c =I- 0. (56) 

Theorem 2.15. Assume that equation (54) satisfies assumptions {i} to {iii} of 

Lemma 2. 5 and furthermore that it is either superlinear or sublinear. A necessary 

and sufficient condition for equation (54) to have a non-oscillatory solution which 

is asymptotic to a · p(t) as t -t oo Jar a =f 0 is that 

J00 

f(cp(g(t)), t)dt < oo for some c. (57) 

T heorem 2.16. Assume that conditions {i},{ii} and {iii} of Lemma 2.5 hold and 

let equation (54) be strongly superlinear. A sufficient condition for equation (54) 

to be oscillatory is that 

/

00 

f(cp(t), t)dt = oo for all c > 0. (58) 

One must note that from Theorem 2.15, it follows that if equation (54), whether 

super linear or sublinear, is oscillatory, then 

1
00 

f(cp(t), t)dt = oo for all c > 0, t ~ti 
t1 

(59) 

In some cases, conditions (58) and (59) are equivalent. Indeed, such cases can be 

made clear from the following illustration. 

------- --------------------------------------
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Example 2.8. Let us rewrite the coefficient r(t) and the general delay function 

g(t) of equation (54) in the following forms: 

i) r(t) = ct(logt)'\ g(t) = tP or g(t) = vt, where c > 0, a> 1, 0 < f3 < 1 

and 0 < v < 1; 

ii) r(t) = ctP, g(t) = vt, where c > 0, p > 1 and 0 < v < 1; 

iii) r(t) = ceqt, g(t) = t - T(t), 0 ~ T(t) ~ M, where c > 0, q > 0 and 

M>O. 

Under the above considerations, equation (58) is certainly a necessary and 

sufficient condition for the oscillation of equation (54). 

However, there exist some cases where there are disparities between both 

conditions and this is made clearer in the following illustration. 

Example 2.9. Consider the delay equation 

[t3y'(t)]' + t[y(t3)]3 = 0. (60) 

It satisfies equation (59) but does uot satisfy condition (58). In fact , this equation 
1 

has a non-oscillatory solution y( t) = - . 
t 

The just mentioned equivalence and non-equivalence of equations (58) and (59) 

are by the way. Let us return to the subject matter of the context. The following 

theorem is also valid for the solutions of equation (54) to be oscillatory. 

Theorem 2.17. Assume that conditions (i},{ii} and (iii} of Lemma 2.5 hold and 

let equation (54) be strongly sublinear. A sufficient condition for equation (54) to 

be oscillatory is that 

j00 

p(t)f(c, t)dt = oo for all c > 0 (61) 

By combining Theorems 2.14 and 2.17, we now have the following theorem. 
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Theorem 2.18. Assume that conditions {i),(ii) and {iii) of Lemma 2.5 hold and 

let equation (54) be strongly sublinear. A necessary and sufficient condition for 

equation (54) to be oscillatory is that equation (61) remains valid (Kusano and 

Naito, 1976; Kusano and Onose, 1977). 

2.6 Oscillations of neutral differential equations 

A neutral delay differential equation is a differential equation in which the 

highest order derivative appears in the equation both with and without delay 

(Gyori and Ladas, 1991). These equations find numerous applications in natural 

sciences and technology. In contrast with delay differential equations, neutral 

equations inherit special structure which makes their study more difficult , but 

interesting. However, we are not going to delve into the details of this issue for 

now, but may touch its peripheries as we progress. For a better understanding, 

we begin the study of the concept of neutral delay differential equations with that 

of the first order. 

A neutral delay differential equation of the first order is an equation of the 

form 

[y(t) + p(t)y(t - 7)]' + q(t)y(t - CT) = 0, (62) 

where 

p, q E C([to, oo) , R) and T, <7 E [O, oo). (63) 

Let/ = max{T,CT} and let ti 2:'.: to. By a solution of equation (62) on [ti,oo), we 

mean a function y E C([ti - /, oo ), R) such that y(t) + p(t)y(t - T) is continuously 

differentiable for t 2:'.: ti and such that equation ( 62) is satisfied for t 2:'.: ti. 

Let ti 2:'.: t0 be a given initial point and let <p E C([ti - / , t1] , R) be a given 

initial function. Then, as can be proved by method of steps (Grammatikopoulos 

and Marusiak, 1995; Gyori and Ladas, 1991), equation (62) has a unique solution 
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on [t1 , oo) satisfying the given initial condition 

y(t) = r.p(t), for t1 - "f ~ t ~ t1. (64) 

As usual, when we say that each solution of the first order neutral delay 

differential equation (62) oscillates, we mean that for every initial point t 1 ~ t0 and 

for every initial function r.p E C([t1 - "(, t 1], R), the unique solutions of equations 

(62) and (64) on [ti, oo) has arbitrary large zeros. If it is false, then there exist a 

t 1 ~ to, an initial function r.p E C([t1 - "(,ti], R) and aT ~ tsuch that the solutions 

of equations (62) and (64) are either eventually positive or negative for t ~ T 

(Isaac, 2008). 

As earlier remarked, the theory of neutral delay differential equations, in 

general, presents a lot of very interesting complications. In one of such cases, it is 

observed that there exist some results which are true for non-neutral equations, but 

are not necessarily true for neutral equations. One then wonders what stands as 

the easiest methods for finding their solutions and how they are likely to behave 

in the entire process after all. Snow (1965) makes it clear, for example, that 

even though the characteristic roots of a neutral differential equation may all 

have negative real parts, it is still possible for some solutions to be unbounded. 

Similarly, Slemrod and Infante {1972) arrived at the same conclusion. 

In spite of these limitations, the oscillatory behaviour of the solutions of neutral 

systems is important both in theory and applications, such as the motion of 

retarding electrons, population growth, the spread of epidemics and networks 

containing lossless transmission lines (Driver, 1984; Gyori and Ladas, 1991; Hale, 

1977; Krisztin and Wu, 1996). 

The aim of this section is to present a review of some recent literature on 

neutral equations. 
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2.6.1 Oscillations of neutral delay equations with constant coefficients 

Consider the neutral equation of the form 

d2 
dt2 (y(t) + py(t - T]) + qy[t - a] = 0, (65) 

where p, q, T, a E R. The main results are the following theorems which 

give necessary and sufficient conditions for the oscillation of all unbounded 

and bounded solutions of equation (65) by means of its characteristic equation 

(Gopalsamy and Zhang, 1990; Grammatikopoulos et al., 1986; Ladas and 

Partheniadis, 1989; Ladas et al., 1988; Ladas and Sficas, 1986; Li and Liu, 1996; 

Li, 1997; Philos, 1989; Wong, 2000). 

(66) 

Theorem 2.19. Assume that p, q, T and a are real numbers, then the following 

statements are equivalent: 

i} Every unbounded solution of equation (65) oscillates; 

ii} The chamcteristic equation (66) has no roots in (0, oo) {Ladas et al., 1992}. 

Theorem 2.20. Assume that p, q, T and a are real numbers, then the following 

statements are equivalent: 

i} Every bounded solution of equation (65) oscillates; 

ii} The chamcteristic equation (66) has no roots in (-oo, O]. 

One can observe here that zero cannot be a multiple root of equation (66), 

therefore it is necessary to assume in condition (ii) of Theorem 2.19 that zero is 

not a root of equation (66). It is well known that all solutions of equation (65) 

oscillate if and only if equation (66) has no real roots. These results can easily 

be established by using Laplace transforms. However, the method of Laplace 
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transforms cannot be applied to unbounded solutions of equations when the 

deviating arguments are not all delays. In fact, the Laplace transforms of such 

solutions may not exist (Farrel, 1990; Ladas and Schultz, 1989; Grove, Kulevonic 

and Ladas,1987 ; Grove, Ladas and Schinas ,1988a ; Grove, Ladas and Schultz, 

1988b ; Kulenovic, Ladas and Meimaridou, 1987 ; Agarwal and Saker, 2001; 

Bainov and Mishev, 1991; Gopalsamy et al., 1992; Sficas and Stavroulakis, 1987; 

Graef, Grammatikopoulos and Spikes, 1991;1991a;1993 ). 

2.6.2 Oscillations of neutral delay equations with variable coefficients 

Consider the neutral differential equation of the form 

d2 
dt2 (y(t) + py[t - r]) + qy[t - o-] = 0, t ~ t0 , (67) 

where p(t), q(t) E C([t0 , oo), R) and the delays T and a are non-negative real 

numbers. 

Let <p(t) E C([to - p, t 0], R), where p = max{ r, a} is a given function and let z1 

be a given constant. 

Definition 2.5. The function y(t) E C([t0 - p, oo), R) is said to be a solution of 

equation ( 67) if 

y(t) = cp(t), t E [to - p, t0]; 

d2 
dt2 [y(t) + p(t)y(t - r)]lt=to = z1; 

The function y(t) + p(t)y(t - r) is twice differentiable fort ~ t0 and y(t) satisfies 

equation ( 67) for t 2 to. 

We shall note that theorems of existence and uniqueness of the solutions of 

neutral differential equations were obtained by Driver (1965, 1984), Bellman and 

Cooke (1963) and Hale (1977). The results in this section are primarily those of 
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Grammatikopoulos, Ladas and Meimaridou (1985,1987). 

We shall investigate the oscillatory properties of the solution of equation (67). 

The following results remain valid. 

Theorem 2.21. Assume that 

i} p(t) E C([t0 , oo), R), P1 ~ p(t) ~ P2 for t E [to, oo), where P1 and P2 are 

constants; 

ii} q(t) E C([t0, oo), R), q(t) ~ Q > 0 for t E [to, oo); 

iii} -1 < P1 ~ P2 < 0. 

Then each non-oscillating solution y(t) of equation (67) tends to zero as t ~ oo. 

A careful analysis of this illustrates that if condition (ii) of Theorem 2.21 

is violated, the result may not be true. Consider the neutral delay differential 

equation 

t .~ 2. 

All conditions of Theorem 2.21, except for condition (ii), are satisfied. Note 

that the function y(t) = Vt is a solution with lim y(t) = oo. 
t-+oo 

In the subsequent theorems, sufficient conditions are given for oscillation of 

the solutions of equation (67). 

Theorem 2.22. Consider the neutral delay differential equation (67) and assume 

that conditions {i} and {ii} of Theorem 2.21 hold. Furthermore, assume p(t) is 

not eventually negative, then each solution of equation (67) oscillates. 

Theorem 2.23. Consider the neutral differential equation (67) and assume that 

conditions {i} and (ii} of Theorem 2.21 are satisfied with 

-1 ~ P1 ~ P2 < 0. (68) 
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Suppose also that there exist a positive constant r such that 

and 

q(t) < -r 
p(t + T - a) -

iO"-T 1 
r2-- > -. 

2 e 

Then each solution of equation (67) oscillates. 
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(69) 

(70) 

T heorem 2.24. Consider the neutral differential equation (67) and assume that 

conditions {i} and {ii} of Theorem 2.21 are satisfied with 

P2 < 0. 

Suppose also that there exist a positive constant r such that 

and 

q(t) < -r 
p(t+T - 0") -

i<J-T 1 
r2-2- > e" 

Then each bounded solution of equation (67) oscillates. 

The following illustration gives a better understanding of Theorem 2.24. 

Example 2.9. Consider the neutral delay differential equation 

(71) 

(72) 

(73) 

All conditions of Theorem 2.24 are fulfilled. Therefore, each bounded solution of 

this equation oscillates. For instance, y(t) =sin t is such a solution. 
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In Theorems 2.25 and 2.26 given below, condition (ii) of Theorem 2.21 is not 

required. 

Theorem 2.25. Consider the neutral differential equation (67) and assume that 

the following conditions are eventually fulfilled: 

q(t) 2:: 0, -1 ~ p(t) ~ 0 and rX) q(s)ds = 00. 
lto 

Then each unbounded solution of equation (67) oscillates. 

T heorem 2.26. Consider the neutral differential equation (67) and assume that 

the following conditions are eventually fulfilled: 

0 < p(t)=P is constant; 

q(t) 2:: 0, q(t)¢0 and T - periodic. 

Then every solution of equation (67) oscillates. 

2.6.3 Oscilla tions of N onlinear Neutral Delay Equations 

In this section, the oscillatory properties and asymptotic behaviour of the 

solutions of nonlinear neutral differential equations of the form 

d2 
dt2 [y(t) + p(t)y(t - T)] + q(t)f(y(t - a)) = 0, t 2:: t0 (74) 

are investigated, where p(t), q(t) E C([t0 , oo), R), f E C(R, R) and the delays 

are non-negative constants. The results of this section are due to Graef, 

Grammatikopoulos and Spikes (1988). We shall note that the first oscillation 

criterion for second order equations, valid for both linear and nonlinear neutral 

differential equations, was obtained by Zahariev and Bainov (1980). 

Consider the following conditions: 

H 2.6.1: p(t) , q(t) E C((t0, oo), R), f (u) E C(R, R); 

H2.6.2: q(t) 2:: 0 for t E [to, oo), p(t)¢0, q(t) ¢0; 

H2.6.3: uf(u) > 0 for u =I= O.; 



---

43 

H2.6.4: If eventually, the inequality y(t) ~a> 0 holds, where a E R, then there 

exist a constant A such that eventually we have /(y(t)) ~ A> O; 

H2.6.5: ft': q(s)ds = oo; 

H2.6.6: There exist a continuous function b(t) such that b(t) = o(t), t ~ oo 

and b(t) ~ p(t) ~ 0. 

We shall say that conditions (H2.6) are met if conditions (H2.6.l)-(H2.6.6) hold. 

First, we consider the asymptotic behaviour of the non-oscillating solutions of 

equation (74) contained in the following Lemma. Note that sufficient conditions for 

the oscillation and asymptotic behaviour of the solutions of second order nonlinear 

neutral differential equations were obtained by Erbe and Zhang (1989), Grace and 

Lalli (1987, 1989). 

Lemma 2.6. Let y(t) be a non-oscillating solution of equation(74). Then the 

following statements are valid for 

z(t) = y(t) + p(t)y(t - r). 

i) Assume conditions (H2.6) are fulfilled. If y(t) is eventually positive, then the 

functions z(t) and z'(t) are either both decreasing with 

lim z(t) = lim z'(t) = -oo 
t-+oo t-+oo 

(75) 

or z'(t) is decreasing with 

lim z'(t) = 0, z'(t) > 0 and z(t) < 0. 
t-+oo 

(76) 

ii) Assume conditions (H2.6) are fulfilled. If y(t) is eventually negative, then the 

functions z(t) and z'(t) are either both increasing with 

lim z(t) = lim z'(t) = oo 
t-+oo t-+oo 

(77) 
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or z'(t) is increasing with 

lim z'(t) = 0, z'(t) < 0 and z(t) > 0. 
t-+oo 

(78) 

iii) Assume conditions (H2.6. l)-(H2.6.5) are fulfilled and that there exist a 

constant P1 < 0 such that 

P1 ~ p(t) ~ 0. (79) 

If y(t) is eventually positive, then either equation (75) holds or z'(t) is 

decreasing with 

lim z(t ) = lim z'(t) = 0, z'(t) > 0 and z(t) < 0. 
t-+oo t-+oo 

(80) 

iv) Assume conditions (H2.6.l )-(H2.6.5) are fulfilled in addition to condition 

(79). If y(t) is eventually negative, then either equation (77) holds or z'(t) is 

increasing with 

lim z(t) = lim z'(t) = 0, z'(t) < 0 and z(t) > 0. 
t-+oo t-+oo 

(81) 

v) Assume conditions (H2.6.l)-(H2.6.5) are fulfilled in addition to condition (79). 

If p1 ~ -1, then equation (80) holds when y(t) is eventually positive and 

equation (81) holds when y(t) is eventually negative. 

The following theorems are consequences of Lemma 2.6. 

Theorem 2.27. Assume conditions (H2.6. 1)-(H2.6.5) are fulfilled. If equation 

(79) holds with p1 > -1, that is 

-1 < P1 ~ p(t) ~ 0, (82) 

then each non-oscillating solution y(t) of equation (74) satisfies 
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y(t) -t 0 as t -t oo. 

Theorem 2.28. Let p(t) ~ 0. Then each non-oscillating solution y(t) of equation 

(74) satisfies the following: 

i) iy(t) i:::; bit for some constant bi > 0 and all t ~ max{l, t0}; 

ii) If t(p(t) t 1 is bounded, then y(t) is bounded; 

iii) If t(p(t)) - 1 -t 0 as t -too, then y(t) -t 0 as t -too. 

In the subsequent theorems, results concerning the oscillatory behaviour of 

solutions of equation (74) were obtained by Zahariev and Bainov (1988). The first 

result in this direction is an immediate consequence of Lemma 2.6. 

Theorem 2.29. Assume conditions {H2.6.1}-{H2.6.5} are fulfilled in addition to 

condition (79) with p1 ~ -1, that is, 

-1 ::; p(t) :::; 0. (83) 

Then each unbounded solution y(t) of equation (74) is oscillatory. 

We need to observe here that under the present hypothesis, part (iv) of Lemma 

2.6 implies that all non-oscillating solutions of equation (74) are bounded. It can 

also be observed that Theorem 2.29 reduces to Theorem 2.25 in section 2.6.1 and to 

the second order version of Theorem 12 in the monograph by Gra.mma.tikopoulos, 

Sficas and Stavroulakis (1988) wheu f(u) = u. 

In the next theorem, we obtain the conclusion of Theorem 2.29 without 

requiring condition H2.6.5, but with more restrictive condition on f(u). 

Theorem 2.30. Assume conditions {H2.6.1}-{H2.6.3) are fulfilled in addition to 

condition (83) and that f is increasing, 

(84) 
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and 

1
00 1 1-00 1 

c f(u) du< oo and c f(u) du< oo (85) 

for every constant c > 0. Then every unbounded solution of equation (74) is 

oscillatory. 

We now give sufficient conditions for all solutions of equation (74) to be 

oscillatory. 

Theorem 2.31. Assume conditions {H2.6. 1)-{H2.6.3) are fulfilled, that f is 

increasing, 

and 

0 ~ p(t) ~ 1 

f
00 

q(s)f([l - p(s - a)]c)ds = 00 
l to 

for any positive constant c. Then all solutions of equation (74) oscillate. 

(86) 

(87) 

Careful survey shows that Theorem 2.31 extends Theorem 1 in the monograph 

by Grammatikopoulos et al. (1985) and reduces to the second order version of 

Theorem 10 in the monograph by Grammatikopoulos, Ladas and Meimaridou 

(1988) when f(u) = u. When a = 0 and p(t) = 0, Theorem 2.31 reduces to a 

well-known oscillation result for ordinary differential equations. 

Theorem 2.32. Assume conditions {H2.6.1}-{H2.6.5) are fulfilled and that p(t) 

is not eventually negative. Then any solution y(t) of equation (74) either oscillates 

or satisfies 

lim inf ly(t)I = 0. 
t-too 
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l\ext we obtain as a corollary to the verification of Theorem 2.32, a necessary 

condition for equation (74) to have a non-oscillating solution. 

Corollary 2.11: Assume that 

i) q(t) 2'.: q > O; 

ii) P1 ~ p(t) ~ p2; 

iii) there exist a constant A > 0 such that 

If (u)I 2'.: A lul for all u; (88) 

iv) p(t) is not eventually negative. 

Then all solutions of equation (74) are oscillatory. 

Note that Corollary 2.11 is an extension of Theorem 2.22 in section 2.6.2, the 

second order version of Theorem 7 in the monograph by Grammatikopoulos et al. 

(1988a) and Theorem 4 in the article by Ladas and Sficas (1986). Theorem 1 in 

Zahariev and Bainov (1980) includes Corollary 2.11 when p(t) = p > 0 and T = u. 

However, their method of proof does not appear to carry over under the hypothesis 

of Corollary 2.11. A similar remark can be made about the second order versions 

of the result in the work by (Zahariev and Bainov, 1986). 

It seems reasonable to ask if the conclusion of Corollary 2.11 can be obtained 

with equation (88) replaced by either condition H2.6.4 or requiring f to be 

increasing. Another interesting question is whether this corollary can be verified 

without the requirement that p(t) is not eventually negative. Theorem 2.29 may be 

considered a partial answer to the last question in case p( t) is eventually negative 

and bounded from below by -1. 

The next theorem shows that if p(t) is bounded, with upper bound less 

than -1. then conditions H2.6.4 and H2.6.5 are sufficient to ensure that bounded 

non-oscillating solutions of equation (74) tend to zero as t -+ oo. 
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Theorem 2.33. Assume conditions {H2.6.1}-{H2.6.5} are fulfilled and there exist 

constants p1 and p3 such that 

P1 ~ p(t) ~ p3 < -1. (89) 

Then each bounded solution y(t) of equation (74) either oscillates or satisfies 

y(t) -+ 0 as t-+ oo. 

We conclude with an oscillation theorem for equation (74) when q(t) is 

T-periodic. 

Theorem 2.34. Assume conditions {H2.6. 1}- {H2.6.3} are fulfilled, that p(t) = 
p > 0, q(t) is T-periodic and that f is increasing and satisfies 

f(u + v) ~ f(u) + f(v) i f u , v > O; 

f (u + v) 2: f(u ) + f(v) if u, v < O; 

f ( ku) ~ k f ( u) if k > 0 and u > 0 (90) 

and 

f(ku) ~ kf(u) if k > 0 and u < 0. (91) 

Then each solution of equation (74) is oscillatory. 

Theorem 2.34 includes Theorem 2.26 in section 2.6.1 and the second order 

version of Theorem 9 in the monograph by (Grammatikopoulos et al., 1988b) as 

special cases. 
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2.6.3 Linearized oscillation 

We consider the second order non-linear delay differential equations 

y"(t) + A(t)y'(t) + B(t)J(y(t - T)) = 0, t ~ 0 (92) 

and 

y"(t) - A(t)y'(t) + B(t)J(y(t - T)) = 0, t ~ 0 (93) 

where 

T > 0, A, BE C(R+, (0, oo)), f E C(R, R), 

lim A(t) =a E (0, oo), lim B(t) = b E (0, oo). 
t-+oo t-+oo 

(94) 

The sun.flowing equation 

a b 
y"(t) + -y'(t) + - sin y(t - T) = 0, t ~ 0 

T T 
(95) 

is a special case of equation (92). Under some assumptions, the following equations 

are called the linearized limiting equations of equations (92) and (93) respectively: 

y"(t) + ay'(t) + by(t - T) = 0, t ~ 0 (96) 

and 

y"(t) - ay'(t) + by(t - T) = 0, t ~ 0 (97) 
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respectively (Kulenovic et al., 1987a,b). 

We establish the relations between the oscillations of equations (92), (93) and 

that of their linearized limiting equations, (96) and (97) respectively. 

The following lemmas are useful for the formulation of the theorems on 

oscillation. 

Lemma 2. 7. Assume that a , b, r E (0, oo) and every solution of equation (96) is 

oscillatory. Then there exist an £ E (0, b) such that every solution of the equation 

z''(t) +(a+ c)z'(t) + (b - c)z(t - r) = 0 (98) 

is oscillatory also. 

Lemma 2.8. Assume that A, B E C (R+, (0, oo)), f E C(R, R), u · f(u) > 

0 as u =I- 0 and lul ~ H, 

where HE (0, oo) and f is non-decreasing in (-H,H]. If 

x(t) ;::: [
00 J; B(u)f(y(u - r)) exp(- is A(v)dv)duds, t 2: T (99) 

has a positive solution y(t): (T - r, oo)-+ (0, HJ, then 

z(t) 2: 1= J; B(u)f(z(u - r)) exp(- is A(v)dv)duds, t 2: T (100) 

has a positive solution z(t) on (T - T, oo )and 

0 < z(t) ~ x(t) . (101) 

The following important theorems are direct consequences of the above. 
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Theorem 2.35. Assume that 

i) uf(u) > 0 for tL # 0, lul ~ H, where H E (0, oo) and lim f(u) = 1, 
u-+0 U 

ii) The characteristic equation of equation (96) 

f(>..) = >..2 +a>..+ be-AT= 0 (102) 

has no negative roots. 

Then every solution of equation (92) whose graph lies eventually in the strip R+ x 

[-H, HJ is oscillatory. 

Theorem 2.36. Assume that 

i} u · f(u) > 0 for u :;f 0, lim f(u) = 1, 
juj-+oo U 

ii} The characteristic equation of equation (97) 

f(>..) = )...2 - a>..+ be-AT = 0 (103) 

has no positive roots. Then every solution of equation (93) is oscillatory. 

The following results are about the existence of non-oscillatory solutions, where 

condition (94) is no longer required. 

Theorem 2.37. Assume that 

i) there exist a > 0, b > 0 such that A(t) :2: a, B(t) :2: b, t :2: O; 

ii) there exist an H > 0 such that u · f(u) > 0, for u E (0, HJ, f(u) ~ 

u for u E [O, HJ, and f is non-decreasing on [O, HJ; 

iii) The characteristic equation (102) has a real root. 

Then equation (92) has an eventually positive solution y(t) lying in the strip R+ x 

(0, HJ eventually. 
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Theorem 2.38. Assume that 

i) u · f(u) > 0 for u # O; 

ii) there exist an M > 0 such that f(u) $ u, for u 2: M ; 

iii) there exist a > 0, b > 0 such that A(t) 2: a, B(t) ~ b, t 2:: 0 and f is 

non-decreasing on [O, oo); f(u) ~ u for u E [0, H]; 

iv) The characteristic equation ( 103) has a real root. 

Then equation (93) has an eventually positive solution y (t) lying in the strip R+ x 

(0, H] eventually. 
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CH AP TER THREE 

METHODOLOGY 

3.1 Introduction 

The theory of impulsive differential equations is based on the behaviour of 

PfOCts5eB Under the influence O f s ho1 H ime b uL i ntensi ve p erturbatwns. The 

duration of these perturbations are extremely small and can be ignored compared 
to the total duration of the process itself. Therefore, they are regarded as 

'momentary', that is, the perturbations are of impulsive type. 

In ordinary differential equations,the solutions are continuously differentiable 

at least once or more, whereas impulsive differential equaLions generally possess 

non-continuous solutions. Since the continuity properties of the solutions play a 

fundamental role in the analysis of the behaviour, the techniques used to handle 

the solutions of impulsive differentiations are basically different. including the 

defini tions of some of t he basic concepts. Such concepts as the positive (negative) 

solutions defined on Lhe interval [to, oo), the oscillatory behaviour of some solutions 

and the existence of solutions on the given interval are some of the concepts most 

affected (Isaac, 2008). 

In this chapter, we will visit some of the regularly used concepts which are 

clearly different from those of ordinary differential equat ions. Moreover, we will 

provide some basic lemmas used in establishing the oscillatory behaviour of the 

solutions of the differential equations in question. 

3.2 Exist ence of solution 

Letnc Rn be an open set and let D = R+ xn. Let us assume t.ha1, for 

each k = 1, 2. · · · , rk E C[, (0, oo)J, rk(Y) < rk+i(Y) and lim rk(Y) = oo 

1.:-+oo 

for y ED For convenience of notation, we shall assume that r 0 = O and that k 

always runs from 1 to oo. Also, let S := {t : t = rk(y), y E Rn} which are surfaces 

\:/ k, 1 $ k $ oo. 
In addition let y : (a, b) c R -t n and let b.y(t) = y(t + 0) - y(t - 0). 
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Let f : D --t Rn be a continuous (differentiable, local or global Lipschitz 

continuous function). Let lk (y) : n --t R+, V k E N be a piece-wise continuous 

function. 

Consider the initial value problem of the impulsive differential system 

y' = f(t, y), t =J Tk(Y) 

6.y(t) = lk(y) , t = Tk(Y) 

y(tt) =Yo, to ~ 0, 

where f: D --t ~ and lk: 0--t Rn, Vk E IN . 

(104) 

Definition 3.1. A function y: (to, to+ a) -+ ~, t0 > 0, a> 0 is said to be a 

solution of system (104) if 

i) y(tri) =Yo and (t, y(t)) E D for t E (to, to+ a); 

ii) y(t) is continuously differentiable and satisfies y'(t) = f(t, y(t)) for t E 

(to, to+ a) and t =J rk(y(t)); 

iii) If t E (to, to+ a) and t = rk(y(t)) , then y(t+) = y(t) + lk(y(t)), and for such 

t's we always assume that y(t) is left continuous. 

Lemma 3.1. The solution y as defined in definition 3.1 fulfils: 3 6 > 0 such that 

s =J T;(y(s)), Tk(y(t)) = t < s < 6 & V j E IN. 

Proof. The proof follows from the definition of Tk, k E IN and the properties of the 

solution. 

a) From the properties of Tk, k E N: Since rk(Y) < Tk+i(Y), Vy E n, v k E N 

follows that <Pk(Y11 Y2) := Tk+l (yi)-Tk(Y2), v (y1, Y2) E n x n is strictly positive 

on the diagonal. By the continuity of <P at (y, y) En x 0, 36(y) > 0 such that 
2<Pk(Y, y) 

<Pk(Y1, Y2) > 
3 

, V (y1 , Y2) E B6(v)(Y) x B6(v)(y). 

b) By the same property rk(Y) < Tk+I(y), Vy E n, v k E rtl follows that 

<Pk(Yi, Y2) = 'k+i(Y1) - rk(Y2) < Tt(Y1) - Tk+i(Y1) + <I?k(Yi, Y2) = r,(y1) -

rk(Y2), Vt> k. 
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c) Since Tk(y(t)) = t < s is investigated, s f Tk(y(t)) = t . y is continuous on 

an interval t < s < 80 . Hence 3 TJ > 0 such that y(s) E B6(y(t)) (y(t)), Vt < 
. 2<l\(y(t), y(t)) 

s < t + TJ . Moreover let <5 := mm{TJ, 
3 

}. Then by (a), (b) and 

definition of <5, t < s < <5, s =/=- Tk+i (y( s)). Hence by (b) the statement stands 

for all k E IN. 

0 

It should be observed that instead of the usual initial condition y(t0 ) = y0 , we 

have imposed the limiting condition y(tt) = y0 which, in general, is natural for 

system (104) since (to, Yo) may be such that to = Tk(Yo) for some k. Whenever 

t0 =I Tk(Yo) for any k, y(tt) = Yo will be understood in the usual sense of initial 

condition y(to) =Yo· 

Unlike ordinary differential systems, the impulsive system (104) may not have 

any solution at all even if f is continuous (or continuously differentiable) since 

the only solution y(t) of the problem y' = f(t, y) , y(t0 ) = y0 may totally lie on a 

surface S. Hence we need some extra conditions on Tk and/or f besides continuity 

in order to establish any general existence theorem for system (104). 

Consequently, we state the following theorem: 

Theorem 3 .1. Assume that 

i) f : D ~ Rn is continuous at t =I Tk(y), V k E N and for each (t, y) E D, 

there exist an l such that, in a neighbourhood of (t, y) , 

If (s, z)I ~ l(s); (105) 

ii) If 3 k E IN, ti = Tk(Y1) implies the existence of a <5 > 0 such that 

(106) 

for any 0 < t - ti < <5 and IY - Yi I < <5. 
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Then for each (t0 ,y0 ) ED, there exist a solutiony: (to,to+a) ~Rn of the initial 

value problem (104) for some o > 0. 

It is obvious that condition (106) is reasonable only for irregular functions 

Tk(Y) since the theory of implicit functions implies that if Tk is differentiable at 

y0 and Tk(y0 ) f= 0, then condition (106) can never hold. However, we have the 

following theorem where some regularity conditions on Tk(Y) are required. 

Theorem 3.2. Assume that 

i} f: D ~Rn is continuous 

ii} Tk : 0 ~ (0, oo) are differentiable 

iii} If t1 = Tk(Y1) for some (tii Y1) E D and k ~ 1, then there is a 8 > 0 such 

that 

(107) 

for (t, y) E D such that IY - Yd < 8 and 0 < t - t1 < 8. 

Notice that the left hand side of relation(107) represents a scalar product. 

Then for each (t0 , Yo) E D, there exist a solution y : (t0 , t0 + o) ~ ~ of the 

system (104) for some o > 0. 

Here we limited ourselves to the simplest conditions and theorems only. When 

delay is introduced, the situation becomes much more complicated because on the 

right side of the system (104) there may be more discontinuities than in the case 

without delay. When t rt S, y(t) should be continuous.The right side of system 

(104) may, however, contain a delay point y(t - Tk) such that t - tk E S, thus 

forcing the right side to be continuous (Isaac, 2008). 
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3.3 Qualitative behaviour 

In this section, we will formulate some basic concepts about the qualitative 

behaviour of impulsive differential equations. But first , we will consider an 

ordinary differential equation given as follows: 

Let J : [O, oo) x n ~ n be a continuous function and let J fulfil Lipschitz 

condition in the spatial variable for each fixed t. We also assume that f is 

continuously differentiable with respect to the spatial variables. 

The qualitative analysis examines the solution of an initial value problem of 

the form 

y'(t) = f(t, y(t)) , y(to) =YO· 

Here we select an arbitrary solution of the initial value problem and desire to see 

how the other solutions behave. In other words we investigate the behaviour of 

the difference between our selected solution y(t) and another solution z(t). We 

therefore need the equation describing the difference z(t) - y(t) , where y(t) is 

'known' while z(t) varies. This leads to the following equation: 

z'(t) - y'(t) = J(t, z(t)) - f(t, y(t)). 

We let <p(t) = z(t) - y(t) , Vt belonging to the specified domain and have that 

d~~t) = J(t, c,o(t)) + y(t)) - J(t, y(t)). 

If f is differentiable then 

dc,o(t) 8f(t, y(t)) ( ) ( ( )) <it = oy c,o t + r t, c,o t ' 

where the difference between y(t) and z(t) is described by a non-homogeneous 



58 

linear differential equation of 

d~~t) = A(t)cp(t) + r(t, cp(t)) . 

Here lim llr(t, h)ll = 0 holds, hence the identically zero function is a solution. 
lihll~O llhll 

Having discussed this, we now assume y(t) to be the solution of an arbitrary 

impulsive differential equation. 

Definit ion 3.2. The solution y(t) is said to be regular if it is defined on a half 

line [Tx, oo) for some Tx ER and sup{ly(t)I : t ~ T} > 0 V T > Tx. 

The oscillatory solutions will be defined in a way different from the classical 

theory since the solutions are piece-wise continuous only. 

Let us begin with the non-oscillatory behaviour of the solution. 

D efinition 3.3. The solution y(t) is said to be 

i) finally positive, if there exist T ~ 0 such that y(t) is defined and is strictly 

positive for t ~ T; 

ii) finally negative, if there exist T ~ 0 such that y(t) is defined and is strictly 

negative for t~ T (Isaac et al., 201lb). 

Definit ion 3.4. The solution y(t) is said to be non-oscillatory, if it is either finally 

positive or finally negative. 

Definition 3.5. The solution y(t) is said to be oscillatory, if it is neither finally 

positive nor finally negative. 

It can be seen that finally positive or finally negative solutions are regular 

solutions. Moreover, regular oscillatory solutions are the real oscillatory solutions 

because Definition 3.5 is fulfilled by an identically zero solution. 
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Having defined these concepts, let us examine some theories that will serve as 

tools for the results of the main work and the determination of the oscillatory (or 

non-oscillatory) behaviour of solutions . 

3.4 Fixed point theory 

Over the last 50 years the theory of fixed points has been revealed as a very 

powerful and important tool in the study of nonlinear phenomena, especially in 

problems related with the existence and uniqueness of solutions of differential 

equations. In fact, fixed point methods are most important in solving non-linear 

differential problems. There are several ways to reduce a non-linear existence 

problem to a fixed point problem (for a mapping in function space). The theory 

itself is a beautiful mixture of analysis (pure and applied), topology, and geometry. 

In particular fixed point techniques have been applied in such diverse fields as 

biology, chemistry, economics, engineering, game theory, and physics. 

On the other hand, fixed point theorems concern maps f of a set X into 

itself that, under certain conditions, admit a fixed point, that is, a point x E X 

such that f(x) = x. In mathematics, their applications abound in the theory of 

existence of solutions for differential,integral and other equations in the diverse 

areas of mathematics. 

In order to fully understand the concept of fixed point theory and its 

application to the obtainability of sufficient conditions for the existence of 

solutions of differential equations, we will begin by giving some definitions of 

associated terms. 

3.5 Some basic definitions 

Definition 3.6. Given a vector space X over a subfield F of the complex numbers, 

a norm on X is a real-valued function p(x) : X ~ R with the following 

properties: 
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i) p(x) = 0, <=> p(x) = 0, \Ix EX; 

ii) p(ax) = lalp(x), Va E F, \Ix EX; 

iii) p(x + y) :'.S p(x) + p(y), V x, y EX. 

Definition 3.7. A vector space X on which a norm II· II is defined is called a 

normed vector space. 

Definition 3.8. A subset Sofa normed vector space X is said to be bounded if 

there is a number M such that II x II :'.SM for all x ES. 

Definition 3.9. A subset S of a normed vector space X is called convex if, for 

any x, y E S, ax+ (1 - a)y E S for all a E [O, l]. 

Definition 3.10. A sequence {xn} in a normed vector space Xis said to converge 

to the vector x E X if and only if the sequence llxn - xii converges to zero as 

n-+ oo. 

Definition 3.11. A sequence {xn} in a normed vector space X is a Cauchy 

sequence in X if for every c > 0 there exists an N = N(c) such that llxn - xmll < c 

for all n, m ~ N (c). 

Remark 3.1: Clearly, a convergent subsequence is a Cauchy sequence, but the 

converse may not be true. 

Definition 3.12. A space X where every Cauchy sequence of elements of X 

converges to an element of X is called a complete space. A complete normed 

vector space is said to be a Banach space. 

Definition 3.13. Let M be a subset of a Banach space X. A point x EX is said 

to be a limit point of M if there exists a sequence of vectors in M which converges 

to x. 
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Definition 3.14. We say a subset Mis closed if M contains all of its limit points. 

The union of Mand its limit points is called the closure of Mand will be denoted 

byM. 

Definition 3.15. Let N , M be normed spaces, and X, a subset of N. A mapping 

T : X ~ M is continuous at a point x E X if and only if for any £ > 0 there is a 

8 > 0 such that llTx - Tyll <£for all y EX such that !Ix - Yll < 8. 

R emark 3.2: T is continuous on X, or simply continuous, if it is continuous at 

all points of X. 

The following result is worth knowing. 

Theorem 3.3. Every continuous mapping of a closed bounded convex set in Rn 

into itself has a fixed point. 

D efinition 3.16. A subset S of a Banach space X is compact, if every infinite 

sequence of elements of S has a subsequence which converges to an element of 

S. We say M is relatively compact if every infinite sequence in S contains a 

subsequence which converges to an element in X. That is, M is relatively compact, 

if M is compact. 

Definition 3.17. A family Sin C([a, b], R) is called uniformly bounded if there 

exists a posit ive number M such that If (t)I ~ M for all t E [a, b] and all f E S. 

Definition 3.18. S is called equicontinuous if for every varepsilon > 0 there 

exists a 6 = 6(£) > 0 such that If (ti ) - f (t2) I < £ for all ti, t2 E [a, b] with 

lt1 - t21 < o and for all f E S. 

Theorem 3.4. (Arzela-Ascoli Theorem) A subset Sin C([a, b], R ) with norm 

llf 11 = sup lf(x)I 
:r:E(a ,b] 
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is relatively compact if and only if it is uniformly bounded and equicontinuous on 

[a, b]. 

Definition 3.19. A topology T on a linear space E is called locally convex if 

every neighborhood of the element zero includes a convex neighborhood of zero. 

Definition 3.20. A real valued function p(x) defined on a linear space Xis called 

a semi-norm on X if the following conditions are satisfied: 

i) p(x)~ O,x= O=>p(x)=O,\ixEX; 

ii) p(ax) = lalp(x), \;la ER, \;Ix EX; 

iii) p(x + y) ~ p(x) + p(y) , \ix, y EX. 

Remark 3.3: From this definition, we can prove that a semi-norm p(x) 

satisfies 

However, in contrast to norms, it may happen that p(x) = 0 for x =f 0. 

Definition 3.21. A family P of semi-norms on X is said to be separating if to 

each x =f 0 there exists at least one p E P with p(x) =f 0. 

Remark 3.4. For a separating semi-norm family P, if p(x) = 0 for every p E P, 

then x = 0. 

A locally convex topology T on a linear space is determined by a family of 

semi norms {p0 : a E I}, I being the index set. 

Let E be a locally convex space, and x, {xn}~=l E E. Then Xn ~ x in E if 

and only if Pa(Xn ~ x) ~ 0 as n ~ oo, for every a E /. 

Definition 3.22. A set SC Eis bounded if the set of numbers {p0 (x) , x E S} 

is bounded for every a E I. 
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Definition 3.23. A complete metrizable locally convex space is called a Frechet 

space. 

Example 3.1. The space of functions C([t0 , oo), R) is a locally convex space 

consisting of the set of all continuous functions. The topology of the space is 

the topology of uniform convergence on every compact interval of [t0 , oo). The 

semi-norm of the space C([t0 , oo), R) is defined by Pa(x) = max lx(t)I, where 
xE[lo,o) 

x EC, a E [to,oo). 

Definition 3.24. Let X be any set. A metric on Xis a function d: Xx X ~ R 

having the following properties for all x, y, z E X: 

i) d(x, y) ~ 0 and d(x, y) = 0 if and only if x = y 

ii) d(y, x) = d(x, y) 

iii) d(x,z) ~ d(x,y) +d(y,z). 

A metric space is a set X together with a given metric on X. 

Definition 3 .25. A complete metric space is a metric space X in which every 

Cauchy sequence converges to a point in X. 

Definition 3.26. Let (X, d) be a metric space and let T : X ~ X. If there exists 

a number r E [O, 1) such that d(Tx, Ty) ~ r · d(x, y) for every x, y E X, then we 

say T is a contraction mapping on X. 

Having established some background knowledge of necessary topological 

concepts for the understanding of fixed point theory. we now give a list of 

some well-known fixed point theorems. They include. but are not limited to 

the following: Banach fixed point theorem (Contraction mapping principle) , 

Brouwer fixed point theorem, Knaster-Tarskifixed-point theorem, Atiyah-Bott 

fixed-point theorem, Borel fixed-point theorem, Caristi fixed-point theorem, 

Kakutani fixed-point theorem, Kleene fixed-point theorem, Lefschetz fixed-point 
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theorem, Nielsen fixed-point theorem, Woods Hole fixed-point theorem, Schauder 

fixed point theorem, Tychonoff fixed-point theorem, Krasnoselkii fixed point 

theorem and Schauder-Tychonoff fixed point theorem. 

We will examine the last four fixed point theorems due to their direct 

application to the analysis of solutions of nonlinear functional equations. 

Theorem 3.5. (Schauder 's fixed point theorem) Let S be a closed convex and 

nonempty subset of a Banach space X. Let T : S ~ S be a continuous mapping 

such that T(S) is a relatively compact subset of X. Then T has at least one fixed 

point in S. That is, there exists an x EX such that Tx = x. 

One observes here that in oscillation theory we usually want to prove that 

the family of functions is uniformly bounded and equicontinuous on [t0 , +oo). 

According to Levitan (1947), the family S is equicontinuous on[t0 , oo) if for any 

givenc- > 0, the interval [t0 , oo) can be decomposed into a finite number of 

subintervals in such a way that on each subinterval all functions of the family 

S have oscillations less than c-. 

Theorem 3 .6. (Tychonoff fixed point theorem) Let X be a locally convex 

topological vector space, and let K C X be a non-empty, compact, and convex 

set. Then given any continuous mapping f : K ~ K there exists x E K such that 

f(x) = x. 

Remark 3.5. Notice that a normed vector space is a locally convex topological 

vector space, therefore this theorem extends the Schauder fixed point theorem. 

In 1935, the Soviet mathematician H. Tychonoff gave a generalization of the 

Schauder fixed point theorem for locally convex vector spaces (Tychonoff, 1935). 

This result is usually termed the Schauder-Tychonoff theorem. 

Theorem 3. 7. (Schauder-Tychonoff fixed point theorem) Let X be a locally convex 

linear space, S a compact convex subset of X, and let T : S ~ S be a continuous 

mapping with T(S) compact. Then T has a fixed point in S. 
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Theorem 3.8. (Krosnoselskii's Fixed Point Theorem). Let X be a Banach space, 

n a bounded closed convex subset of X and A, B be maps of n into X such that 

Ax+ By E n for every pair x, y E 0. If A is a contraction and Bis completely 

continuous, then the equation Ax+ Bx= x has a solution in 0. 

3.6 Nagumo condition 

A Nagumo condition for ordinary differential equations is a given condition 

which guarantees that each solution of the nth order ordinary differential equation 

y(n) = f(x, y, y', ... , y<n-1)) 

either extends or becomes unbounded on its maximal interval of existence.In 

particular, the classical Nagumo condition for the second order ordinary 

differential equation 

y" = f (x, y, y') (108) 

is a growth condition on f(x, y, y') which implies that solutions of equation (108) 

either extend or become unbounded on their maximal intervals of existence. 

Nagumo (1937) used this growth condition on f(x, y, y') to prove the existence 

of solutions of boundary-value problems, assuming that f (x, y, y') is continuous. 

One formulation of the condition is contained in the following theorem. 

Theorem 3.9. Assume that equation (108) is a scalar equation with f(x, y, y') 

continuous on (a, b) x R2 . If for each M > 0 and each compact interval (c, d] c 

(a, b) there is a corresponding positive continuous function </J(s) on [O, oo) such 

that lf(x, y, y')I :::; </J(ly'I) for all (x, y, y') satisfying c:::; x:::; d, IYI :::; M and such 

that f0
00 

<P(
11
)ds = +oo, then each solution of equation (108) either extends to {a,b} 

or becomes unbounded on its maximal interval of existence. 
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Other formulations from which Theorem 3.8 follows may be found in Hartman 

(1964) and Jackson (1968). 

This property of solutions which is stated as the conclusion in Theorem 3.8 

along with the assumed existence of solutious of certain types of differential 

inequalities plays an important role in demonstrating the existence of solutions 

of boundary value problems, not only for second order equations but for higher 

order equations as well (Hartman, 1964; Kelley, 1975; Klaasen, 1971; Schrader, 

1969, Bebernes, Gaines and Schmitt, 1974 ). 

We conclude this section by stating the following simple but very important 

theorem. 

Theorem 3.10. Assume that for each b > a · f(x, y , y') satisfies a Nagumo 

condition on [a,b] with respect to the paira(x),/3(x) E C1[a, oo), where a(x):::; 

f3(x) on [a, oo), and a(x) and /3(x) are, respectively, lower and upper solutions 

on [a, oo). Then for any a(a):::; c:::; fJ(a), the boundary value problem 

y" = f(x, y, y'), y(a) = c (109) 

has a solution y(x) E C2[a, oo) with a(x) :::; y(x) :::; f3(x) on [a, oo) . 

There is yet another concept that will play an important role in the discussion 

of the main work. This is Sturm's Comparison Theorem. In what follows, we 

present a brief discussion of the concept. 

3.7 St urm's comparison t heorem 

We consider the second order linear delay equations of the form 

n 

1
t 

(p(t)x'(t))
1 

+ ~ qi(t)x (ri(t)) + r(a) k(s, t)x(s)ds = 0, t E [a, b) (110) 

and 

I n 1t (p(t)y'(t)) + L Qi(t)y (ri(t)) + K(s, t)y(s)ds = 0, t E [a, b) , 
i=I r(u) 

(111) 
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wherea<b~oo, pEC1 ([a,b),(O,oo)), Qi , Qi , K(s,t), k(s,t)arecontinuous 

functions over [a, b) and {(s, t) : s ~ t, a~ t < b} , respectively. Also, T;(t) ~ t, 

where Ti is continuous, i = 1, 2, · · · , n, and 

T ( t) = min {Ti ( s), s ~ t, i = 1, 2, .. · , n} . (112) 

For a given initial function </> E C[T(a), a], there exists a unique solution x(t) to 

equation (110) in [a, b) with 

x(t) = </>(t), t E [T(a), a) and x'(a+) =</>'(a-). (113) 

Let 'l/;(t) E C[T(a) , a) be an initia l function for equation (111) and y(t) be the 

corresponding solution to equation (111) with the initial condition given by 'l/;(t). 

For equations (110) and (111) assume the following comparison conditions 

hold. 

(Ai) Qi(t) ~ lqi(t)I, i = 1, 2, · · · , n, 

(A2) K(s, t) ~ lk(s, t)I, s, t E {a, b), 

'!j;(t) I </>(t) I (A3) 'l/; (a) ~ </>(a) , t E [T(a), a). 

If we assume that all of the Qi(t) and k(s, t) are nonnegative, then we can relax 

condition (A3 ) to get the following conditions: 

(B2) K(s , t) ~ k(s, t) ~ 0, s, t E {a, b) , 

'!j;(t) '!j;(t) </>(t) 
(B3) 'l/;(a) ~ 0, 'l/;(a) ~ </>(a), t E [T(a), a]. 

Likewise, if we assume that !t!~ ~ 0, we can relax conditions (A1 ) and (A2 ) to get 
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the following conditions: 

(C2) K(s,t) ~ 0, K(s,t) ~ k(s,t), s, t E {a,b), 

'lf;(t) <P(t) 
(C3) 'lf;(a) ~ ¢(a) ~ 0, t E [T(a), a]. 

In the following, we will use the conditions: 

(D2 ) K(s , t) ~ k(s, t) ~ 0, s, t E {a, b), 

(D3) 'lf;(a) # 0 and 'lf;(t) does not change sign in [T(a), a], ¢(a) = 0, 'l/J'(a) # 

0, and ¢(t) does not change sign in [T(a), a]. 

From conditions (A3), (B3) and (C3), we obtain 

(114) 

Conditions (D1) - (D3) imply conditions (B1) - (B3). In fact, from condition 

(D3), we see that ~g} --+ oo as t--+ a+. A new initial point a- can be chosen so 

that with the shifting of the initial interval to [T(a-), a-J, the conditions (B1)-(B3) 

now hold. 

Theorem 3.11. Assume that one of the sets of comparison conditions 

(Ai/ Bi/Ci/ D1)-(A3/ B3/C3/ D3)holds1 and that the solution y(t) of equation 

( 105) does not vanish in [a, b). Then, for all t E [a, b) 

y'(t) x'(t) 
-<
y(t) - x(t) (115) 
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and 

y(t) x(t) 
-<-. 
y(a) - x(a) 

As a consequence, x(t) does not vanish in (a, b). 
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(116) 

Now, in order to understand the application of Sturm's Comparison Theorems 

to delay differential equations, we associate equation (111) with the delay equation 

(p(t)z'(t))
1 

+ t. Qi(t)z (ri(t)) + l:a) K(s, t)z(s)ds = 0, (117) 

where 

Ti(t) ~ Ti(t) ~ t, i = 1, 2, · · · , n. (118) 

We assume that the initial condition 

(119) 

holds. Furthermore, assume that 

Qi(t), K(s, t) ~ 0 (120) 

and 

1/J'(t ) < 0 or 1/J'(t) ~ 0 in [T(a), a]. (121) 

Theorem 3.12. Let y(t) and z(t) be, respectively, positive solutions of 

equations(lll) and (117)in [a, b), with the same initial value given by 1/J(t) . 

Suppose that equations (l18) and (120) hold and that 'l/J'(t) ~ O in [T(a), aJ. 



Then for all t E [a, b) , 

and 

z' (t) y' (t) 
-<-
z(t) - y(t) 

z(t) ~ y(t). 
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(122) 

(123) 

On the other hand, if 'lj;'(t) ~ 0 in [r(a), a] and both z1(t) and y'(t) are 

non-negative in [a, b], then the reverse inequalities hold in (122) and (123) . 

Theorem 3.11 asserts that for a decreasing solution, a 'shorter memory' slows 

down oscillation, whereas for an increasing solution, it speeds up oscillation (in 

the sense that the solution reaches its maximum or rebounces faster , and not that 

the solution becomes zero faster). 

We now apply Theorem 3.11 to an oscillation problem. We consider delay 

equations of the form 

(p(t)x'(t))
1 

+ t Qi(t)x (ri(t)) + rt k(s, t)x(s)ds = 0, t ~a (124) 
i=l Jr(t) 

with the assumptions that 

qi(t) ;::: 0, k(s , t) ;::: 0 (125) 

and 

r(t) =min {ri(t): i = 1, 2, · · · , n} ~ oo, t ~ oo. 
t-+oo 

(126) 

We compare equation (124) with another delay equation 

n it (p(t)y'(t))' + L Qi(t)y (-Ti(t)) + _ K(s, t)ds = 0, t ~ a 
i =l r(t) 

(127) 
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The following results can be easily deduced from Theorems (113) and (114). 

Theorem 3.13. Suppose that for sufficiently larges and t, 

Qi(t) :2:: qi(t) :2:: 0, i = 1, 2, · · · , n, (128) 

K(s, t) ;::: k(s, t) ;::: 0, s < t, (129) 

1Ht) :2:: ri(t) , i = 0, 1, · · · , n. (130) 

If equation (124) is oscillatory, so is equation (127). 

Theorem 3.14. Suppose that p(t) = 1 and equations (125), (126) hold, and the 

ordinary differential equation 

y"(t) + B(t)y(t) = 0 (131) 

is oscillatory. Then so is the delay equation (124), where 

e(t) = - L qi(t)Ti(t) + 1 sk(s, t)dt . 1 [ n t l 
t i=l r(t) 

(132) 

The complete proof of the above theorem is unfortunately outside the scope of 

this work. However , we will highlight some salient facts necessary to understand 

and apply the theorem appropriately. A close examination of the theorem reveals 

t hat the author approaches the proof by supposing the contrary and assuming the 

eventual positivity of the solution x(t) of equation (124) . This immediately implies 

that the derivative of the solution x'(t) is also eventually positive. Consequently, 

by the convergence of x' ( t) implying the integrability of the second derivative of 

the solution x"(t), we arrive at the finiteness of the integral of the quantity tB(t), 
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that is, 

100 

tO(t)dt < oo. 

But it is well known that the above integral implies the non-oscillation of equation 

(131) which contradicts the initial hypothesis. By taking a point (ti, x(ti)) on the 

solution curve and denoting by L the straight line joining this point and the origin 

(0, 0), we arrive at the condition of concavity, implying that L may intersect the 

solut ion curve in at most two points. In the case that there are two points of 

intersection, say, ti and t2 , the part of the straight line between these two points 

lies below the curve. Without loss of generality, we assume that ti < t 2 . Now, let 

t3 ~ t2 be so large that T(t) > ti for all t > t3• For any t > t3 , the line joining 

(0, 0) and any arbitrary point (t, x(t)) lies below L. Hence the part of this line 

between T(t) and t lies below the solution curve. This implies that 

x(T(t)) ~ T~t) x(t), for all t > t3. (133) 

We conclude this discussion by examining the case in which L is tangent to the 

solut ion curve at ti. This can be treated as the degenerate case with ti = t 2 . Now 

suppose the point (ti, x(ti)) is the only point of intersection. If L lies below the 

solution curve in the interval [a, ti], then equation (133) actually holds for t > a. 

Finally, let us note that the remaining case is void since the conditions of concavity 

and lim x' ( t) = 0 dictate that the curve must meet L again. 
t-+oo 

At this juncture, we may rewrite equation (124) in the form 

(p(t)x'(t)) + (t qi(t) x(T((;)) + 1t k(s, t) x((s)) ds) x(t) = 0 (134) 
i=i X t ro(t) X t 

and regard it as a linear equation without delay. By equation (133) the coefficient 

is larger than O(t). Therefore, from the classical Sturmian theory, equation(134) 

or equivalently, equation (124) oscillates faster than equation (131), and so we 
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have a contradiction. 

It would be unfair to round up this chapter without mentioning these rather 

unavoidable concepts, namely, convergence theorems, piece-wise continuity and 

quasi-equicontinuity. 

3.8 Convergence theorems 

Convergence theorems are concerned with the analysis of the dynamics of 

integrabilty in the case when sequences of measurable functions are considered. 

Roughly speaking, a "convergence theorem" states that integrability is preserved 

under the limit operator. In other words, if one has a sequence {f n} :=l of 

integrable functions, and if f is some kind of a limit of the f~s, then we would 

like to conclude that f itself is integrable, as well as the equality ff = lim f fn . 
n-+oo 

Such results are often employed in instances of proving that some function f is 

integrable and also in the construction of an integrable function. 

We now examine two important convergence theorems. 

Theorem 3.15. {Lebesgue's Monotone Convergence Theorem) Let (A, I:,µ) be 

a measure space and fi, h, !J, · · · a pointwise non-decreasing sequence of 

[O, oo) - valued L:-measurable functions. Let lim fn(t) := f(t) for all t E A, 
n-+oo 

then f is I:- measurable and 

lim r fndµ = r fdµ. 
n-+oo }A f A 

Theorem 3.16. {Lebesgue's Dominated Convergence Theorem) Let {fn} be a 

sequence of complex measurable functions on a measurable space (A, L:,µ) such 

that lim fn(t) = f(t) exists for almost every t E A. If there is a function g(t) 
n-++oo 

such that lfn(t)J ~ g(t) (n = 1, 2, 3, · · · for almost 

every t E A), where g(t) is an integrable function defined on A, then 

lim r fn(t)dµ = r f(t)dµ. 
n-++oo }A f A 
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Definition 3.27. A function f(t) is said to be piecewise continuous on an interval 

[a, b] if the interval can be partitioned by a finite number of points a =to < ti < 

t2 < · · · < tn = b so that 

i) j(t) is continuous on each subinterval (ti-1' ti); 

ii) f (t) approaches a finite limit as the endpoints of each subinterval are 

approached from within the 

interval. 

Piecewise continuous functions express many natural relationships that occur 

m physics, engineering, etc, and most importantly in impulsive differential 

equations where the solutions are said to be piece-wise continuous. 

Definition 3.28. Let {fn} be a sequence of functions from a topological space X 

to be metric space Y. {in} is said to be c - related at a pointx E X if for every 

arbitrarily chosen c > 0 there is a neighborhood U(x) of x such that, corresponding 

to each point x' E U(x), a positive number N,(x, x') can be determined satisfying 

the condition p [fn(x) , fn(x')] < c whenever n > N, (x, x'). 

Definition 3 .29. Let F be a family of continuous functions from a topological 

space X to a metric space Y. F is said to be quasi-equicontinuous if in every 

infinite subset Q of F and at any point x E X there is a sequence {fn} contained 

in Q which is c - related at x. 

As it stands, the main tools necessary for the proofs of the results of the thesis 

have been assembled. We can now proceed to put them together for the attainment 

of the set goals. 
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CHAPTER FOUR 

RESULTS AND DISCUSSIONS 

4.1 Introduction 

Second order differential equations in general, are most important in 

applications. Same also applies to neutral second order delay impulsive differential 

equations which have been developed to model impulsive problems in physics, 

population dynamics, biotechnology, pharmacokinetics, industrial robotics, and 

so forth. The introduction of oscillaLion and non-oscillation theory hru:; fmther 

boosted the concept and particularly helped in identifying more areas of 

applications both within and outside differential equations. 

In this chapter, we investigate the oscillatory properties and asymptotic 

behaviour of the solutions of linear neutral impulsive differential equations of 

the second order, impulsive integro-ditferential equations and nonlinear impulsive 

differential equations. Also, we obtain the necessary and sufficient conditions for 

oscillation of solutions of linear neutral impulsive equations and finally estimate 

the difference between the zeros of the solutions of same equations. 

4.2 Oscillation criteria 

4.2.1 Nonlinear case 

Here, we deal with the oscillatory behaviour of solutions of the second order 

neutral impulsive differential equation of the form 

{ 

(y(t) - py(t - r)]" + q(t)f(y(t - <7(t)) = 0, t rt S 

C'.l[y(tk) - py(tk - r)]' + qkfk(y(tk - <7(tk)) = 0. V tk ES 

under the following assumptions: 

H 4.2.1: p, T and qk are positive numbers, V k E Z; 

H4.2.2: q, <7 E C(R+, R+), Ll~1! (t - <7 (t)) = oo. <7 (t) > r; 

H 4.2.3: f EC (R, R), f is increasing and J(-y) = - f (y); 
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(135) 



H4.2.4: f (y · x) ~ f (y) f (x) when y · x > 0, f (oo) = oo; 

H4.2.5: fk (y · x) ~ fk (y) fk (x) when y · x > 0, fk(oo) = oo, \::/ k E Z, 

H4.2.6: lim (1.M bJ=J] = oo or lim (1.M bJ=J] = 1. 
:z:~O :i: ' :i: :z:~O :i: ' :i: 
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The purpose of this section is to establish a relation between the oscillation 

problems of equation (135) and a corresponding ordinary delay differential 

equation. All investigations will be restricted to the strip H E (p, oo) except 

defined otherwise. 

The following lemmas will be used to prove the main results. 

Lemma 4.1. Assume that g E C(R+, R+) , g(t) ~ t and lim g (t) = oo, x E 
t~oo 

PC2 ([T, oo), R) and x (t) > 0, x (tk) > 0, !:1x (tk) > 0, x'' (t) ~ 0, !:1x' (tk) ~ 

0 on [T, oo). Then for each l E (0, 1), there is a Tt ~ T such that 

x (g (t)) ~ £9 ;t) x (t), t ~ Tt. (136) 

Proof: It is sufficient to consider only those t E R+ for which g(t) < t. Then by 

the mean value theorem and the monotone properties of y' and fort > g(t) ~ T , 

we have 

{ 

x ( t) - x (g ( t)) ~ x' ( x ( t)) ( x - g ( t)) 

x (tk) - x (g (tk)) ~ !:1x (x (tk)) (x - g (tk)) . 

Hence 

Also, 

{ 
x(Jt])) ~ 1 + :'c~WJ ( t - g ( t)) , t > g ( t) ~ T, t rt s 
:z:(Jt~))) ~ 1 + ~f:t::N (tk - g (tk))' tk > g (tk) ~ T , \:;/ tk E S. 

{ 

x(g(t)) ~ x(T) + x'(g(t))(g(t) - T) 

x(g(tk)) ~ x(T) + x'(g(tk))(g(tk) - T) 
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so that for any 0 < £ < 1, there is a Tt ~ T for which the following relations hold: 

{ 

~ ~ fg(t), t ~Te, t ~ S 

x(g(tk)) > o (t ) t > rr t E S 
~x(g(tk)) - f..9 k , k - .q, k · 

Hence 

{ 

~ < t+(i-l)g(t) < _t_ t > T. t d s 
x(g(t)) - t g(t) - lg(L)' - ti 'F 

_.!ill_ < tk+(t-l)g(tk) < ...J.J._ t > T. t d s 
x(g(tk)) - lg(tk) - tg(tk) • k - ti k 'F · 

This completes the proof of Lemma 4.1. 

Let us discuss equation (135) for the cases where p E (0, 1) and p > 1 

respectively. The beauty of the said discussion will best be displayed in the lemmas 

that follow. 

Lemma 4.2. Assume that p E (0, 1) and the condition (H) holds. If the equation 

{ 

z" (t) + q (t) f c<t7(t)) z (t)) = 0, t ~ s 
D. z' (tk) + Qkfk ('*k~:(tk)) z (tk)) = 0, \;/ tk E S 

(137) 

is oscillatory for some 0 < >. < 1, then the non-oscillatory solutions of equation 

(135) tend to zero as t ~ oo. 

Proof: Without loss of generality, let y(t) be a finally positive solution of equation 

(135) and define 

z (t) = y (t) - PY (t - T). 

From equation (135) , we have that z" (t) ~ 0 for t > T and D.z' (tk) ~ 0 \;/ k : 
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tk ~ T. If z' (t) < 0 finally, then 

{ 

lim z (t) = -oo 
t-+oo 
lim z(tk) = -oo. 

t1t-+OO 

(138) 

But z(t) < 0 finally implies that lim y(t) = 0 which contradicts equation (138). t-+oo 

Therefore, z' (t), ~z(tk) > 0 for t ~ T1 and V k : tk > T. Here, there are 

two possibilities for z(t) : 

i) z(t) > 0 for t ~ T; 

ii) z(t) < 0 for t ~ T1. 

For case (i), there is a Tt ~ T such that 

{ 

z (t - CJ (t)) ~ t(t-~(t))z (t), t ~ Tt , t rl. S 

z (tk - Cl (tk)) ~ t(tk~:(t)) z (tk), tk ~ Tt, V tk E S 

by virtue of Lemma 4.1 and for each e E (0, 1). Since 0 < z(t) < y(t) from 

equation (135), we have 

{ 

z" (t) + q (t) f (t(t-~(t))z (t)) ~ 0, t rl. S 

~z' ( tk) + Qkf k ( t(t1t-t: (t1tU z ( tk)) ~ 0, V tk E S. 

Using Theorem 3.9, we see that equation (137) has a finally positive solution. 

This contradicts the assumption. For case (b), as was mentioned before, this will 

yield lim y(t) = 0. The proof of Lemma 4.2. is hereby completed. t.-+oo 

Theorem 4 .1. In addition to the conditions of Lemma 4.2, assume further that 

lim sup ( {
9 

(u - (t - (J (t) + 7)) q (u) du) 
Hoo lt-u (t) + T 

> { p, if ~~ ¥ = 1 

0, if lim /.J:=l = 00 
x-+0 x 

(139) 
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lim sup ( L (tk - (t - O" (t) + T)) Qk) 
t--+oo 

t-CT (t) + T ~ t1« t 

{ 

p, if lim !k (x) = 1 
> x--+0 x 

0, if lim fk (x) = oo 
x--+0 x 

(140) 

Then every solution of equation (135) is oscillatory. 

Proof: As in the proof of Lemma 4.2, it suffices to show that z (t) < 0 for 

t ~ T is possible under the given assumptions. Suppose that y (t) > 0, z" (t), 

6. z' (tk) ~ 0, z' (t), 6. z (tk) > 0 and z (t) < 0 finally for t ~ T and k : tk ~ T. 

Then 

{ 

z (t - O" (t) + T) > - py (t - O" (t)), t rt S 

z (tk - O" (tk) + r) > -py (tk - O" (tk)), V tk E S. 
(141) 

Substituting inequality(141) into equation (135), we have 

{ 

z'' ( t) - '4P f ( Z ( t - (l ( t) + T)) ~ 0 

6. z' (tk) ~ fk (z (tk - a (tk) + r)) < 0. 
(142) 

Integrating inequality (142) from s to t for t > s, we obtain 

z' ( t) - z' ( s) 

(143) 

Integrating inequality (143) in s from t - a (t) + T to t, we have 

z'(t) (a (t) - T)+6.z (a (tk) - r)- {' dz (s)+z (tk - a (tk) + r) - z (tk) 
l t-u (t) + T 

1 lt - - [ U - ( t - (J ( t) + T)] q ( U) j ( Z ( U - (J ( U) + T)) du 
P t-u(t)+-r 
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Hence for t and tk sufficiently large, 

l 1t z (t - a (t) + T) - z (t) - - [u - (t - a (t) + T)] q (u) x 
P t-u(t)+r 

X ( Z ( U - a ( U) + T)) dtt ~ 0, 

Dividing inequalities (144) and (144) by z (t - a (t) + T) and z (tk - a (tk) + T) 

respectively and noting the negativity of these terms, we obtain 

z (t) 1 1t 1 - - [u - ( t - a ( t) + r)] x 
z (t - a (t) + T) pz (t - a (t) + T) t-u(t)+r 

x q ( u) J ( z ( u - a ( u) + T)) du ~ 0, 

1 - z (tk) - 1 x 
z(tk-a(tk) +T) pz(tk-<1(tk) +T) 

x L [tk - (t - a(tk)+T)]qkfk(z(tk-a(tk)+T))~O. 
t-u(t)+r~ t1r $t 

We note that z (t) < 0 and z (tk) < 0 V k : t =I tk finally implies that 

lim z (t) = 0 and lim z (tk) = 0. From inequalities (144) and (144), we have 
t-.oo t1r-.oo 

which contradicts inequalities (139) and (140) respectively. This, therefore, 

completes the proof of Theorem 4.1. 
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Lemma 4.3: Assume condition (H) holds and p = 1. Then the non-oscillatory 

solutions y(t) of equation (135) are bounded provided every solution of the 

equation 

{ 

z" ( t) + q ( t) f ( Q ( t) z ( t)) = 0 

ti z' (tk) + Qk/k (Q (tk) z (tk)) = 0 

is oscillatory, where 

{ 

Q (t) = 3; t. (t - (l (t))2 

Q (tk) = 3; tk (tk - (l (tk))2. 

(144) 

Proof: Let y (t) be a finally positive solution of equation (135) and z (t) = 

y (t) - y (t - T). Then z" (t) $ 0, ti z' (tk) $ 0 fort 2:: to and V k : tk ~ to. 

If z' (t) < 0, ti z (tk) < 0 for t ~ to and V k :tk 2:: t0, then we have 

lim z (t) = -oo, lim ti (tk) = - oo. Thus, for all large t and tk: k E Z, 
l~oo l~oo 

{ 

y (t) $ y (t - T), t rt S 

Y (tk) $ y (tk - T) \/ tk E S. 
(145) 

This implies that y(t) is bounded which is a contradiction to our assumption. 

Therefore, z' (t) > 0, ti z (tk) > 0, for t 2:: t0 and V k : tk 2:: t0. 

Assume z (t) > 0, z (tk) > 0, t ~ t2 ~ t1 V k : tk 2:: t2 2:: t1. By 

Lemma 4.1, for any e E (0, 1) and i = 0, 1, 2, · · · , there exists 1i 2:: t0 =To such 

that 

Z (t - (l (t) - i 7) 2:: l(l-CT~t)-iT) Z (t) I 

t - (l (t) 2:: 7i, t rt s 
Z (tk - (l (tk) - i 7) 2:: l(ti:-CT~:k) - iT) Z (tk) 

1 

tk - a (tk) > 1i, V tk E S. 

(146) 
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Since 

y (t - O' (t)) = L:~a1 Z (t - <7 (t) - fr) + y (t - O' (t) - nT) 

2 L:f=l z ( t - (]' ( t) - iT) ' t rt s 
y (tk - O' (tk)) = L:i,:l Z (tk - (J (tk) - fr) + Y (tk - (J (tk) - nT) 
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2 L:f=l z (tk - (J (tk) - iT) ' v tk E S, 

(here 2::~01 = 0) , from equation {135) we have 

{ 

z" (t) + q (t) f (2::~1 z (t - O' (t) - iT)) :::; 0, t rt S 

6. z' (tk) + Qkfk (2::~1 z (tk - (]' (tk) - iT)) ~ 0, V tk E S. 

Using inequality (146), we obtain 

{ 

z" ( t) + q ( t) f 0 L:~o ( t - CJ ( t) - iT) z ( t)) ~ 0, t rt S 

6. z' (tk) + Qkfk (k L:~-o (tk - CJ (tk) - iT) z (tk)) s; 0, V tk E S, 

that is, 

{ 

z" (t) + q (t) f (f (n + 1) (t - CJ (t) - ~T) z (t)) ~ 0, t <t S 

6.z' (tk) + Qkfk (k (n + 1) (tk - CJ (tk) - ~T) z (tk)) ~ 0, V tk ES. 

Since nT ~ t - O' (t) - T0 < (n + 1) T, we have 

{ 

z" (t) + q (t) f (z~, [(t - a (t))2 -TJ] z (t)) ~ 0, t ¢= S 
6.z' (tk) + Qkfk ( 2;tk [(tk - a (tk))2 -T~] z (tk)) ~ 0, V tk ES. 

Choose T 2 To large enough, then it follows that 

{ 

z" (t) + q (t) f ( 3~t (t - CJ (t))2 z (t)) ~ 0, t 2 

6.z' (tk) + Qkfk ( 3;tk (tk - CJ (tk))2 z (tk)) ~ 0, tk 2 T, V tk E S. 

T, t <t S 

Noting that z (t) , z (tk) and z (T) are upper and lower solutions of equation (144) 

respectively, and using the known result in Theorem 3.9, we observe that there is 
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a solution y (t) of equation (144) satisfying 

{ 

z (T ) :S z (t) :S z (t) 

z (T) :S x (tk) :S z (tk). 

This contradicts the fact that equation (144) is oscillatory. 

Next we assume that z (t) < 0, z (tk) < 0, for t ~ t2 > ti and V k : tk ~ 

t2 ~ ti. Then 

{ 

y ( t) < y ( t - T) , t ~ t2, t rt S 

y(tk)<y(tk-T) , tk ~ t2, Vtk Es. 

This implies that y(t) is bounded which completes the proof of Lemma 4.3. 

Definition 4.1. Let Ebe a subset of R+. Define 

Pt(E) = µ{En[o , t]} and p(E) = lim sup Pt(E) , 
t l~oo 

where µ is a Lebesgue measure. 

Lemma 4.4. Assume p > 1. Then the non-oscillatory solutions y(t) of equation 

(135) satisfy y (t) < py (t - T) finally provided the following conditions hold: 

i) 

{ 

z" (t) + q (t) J (0 (t, >.) z (t)) = 0, t rt S 

6.z' (tk) + Qkfk (0 (tk, >.) z (tk)) = 0, V tk E S 

is oscillatory for all 0 < >. < 1, where 

(147) 
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ii) 

lim sup [p~~ rt (t - u)q(u)J(u - a(u) + r)du 
Hoo Jo 
t ~ E 

(148) 

holds for some p1 > p and any set E with p(E) = 0. 

Proof: First we claim that if the set E c R+ and p( E) = p > 0, then for any 

t0 E R+ and integer n, there exists a T E ( t0 , t0 + r) such that the set { T + iT}:, 1 

intersects E at least n times. If not, there exists a t0 E R+ and an integer N, 

such that { T + ir}: 1 intersects E at most N times for any T E [ t 0, t 0 + r) . This 

implies thatµ (E) < oo. But p(E) = p > 0 means there exists tk -r oo such that 

Ptn (E) ~ ~ > 0. Thus, 

is impossible. 

Again, let y(t) be a finally positive solution of the equation 

and set 

I t 
(p (t) y' (t)) + E?=l Qi (t) Y (ri (t)) + fr(a) l (s, t) y (s) ds = 0, 

t E [a, b), t ¢_ 8 
(149) 

(p (tk) 8..y (tk))' + Ef=1 QikY (ri (tk)) + Lu(a)~tk9 e (tk. t) y (tk) = 0, 

tk E [a, b) , V tk E S 

z (t) = y (t) - py (t - r) . 

Then z" (t) < 0, 8..z' (tk) :s; 0 finally. Here, we observe that there are three 
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possibilities: 

. ) { z' ( t) > 0, z ( t) > 0 
1 

~z(tk) > 0, z(tk) > 0 

ii) { z' ( t) < 0, z ( t) < 0 

~z(tk) < 0, z(tk) < 0 

lll 
... ) { z' ( t) > 0, z ( t) < 0 

~z(tk) > 0, z(tk) < 0 

finally. 

i) Assume 

{ 

z' ( t) > 0, z ( t) > 

.6.z (tk) > 0, z (tk) 

0, t ¢ s 
> 0, 'V tk ES 

85 

for t 2 t 0 2 0 and V k : tk 2 t0 2 0. Then equation (146) holds, and 

for any t, tk E RTo = {t; t + <J (r) 2 To}, there exists a positive integer n such 

that 

Since 

{ 

T0 ~ t - <J (t) - nr < T0 + T 

To ~ tk - <J (tk) - nr <To + T. 

y (t - <J (t)) = L:f=:l piz (t - <J (t) - iT) + pny (t - <J (t) - nr) 

2 Lf =O pi Z ( t - <J ( t) - i T) , t ¢ 5 

y (tk - <J (tk)) = 2::~01 piz (tk - <J (tk) - iT) + pny (tk - <J (tk) - nr) 

2 l::f.:opiz (tk - <J (tk) - iT), V tk ES, 

from equation (135) we have 

{ 

z" (t) + q (t) f (L:f.:0piz (t - u (t) - iT)) ~ 0, t ¢. S 

~z' (tk) + qkfk (l::f=0piz (tk - (J (tk) - iT)) ~ 0, \;/ tk E S. 
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In view of equation (146), we have 

{ 

z" ( t) + q ( t) f (f L:~o pi ( t - o- ( t) - iT) z ( t)) $ 0, t ¢ S 

6z' (tk) + Qkfk c~ L~oPi (tk - O" (tk) - iT) z (tk)) $ 0, v tk E S, 

that is, 

Since 

z" (t) + q (t) f [ (~ (t - o- (t)) ~ - \' L:r=i pi) z (t)] 

$ 0, t rt s 
6z' (tk) + Qkfk ( C~ (tk - a (tk)) ~"_:1

1 

- ~: L:~=t pi) z (tk)) 

$ O,Vtk ES. 

we have 

f pn+l - 1 f T n · 
- ( t - u ( t)) - - I: ip' 
t p- 1 t i=l 

i 
= [(t - <7 (t)) (pn+2 - pn+l) - T (npn+2 - (n + 1) pn+l + P)] 

(p - 1)2 t 

f 
= 2 [t - <7 (t) - nT) pn+2 - (t - O" (t) - (n + 1) T) pn+l 

(p - 1) t 

- (t - O" (t) + T) p + (t - <7 (t)j 

> e n+2 > 1 t - <7 (t) - To+ T >. t - <7 (t) t d s 
- tp - tp t ~ tp t 1 'F 
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(150) 

(151) 
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and 

£ 2 [(tk - C7 (tk)) (Pn+2 - pn+l - P + 1) -T (npn+2 - (n + l )pn+l + P)] 
(p - 1) tk 

f 2 [tk - C7 (tk) - nr) pn+2 - (tk - C7 (tk) - (n + 1) r) pn+I 
(p- 1) tk 

for some,\ E (0, 1) if To and t, tk are sufficiently large. Substituting inequalities 

(151) and (152) into inequality (150} we obtain 

{ 

z" (t) + q (t) f (~ P t-~(t) z (t)) ~ 0, t rf. S 

ti z' (tk) + qkfk (~ptk-~(ti;) z (tk)) ~ 0, \:/ tk E S. 

Noting that z(t) , z(tk) and z(T0) are upper and lower solutions of equation (147) 

respectively, and by the known result in Theorem 3.9, we observe that there is a 

solution x(t) of equation (147) which satisfies the relation. 

{ 

z (To) ~ x (t) ~ z (t), t rf. S 

z (To)~ x (tk) ~ z (tk) , \:/tk ES. 

This contradicts the fact t hat equation (147) is oscillatory for all 0 < ,\ < 1. 
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ii) Assume 

{ 

z' (t) < 0, z (t) < 0, t ~ S 

b.z (tk) < 0, z (tk) < 0, V tk E S 

for t 2 to 2 0 and k : tk 2 to 2 0. Then 

t ~ s 

t 

for some w, wk > 0. We begin by saying that z (t) 2 -pf. Here p 1 >pis arbitrary, 

that is, if E = { t : z (t) < -p~}, then, p(E) = p. Otherwise, p(E) = p > 0. As 

in the beginning of the proof for any n, there exists a T1 E [t1 , t0 + T) such that 

the set {T1 + i7} :,1 intersects E at least n times. Assume 

M = max {y (t), y (tk)}. 
to:St,t1c9o+r 

Then if n is sufficiently large, 

which contradicts the fact that y(t) is finally positive. 

It is immediately observed that condition (ii) implies that 

100 

q (u) f (u - a (u) + 7) du+ L Qkfk (tk - a (tk) + 7) = oo. (153) 
0 O:St.1:<00 

Condition (ii) also implies that 

{ 

z' (t) < -µ , t ~ s 
b.z(tk) < -µ, Vtk ES 

(154) 



-·-

L 

finally, for all µ > 0. Otherwise, for the same µ > 0 the condition 

{ 

z' (t) 2: -µ , t rt S 

Llz (tk) 2: -µ , 'V tk E S 

would have been satisfied for all t, tk > T2. On the other hand, 

thus 

{ 

y (t - T) 2: ~z (t), t rt S 

y(tk-T) 2: ~z(tk), lftk ES, 

Integrating inequality (155) from T2 to t, we obtain 

or 

z' (t) + Llz (tk) + j~ q (u) f (- ~ z (u - u (u) + T)) du 

+ L Qkfk(-~z(tk-u(tk)+T)) ~O, 
T2$tk<t p 

{ 

z' (t) + Ji-
2 

q (u) f (- ~ z (u - u (u) + T)) du~ 0, t rt S 

Llz (tk) + LT2 9k<t Qkfk (- ~ z (tk - CJ (tk) + T)) ~ 0, 'V tk E S. 

Noting that 

{ 

Z (t - (J ( t) + T) ~ -W ( t - C7 ( t) + T) , t rt S 

z (tk - CJ (tk) + T) ~ -wk(tk - CJ (tk) + T) , 'V tk E S, 

89 
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iii) Assume 

{ 

z' (t) > 

b.z (tk) 

0, z (t) < 0, t rt. s 
> 0, z (tk) < 0, V tk E S 

for t ;::: to 2: 0 and k : tk ;::: to ;::: o. Then y (t) < PY (t - T) is obvious. This 

completes the proof of Lemma 4.4. 

Corollary 4 .1. In addition to the assumptions of Lemma 4.3, further assume 

t hat er is a positive constant and 

oo ( {T +iT+a 
~ lr+iT (u - T) q (u) du+ T+iT$t;=T+iT+a (tk - T) qk) = oo (157) 

holds for any T E R+ and 0 < a ~ T , then all non-oscillatory solutions of equation 

(135) tend to zero as t and tk ~ oo. 

Proof: Let us assume by contradiction that there exists a finally positive solution 

y(t) satisfying lim sup y (t) > 0, and this can only occur when z" (t), b.z' (tk) ~ 
t~oo 

0, z' (t), ~z (tk) > 0 and z (t) < 0, for all t ;::: to ;::: 0 and k : tk ;::: to ;::: 0. 

Hence, z' (t) ~ 0 and z (t) ~ 0 as t, tk ~ 0. If lim inf y (t) > 0, then 
t~oo 

y(t) ;::: a> 0, t, tk 2: t1 2: t0 . Integrating equation (135) twice, we obtain 

z (t) + £00 

(u - t) q (it) f (a) du+ L (tk - t) qkfk(a) < 0 
t t$t<oo 

which implies 

lim sup [ f
00 

(u-t) q(u) du+ I: (tk -t) Qkl ~ o t~oo lt 
t'.5tk<oo 

and contradicts equation (157). Thus, 

lim sup y (t) > 0 and lim inf y (t) = 0. 
t~oo t~oo 
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Then, we can choose t2 > ti ~ to such that y ( t2 - u) > y ( t1 - u) . We claim 

that 

lim inf y (t2 - u + nT) > 0. 
t-+oo 

(158) 

In fact, 

n 
y (t; - u + n T) = L z (t; - u + nT) + y (t; - u), j = 1, 2. 

i=i 

1, 2, · · · , n, and 

lim inf y (ti - CT+ n T) ~ 0, 
t-+oo 

we have 

lim inf y (t2 - u + nT) ~ y (t2 - u) - y (ti - u) > 0. 
t-+oo 

Now choose t0 ~ ti < t2 < t3 such that for any T E [t2, t3], 

y ( t1 - CT) < t ( t2 - CT) ~ y (T - <J) . 

From the above discussion, we observe that inequality (158) holds, that is, there 

exists aµ> 0 such that y (t2 - u + n T) ~µfor all n. It is now obvious that for 

n 

y (T - u + nT) - L z (T - CT + iT) + y (T - u) 
i=i 
n 

~ L z ( t2 - CT + iT) + y ( t2 - CT) 
i=t 

= Y ( t2 - O" + nT) ~ µ. 

From equation (135), we have 

-z' (s)+ 1t q (u) f (y (u - u)) du+ L qkfk (y (tk - u)) < 0, to ~ s ~ t , 
8 s~tk<t 



z (to) 

Hence 

and then 

+ r (u - to) q (u) f (y (tt - <l)) du 
lto 

+ L (tk - to) Qkfk (y (tk - <l)) < 0, V tk 2:: to. 
to9k<t 

thus contradicts equation (157). This completes the proof of corollary 4.1. 
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(159) 

Corollary 4.2. In addition to the assumptions of Lemma 4.4, assume 

further that <J is a positive constant, 

and 

100 

(u - t) q (u) du+ L (tk - t) Qk = oo 
t ~~<oo 

(160) 

~ [1 (P') J~::* (u -T) q (u) + f> (v') T+iT~t~T+iT+• (t, -T) q,] ~ oo 

(161) 

hold for any T E R+ and 0 < a ::::;; T. Then all non-oscillatory solutions of 

equation (135) tend to zero as t ~ oo. 

Proof: Approaching this by contradiction like in the proof of corollary 4.1, we 

observe that there exists a finally positive solution y(t) satisfying the conditions 

lim sup y (t) > 0 and lim inf y (t) = 0. 
Hoo Hoo 
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From the proof of Lemma 4.4, this can only occur when z" (t), ~z' (tk) ~ 

0, z' (t), ~z (tk) > 0 and z (t) < 0, fort 2:: to and k : tk ;::: to. Choose t2 > ti 2:: to 

such that y (t2 - a) > y (t1 - a). Since 

n 

y ( t2 - a + nT) = L pn-i z ( t2 - a + iT) + pny ( t2 - a) , 
i=l 

n 

Y (t1 - a+ nT) = LPn-iz (t1 - a+ iT) + pny (t1 - a) , 
i=l 

and 

y (t1 - a+ nT) > 0, n = 0, 1, 2, · · · , 

we see that 

Similar to the proof of Corollary 4.1, we can show that there is an interval [t2 , t3) 

such that 

y (T - a + nt) 2:: Apn 

for T E [t2, t3 ] and for all n. From inequality (159), we obtain 

z (to) + J (A) t, [l:::~r (u - t2) q (u) J (pn) du 

+ I: (tk - t2) Qk !k (p")] ~ o 
t2+iT~tk<t3+iT 

which contradicts equation (161). This completes the proof of Corollary 4.2. 

Now, we are ready to state the criterion for the oscillation of the solutions of 

equation (135). 
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finally, where q• (t) = min {q (t), q (t - r)} and qz =min {q (tk) , q (tk - r)}. 

Proof: Suppose y(t) > 0 for t > to . Then x(t) > 0 for t ~ to + 

T,x" (t) , 6.x' (tk) < 0 for t ~ t1 - to + max {a, T} and k : tk ~ t1 = 

t0 +max {a,r}. Therefore, x'(t), 6.x(tk) > 0 fort~ ti and k: tk ~ti. Then 

z" (t) = x" (t) + px" (t - r) ~ -q (t) [y (t - a) + py (t - T - a)) 

= -q*(t) x (t - a) (165) 

and 

(166) 

Similar to the above, we have z (t) > 0, z' (t), 6.z (tk) > 0 and z" (t), 6.z' (tk) ~ 0 

for t ~ t2 ~ ti, V k : tk ~ t2 ~ t1 and 

and 

z" ( t) ~ -q * ( t) x ( t - a) 
q * (t) 

~ -
1 

+ p [x (t - a)+ px (t - a - r)) 

q * (t) 
= - 1 + p z (t - a), 

6.z' (tk) ~ -qz x (tk - a) ~ -
1 
~ P [x (tk - a)+ px (tk - a - r)) 

qz 
= - --z (tk - a) . 

l+p 



-+ -

97 

This completes the proof of Lemma 4.5. 

Theorem 4.3. Let p > 0, Qk ~ 0 and q E PC (R+, R+)· Assume that the 

second order impulsive differential equation 

{ 

X
11 (t) + >. q (t) ttu X (t) = 0, t r/. S 

tlx' ( tk) + >. Qk tkt:u x ( tk) = 0, V tk E S 
(167) 

is oscillatory for some >. E (0, 1). Then every solution of equation (162) is 

oscillatory. 

Proof: Let us assume by contradiction that there exists a finally positive solution 

y(t) of equation (162) and z(t) is defined by equation (163). Then z(t) satisfies 

all conditions of Lemma 4.1. Consequently, for every e E (0, 1), there exists a 

tt. ~ 0 such that 

{ 

z (t - u) ~ 
z (tk - er) > 

which implies that 

et~CT Z (t) 1 for t ~ t(., t ¢ s 
etkt~q z (tk) I for tk ~ tt, v tk E S, 

(168) 

By Lemma 4.5, inequality (164) is true. Combining inequalities (164) and (169), 

we obtain 
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which implies that 

t rt- s 
(171) 

0, V tk E S 

has a non-oscillatory solution. This contradicts our initial assumption and thus, 

completes the proof of Theorem 4.3. 

From this theorem, every oscillation criterion for the second order impulsive 

differential equation (167) becomes an oscillation criterion for the second order 

neutral impulsive differential equation (162). 

Corollary 4.3. Let p > 0, Qk ~ 0 and q E PC (R+, R+)· Then every solution 

of equation (162) is oscillatory if for some a E (0, 1), 

(172) 

We now return to the linear equation with variable coefficient p as follows: 

{ 

[y (t) + p(t) y (t - T)j" + q(t)y (t - a) = 0, t ~ t0, t rJ_ S 

/J. [y (tk) + PkY (tk - r)j' + QkY (tk - a) = 0, tk ~ to, V tk E S. 
(173) 

Theorem 4.4. Assume that 

i) T > 0, CJ > 0, Pk > 0; 

ii} q E PC (R+, R+) and q(t) 2 Qo > O; 

iii} p E PC1 (R+, R) and there exist constants p1 and p2 such that p1 ~ p (t) ~ 

P2 and p(t) is not finally negative. Then every solution of equation (173) is 

oscillatory. 

Proof: By contradiction, we assume that y(t) is a finally positive solution of 
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equation (173). Set 

Z (t) = y (t) + p (t) y (t - T). (174) 

Using arguments similar to those in the previous theorems, we can show that 

z(t) < 0 finally. This contradicts condition (iii) and thus completes the proof of 

Theorem 4.4. 

4.3 Classification of non-oscillatory solutions 

Consider the second order nonlinear neutral impulsive differential 

[y (t) - L~1 Pi (t) y (t - Ti)]" 

+ L.}=1 fj (t, y (gj1 (t), · · · , y (gj1))) 

= 0, t ~ to E R+ , t <f_ S 

.6. [y (tk) - L,~~l PikY (tk - Ti)] 
I 

+ L.}=1 fjk (tk, y (gj1 (tk), · · · , y (gj1 (tk)))) 

= 0, tk ~to E R+, 'ti tk ES 

We introduce the following conditions: 

(175) 

H4.3.1: Ti > 0, Pik ~ 0, Pi E PC1 ([to, oo), R+), i = 1, 2, · · · , m and there 

exists 8 E ( 0, 1] such that 

m n 

LPi (t) + LPi ~ 1 - 8, t , ~ to E R+; 
i = l j=l 

H4.3.2: 9is E C ([to, oo), R) , lim 9js (t) - oo, j - 1, 2, 
t-+oo 

n, s -

1, 2, . .. , e; 

H4.3.3: fj E PC ([to, oo) x Rt, R) , x1fj (t, X1, · · · , Xt) > O; xifik (tk, xi·· · , xi) 

> 0 for X1Xi > 0, i = 1, 2, ... ' e, j = 1, 2, . .. , n. Moreover, 

{ 

lfj (t, Yli ... , Yt)I 2': lh (t, X1, .. . , Xt) I 

lfjk (tk, YI ... ' Yt)I ~ lfjk (tk, Xi, .. . , Xt)I 
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whenever 

lxi l ~ IYil and YiXi > 0, i = 1, 2, ... ' e, j = 1, 2, ... , n ; 

H4.3.4: Set 

m 

x ( t) = y ( t) - L Pi ( t) y ( t - Ti) . (176) 
i=l 

In this section, we give the classification of non-oscillatory solutions of 

equation (175). But first, we establish the following lemmas which will be useful 

in the discussion of the main results. 

Lemma 4 .6. Let y(t) be a finally positive (or negative) solution of equation (175). 

If lim y (t) = 0, then x(t) is finally negative (or positive) aud lim x (t) = 0. 
t-+oo t-+oo 

Otherwise, x(t) is finally positive (or negative). 

Proof: Let y(t) be a finally positive solution of equation (175). From the same 

equation (175), x" (t), 6.x' (tk) > 0 or x' (t), 6.x (tk) < 0 finally. Also, x (t) > 

0 or x (t) < 0 finally. If limy (t) = 0, from equation (176), it follows that 
t-+oo 

lim x (t) = 0. Since x(t) is monotonic, so lim x' (t) = 0, lim 6.x (tk) = 0 which 
t-+oo t-+oo tk-+oo 

implies that x' (t) > 0, 6.x (tk) > 0. Therefore, x(t) < 0 finally. If limy (t) i= 
t-+oo 

0, then lim sup y (t) > 0. We show that x(t) > 0 finally. If not , then x(t) < 0 
t-+oo 

finally. If y( t) is unbounded, then there exists a sequence { tn} such that lim tn = 
n-+oo 

oo, y (tn) = max y (t) and lim y (tn) = oo. From equation (176), we obtain 
to~t<tn n-+oo 

Thus, lim x (tn) = oo, which is a contradiction. If y(t) is bounded, then there 
n-+oo 

exists a sequence {tn} such that lim tn = oo and lim y (tn) = lim sup y (t). 
n-+oo n-+oo t-too 

Since the sequences {Pi(tn)}and {y (tn - ri)} are bounded, there exists convergent 
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subsequences. Without loss of generality, we may assume that lim y (tn - Ti) 
n-too 

and lim Pi (tn) , i = 1, 2 · · · , m, exist. Hence 
n-too 

0 ~ lim X (tn) 
n-too = lim (Y (tn) - f Pi (tn) Y (tn - Ti)) n-too 

i=l 

;::: lim sup y (t) 1 - LPi (tn) > 0, 
( 

Tri ) 

t-too i=l 

which, again, is a contradiction. Therefore, x(t) > 0 finally. A similar proof 

can be repeated if y(t) < 0 finally. 

Lemma 4.7. Assume that lim l:~iPi (t) = P E (0, 1), and y(t) is a finally 
t-too 

positive (or negative) solution of equation (175). If lim x (t) = a E R, then 
t-too 

lim y (t) = -1a . If lim x (t) = oo (or - oo), then lim y (t) = oo (or - oo). 
t-too -p t-too t-too 

P roof: Let y(t) be a finally positive solution of equation (175), then y(t) ;::: x(t) 

finally. If lim x (t) = oo, then lim y (t) = oo. Now we consider the case that 
t-too t-too 

lim x (t) = a E R. Thus, x(t) is bounded which implies, by equation (177) , that 
t-too 

y(t) is bounded. Therefore, there exists a sequence {tn} such that lim tn = oo 
n-too 

and lim y (tn) = lim sup y (t). As before, without loss of generality, we may 
n-too t-too 

assume that lim Pi (tn) and lim y (tn - Ti) , i = l, 2, · · · , n exist. Hence 
n-too n-too 

Tll 

a= lim X (tn) = lim y (tn) 
n-too n-too L lim Pi (tn) lim Y (tn - Ti) 

n-too n-too 
i=l 

~ lim sup y (t) (1 - p) , 
t-too 

that is, 

a . 
-- ;::: hm supy(t). 
1 - p t-+oo 

(178) 

On the other hand, there exists {t~} such that lim y(t~) = lim inf y(t). 
n-too t-+oo 

Without loss of generality, we assume that lim Pi (t~) and lim y(t~ - Ti) , i = 
n-+oo n-too 
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1, 2, · · · , m exist. Hence 

m 

a= lim x (t~) = lim y (t~) - L lim Pi (t~) lim y (t~ - Ti) 
n-+oo n-+oo i=l n-+oo n-+oo 

~ lim inf y (t) (1 - p) 
t-+oo 

or 

_a_~ lim inf y (t). 
1 - p t-+oo 

(179) 

Combining inequalities (178) and (179) , we obtain t~1! y(t) = 1 ~p· A similar 

argument can be repeated if y(t) < 0. 

We are now ready to prove the following results. 

Theorem 4.5. Assume that lim 2::~1 Pi (t) - p E [O, 1). Let y(t) be 
t-+oo 

a non-oscillatory solution of equation (175). Let A denote the set of all 

non-oscillatory solutions of equation (175), and define 

A(o,o, o) = {y E A: lim y (t) - 0, 
t-+oo 

lim x(t) = 0, 
t-+oo 

lim (x' (t)' .6. x (tk)) = o}' 
t,tk-+00 

A (b,a, O) - {y E A: lim y (t) -
t-+oo 

a . 
b := -

1
- , lim x (t) =a, 
- p t-+oo 

lim (x' (t), .6. x (t1c)) = o}, 
t,tk-+00 

A (oo,oo,o) = {y E A: lim y (t) = oo, 
t-+oo 

lim x (t) = oo, lim (x' (t), .6.x (tk)) = o}, 
t-too t,tk-+oo 

A (oo, oo,d) = {y E A : lim y (t) = oo, lim x (t) = oo, 
t-+oo t-+oo 

lim (x' (t) , .6.x (tk)) - d "I o}. 
t ,t1c-+oo 

Then 

A= A(o,o,o)U A(b,a,o)U A(oo,oo,o)LJA(oo,oo,d). 
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Proof: Without loss of generality, let y(t) be a finally positive solution of 

equation (175). If lim y (t) = 0, then by Lemma 4.6, lim x (t) = 0 and 
t-+oo t-+oo 

lim (x'(t) , 6 x(tk)) = 0, that is, y E A (o,o,o). If limy(t) "I 0, then by 
t,tk-+oo t-+oo 

Lemma 4.6, x(t ) > 0 finally and it therefore implies that x' (t), 6 x (tk) > 

0 and x" (t) , 6 x' (tk) < 0 finally. If lim x (t) 
t-+oo 

a > 0 exists, then 

lim (x' (t), 6 x (tk)) = 0. By Lemma 4.7, we have lim y (t) = 1 ~ = b, 
~-+oo Hoo P 

that is, y E A (b,a,o). If lim x(t) = oo, then by Lemma 4.7, lim y(t) = 
t-+oo t-+oo 

oo. Since x" (t), 6 x' (tk) < 0 and x' (t), 6 x (tk) > 0, we obtain 

lim (x' (t), 6 x (tk)) = d, where d = 0 or d > 0. Then either y E A(oo,oo,o) or 
t,tk-+oo 

y E A (oo,oo,d) . 

This completes the proof of Theorem 4.5. 

In what follows, we shall show some existence results for each kind of 

non-oscillatory solution of equation (175). 

Theorem 4.6 . Assume that there exist two constants hi > h2 > 0 such that 

i = 1 I 2, ' • ' I 7n, 

m m 

LPi (t) exp (hiri) + exp (hit) LPik exp (-hi (tk - ri)) > 1 
i=i i=i 

m m 

> L Pi (t) exp (h2ri) + exp (h2t) L Pik exp (-h2 (tk - Ti)) (180) 
i=i i=i 

and 

(t.P• (t) exp (hiT;) + exp (hit) t.Pik exp (-hi (t. - T;)) - 1) exp (-hit) 

~ lx" (u - t) f, f; (u, exp (-h29ji (u)), ... , exp (-h29jl (u))) du 
t j=i 
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n 

+ L (tk - t) L fjk (tk, exp (-h29;1 (tk))), · · · , x 
t~tk<<X> j=l 

(181) 

finally . Then equation (175) has a solution y E A (o,o,o). 

P roof: Let us denote by Bp the space of all bounded piece-wise continuous 

functions in PC ([t0 , oo)) and define the sup norm iu Bp as follows: 

llYll :=sup IY (t)I. 
t~to 

Set 

n _ { y E BP : exp (- hit) ~ y (t) ~ exp (- h2 t) 

IY (t2) - y (t1)I ~ L it2 - til' IY (t2k) - y (tlk)I ~ L lt2k - tlkl I 

for t1, t2 ~ to , V k : t1k , t2k ~ to and for L ~ h1. Then n is a nonempty, closed 

convex bounded set in Bp. 

For the sake of convenience, denote 

{ 

f (u, y (9 (u))) = L,j=1 fj (u, Y (9it (u)), · · · , Y (9il (u))) (
182

) 

fk (tk, y (9 (tk))) = L,j=l f;k (tk, y (9;1 (tk))' .. . ' y (9;1 (tk)))' 

J (u, exp (-h29 (u))) 

= L,j=1 f; (u, exp (-h2t;1 (u)), · · · , exp (-h29;1 (u))) 

fk (tk, exp (-h29 (t~:))) 

= L,j=1 f;k (tk, exp (-h29j1 (tk)), · · · , exp (-h29;1 (tk))) . 

(183) 



Define a mapping J on n as follows: 

(Jy)(t) = 

where 

K(y) -

I:~1 Pi (t) y (t - Ti) + I:~1 PikY (tk - Ti) 

- ft'' (u - t ) f (u, y (g (u))) du 

- I:t9 k<oo (tk - t) + fk (tk, y (g (tk))), 

t , tk ~ T 

exp (-K(y)t) +exp (-K(y) tk), to~ t, tk < T, 

ln (Jy) (T ) 
T 
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(184) 

T is sufficiently large such that t - Ti ~ to; tk - Ti ~ to; 9i:1 (tk) > to; i = 

1, 2, · · · , m; j = 1, 2, · · · , n; s = 1, 2, · · · , £, fort, tk ~ T. 

Now, we see that condition (181) implies that 

100 

f (u, exp (-h2 g (u))) du + I: fk (tk , exp (- h2 g (tk))) < oo, 
T T$tk <oo 

while from condition H4.3.1, it follows that for a given a E (1 - 8, 1) , 

{ 

(a - I:~iPi (t)) L ~ [o - (1 - 8)] L > 0 

(a - I:~1 Pik) ~ [o - (t - 6)] L. 

Therefore, T can be chosen so large that for t , t1.: ;:::: T, 

and 

{ 
J;' f (u, exp (-h2 g (u))) du ~ (a - I:~~1 Pi (t)) L 

LT'.9-k<oo fk (tk) exp (-h2 g (tk)) ~ (a - I:~1 Pik) L, 

{ 

a + I:~ 1 exp ( -h2 ( t - Ti)) ~ ! 
(a+ I:~1 exp (-h2 (tk - Ti))) ~ 4 lt~:~::~1. 

(185) 

(186) 
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Hence from inequalities (180) and (181), it follows that 

m m 

(Jy) (t) ~ LPi (t) y (t - Ti ) + LPik y (tk - Ti) 
i=i i=i 

m m 

~ LPi (t) exp (-h2 (tk - Ti))+ LPik exp (-h2 (tk - Ti)) 
i=i 

~ exp (-h2 t) [t,Pi (t) exp (h2 Ti) + exp (h2 t) t.Pik exp (-h2 (tk - Ti))] 

~ exp (-h2t) fort, tk ~ T, 

and 

m m 

(Jy) (t) ~ LPi (t) exp (-hi (t - Ti))+ LPik exp (-hi (tk - Ti)) 
i=i i=i 

-100 

(u - t) f (u, exp (-h2g (u))) du- L (tk - t) fk (tk. exp (-h2g (tk))) 
t ffS4<oo 

=exp (-hit)+ exp (-hit) (t,Pi (t) exp (hi Ti) 

+exp (hit) t.Pik exp (-hi (tk - Ti))) 

-100 

(u - t) f (ui exp (-h29 (u))) du 

- L (tk - t) fk (tk, exp (-h2g (tk))) ~ exp (-hit) for t, tk ~ T. 
tStk<oo 

That is, 

exp (-hit) ~ (Jy) (t) ~ exp (-h2t), t ~ T, 

By the definition of K(y) and the statement 
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It is clear that h2 ~ K (y) ~ h1 . Hence 

Next, we show that 

(187) 

for t1 , t2 E [t0 , oo) and k : t1k, t2k E [to, oo). Without loss of generality, 

we assume that t2 ~ ti > to and V k : t2k ~ tlk ~ to. Indeed, for 

t2 ~ ti ~ T and V k : t2k ~ tik ~ T , using condition (186) and inequality 

(187), we have that 

Tri 

~ L I Pi (ti) y (ti - Ti) + Pi (tlk) y (tlk - Ti) 
i=l 

+ f
00 

(u - ti) f (ui y (g (u))) du + lti 

- f
00 

(u - t2) f (u, y (g (u))) du 
l t2 

- I: (t2k - t2) !k (t2k , y (g (t2k))) 
t292k<OO 

m 

:L (tik - ti) !k (tik. Y (g (tlk))) 
t1~t1k<OO 

~ L I Pi (ti) y (ti - Ti) - Pi (t2) y (t2 - Ti)I 
i=i 

m 

+ L I Pi (t lk) y (tlk - Ti) - Pi (t2k) y (t2k - Ti)I 
i=i 
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m m 

:s; LPi (t2) I y (t2 - Ti) - y (ti - Ti)I +LI Pi (t2) - Pi (ti)! y (ti - Ti) 
i=l i=i 

+ 11:2 

(u - t2) f (ui y (g (u))) du + 1~ (t2 - ti) f (u , y (g (u))) du I 
ff~ fTI 

+ LPi (t2k) IY (t2k - Ti) - y (tlk - Ti)I + L IPi (t2k) - Pi (tlk)I y (tlk - Ti) 
i=i i=i 

< [t, (p, (t2) + exp {-h2 {t1 - r;))) L + J.~ f (u, exp (-h,g (u))) du] x 

x lt2 - til 

[ 

fTI l + ~(Pi (t2k) + exp (-h2 (tlk - Ti))) L + ti$~oo J,, (tk, exp (-h29 (tk))) x 

x I t2k - t1kl 

+ { [t,Pi (t,.) + t. exp (-h,) (t1k - T;) l + ( 0 - t.P• (t,.))} x 

xL I t2k - tikl 

- [t, exp (-h, {t1 - r,)) + o] L lt2 - t1I + [t, exp (-h2 (tu - r;)) + o] x 

xL lt2k -tlkl 

LI I Llt2k-tlkl lt2-til < - t2 - ti + - . --'-------'--
- 2 2 t lt2k - tlkl 

~ L lt2-til· 
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I (Jy) (t2) - (Jy) (ti) I= I (Jy) (t2) + (Jy) (t2k) - (Jy) (t1) - (Jy) (tlk)I 

- I exp (-K (y) (t2)) + exp (-K (y) (t2k)) 

- exp (-K (y) (t1)) - exp (-K (y) (tlk))I 

< I exp (-K (y) (t2)) - exp (-K (y) (t1))I + lexp (-K (y) (t2k)) 

- exp (-K (y) (tlk))I 

< L It - t I+ L lt2k - tlkl x I t2 - til = L It - t 1. 
- 2 

2 1 
2 I t2k - tlk I 2 1 

For to < t1 :::;; T S t2 and V k : to < tlk :::;; T S t2k, we obtain 

I (Jy) (t2) - (Jy) (ti)I s I (Jy) (t2) - (Jy) (t1)I +I (Jy) (t2k) - (Jy) (tlk)I 

< I (Jy) (t2) - (Jy) (T)I + I (Jy) (T) - (Jy) (t1)I 

+ I (Jy) (t2k) - (Jy) (T) I 

We have proved that inequality (187) holds for all t 0 :::;; t 1 :::;; t 2 and 

V k : to S tlk s t2k· Therefore, JO ~ 0. Hence, J is piece-wise continuous . 

Since JO ~ 0, J 0 is uniformly bounded. 
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Set y E n. It immediately implies that 

I (Jy) (t)I ~ bo, 

where b0 > 0 and 

for t2 > ti > to and k : t2k > to. Without loss of generality, we set 

bo =exp (-h2 t), t, tk > to. 

Hence, for any arbitrarily pre-assigned small positive numberc:, there exists a 

sufficiently large T' > t0 such that whenever exp (-h2 t) < ~' 

(188) 

for t , tk ~ T' , t2 ~ ti ~ T' and k : t2k ~ tik ~ T'. 

On the other hand, if we set A = f and assume that I t2 - ti I < >i, then for all 

to ~ ti ~ t2 ~ T' and k : to ~ tlk ~ t2k ~ T', it becomes clear that 

(189) 

Thus, from inequalities (188) and (189), we can affirm that Jn is 

quasi-equicontinuous. Therefore, Jn is relatively compact. By virtue of 

Schauder-Tychonoff fixed point theorem, the mapping J has a fixed point y• E J 

such that y• = J y•. Then y• is a positive solution of equation (175) and 

y• E J\ (o,o,o). This completes the proof of Theorem 4.6. 

Theorem 4.7. Assume that lim E~~iPi (t) + lim E~~iPik = p E [O, 1). Then 
t-+oo tk-+oo 

equation (175) has a non-oscillatory solution y E J\(b.a.o) (b, a '/= 0) if and only 
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if 

n 

+ I: tk I: fjk (tk, bi , ... , bi) < oo (19o) 
to$tk<oo j=i 

for bi =!= 0. 

Proof 

i) Necessity: Without loss of generality, let y (t) E A(b.a,o) be a finally positive 

solution of equation (175). From Theorem 4.5, we know that b > 0 and a > 0. 

Using notations in equations (182) and (183), we obtain from equations (175) and 

(176), 

{ 

x" (t) = - f (t, y (g (t))) 

6..x' (tk) = fk (tki y (g (tk))). 

Integrating it from s to oo for s ~ t0 , we have 

x' (s) = 100 

f (u, y (g (u))) du + L fk (tk, y (g (tk))). (191) 
i; s$tk<OO 

Again, integrating equation(191) from T to t, where T is sufficient ly large, we 

obtain 

x (t) = x (T) + J; (u -T) f (u, y (g (u))) du 

+ 100 

(t - T) f (u, y (g (u))) du 

+ L (tk - T) fk (tk, y (g (tk))) 

+ L (t - T) fk (tk, y (g (tk))). 
t$tk<OO 

(192) 

Since lim y (gjh (u)) = b > 0 and lim y (9jh (tk)) = b > 0, j -
'U-400 tk-400 

1, 2, · · · , n, h = 1, 2, · · · , e, there exists a T ~ t 0 such that y (gjh (u)) ~ ~ 
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for u > T and y (gjh (tk)) ~ ~ for k : tk ~ T. Hence from equation (192) we 

have 

1: ( u - T) ti /; ( u, ~ , · · · , ~) du 

< x (t) - x (T) 

which implies that condition (190) holds. 

ii) Sufficiency: Set bi > 0 and A > 0 so that A < (1 - p) bi. From condition 

(190) there exists a sufficiently large T so that for t, tk ~ T we have t - Ti ~ 

to, tk - Ti ~ to, i = 1, 2, · · · , m, and 9ih (t) ~ to , 9jh (tk) ~ to, j = 

11 2, '• • I n, h = 1, 2, • • • J e and 

(193) 

Let n be the set of all piece-wise continuous functions y (t) E [t0, oo) such that 

0 ~ y (t) ~bi, t, tk ~ t0 . Define a mapping Jinn as follows: 

Set 

(Jy) (t) = 

A+ I:f~i Pi (t) y (t - Ti) + I:f~1 PikY (tk - Ti) 

+ J~u f (u, y (g (u))) du 

+ ft°0 t f (u, y (g (u))) du 

+ ~T5£1:5t tkfk (tk, Y (g (tk))) 

+ L:t~t1:<00 t !k (tk, y (g (tk))), 

t , tk ~ T 

(Jy) (T), to~ t, tk < T. 

Yo(t) = 0, t ~to; 

(194) 
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yt(t) = (TYt-i) (t) , t ~ to, f = 1, 2, · · · . (195) 

It immediately follows that Yo (t) < Yi (t) = A ~ bi, t ~ t0 . By induction, we 

obtain 

A ~ Yt (t) ~ Ye+i (t) ~ bi , t ~ to , f = 1, 2, · · · . 

Thus, tlim Yt (t) ~ y (t) exists and A ~ y (t) ~ bi, t E (t0 , oo). By Lebesgue's 
~00 

monotone convergence theorem, we obtain from equation (195) the result 

y(t) = 

A+ L:?::i Pi (t) y (t - Ti)+ L::i PikY (tk - Ti) 

y (T) , to ~ t, tk < T. 

+ J~ u f ( u, y (g ( u))) du 

+ft' t f (u, y (g (-u))) du 

+ Er::;ik::;i tkfk (tki y (g (tk))) 

+ Etstk<oo tfk (tk, y (g (u) )) , 

t , tk ~ T 

Hence, y(t) is a positive solution of equation (175). Since 0 < A :::; y (t) < bi, from 

Theorem 4.5, y E A(ll,a,o). This completes the proof of Theorem 4.7. 

Using reasoning analogous to that given in the proof of Theorem 4. 7 above, 

we can verify the following results. 

Theorem 4.8. Assume that lim E:iPi (t) + lim E:iPik = p E (0, 1). Then 
t~OO tk~OO 

equation (175) has a non-oscillatory solution y E A(oo,oo,d) , (d # 0) if and only if 

1
00 n 

L f; (u, di9ii (u) , ... , di9jt (u)) du 
to j=i 

n 

+ I: I: !Jk (tk, d19ji (tk), ... , di9jt (tk)) < oo, (196) 
to9k<oo j = l 
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For large t and tk, q (t),...., Mt-513 and Qk rv Mt;% . It is obvious that inequalities 

(197) and (198) are satisfied. From Theorem 4.9, equation (200) has a solution 

y E A(oo,oo,o)_ In fact, y(t) = ../i 

is such a solution of equation (200). 

Remark 4.1. The above arguments can be applied to the equation 

[y (t) - 1::~1 Pi (t) Y (t - Ti)] 
II 

- ~j=l fj (t, y (gjl (t)) I 
0

' 
0 

I y (9;t (t))) I 

t ~ t0, t rf. S 

f::. [y (tk) - ~~~1 PikY (tk - Ti)] 
I 

= ~J=l fjk (tkl y (g;i(tk)) I 
0 0 0 

I y (g;t(tk))) I 

tk ~ to, V tk E S. 

For instance, under the assumptions of Theorem 4.5, we have 

A= A (0, 0,0) u A (b,a,O) u A (oo, oo,a) u A (00,00,00). 

(201) 

Therefore Theorems 4.7 and 4.8 hold for equation (201). Furthermore, equation 

(201) has a non-oscillatory solution y (t) E A(oo,oo,oo) if 

roo n 
lt. I: Ii (t, di9;1 (t), ... , di9;e (t)) dt 

to j=l 
n 

+ L L fjk (tk, di9;1 (tk) I •.. , digjl (tk)) < 00 (202) 
to::;t1i; < oo j=l 

for some d1 =I 0. 
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At this point we now present another result for the second order linear equation 

{ 

[y ( t) - p y ( t - T) ]" + q ( t) y (g ( t)) = 0, t ~ to, t ~ 8 

/}. [y (tk) - PY (tk - T)]' + QkY (g (tk)) = 0, tk ~to, V tk E S, 
(203) 

where the condition p E [O, 1) is not required. 

Theorem 4.10. Assume that 

i) p, T > 0, Qk ~ 0, q E PC ([to, oo), R+) , g E C ([to, oo), R), g (t + T) < t, 

t 2: t 0 and lim g (t) = oo; 
t-+oo 

ii) there exists a constant a > 0 such that for sufficiently large t, 

~e-c:c-r + ~ ft~T (s - t - T) q(s) exp [a (t - g (s))] ds 
(204) 

+~ Lt+T:5tA::5oo (tk - t - T) Qk exp [a (t - g (tk))] :::; 1. 

Then equation (203) has a positive solution y(t) that converges to zero as t tends 

to infinity. 

P roof: If the equality in equation (204) holds finally, then we can verify that 

y (t) = e-ot is the expected solution. Otherwise, we assume that there exists 

T ~ t0 such that t + T ~ 0, g (t + T) ;:::: t0 fort~ T, and 

1 
µ = -e-CtT 

p 
+ ~ {

00 

(s - T- T) q (s) exp [a (T - g (s))] ds 
p lr+t 

1 +- L (tk - T - T) Qk exp [a (T - g (tk))] < 1 
P T+T:5tk<oo 

and inequality (204) holds fort~ T. 

(205) 

Let B'P denote the Banach space of all piece-wise continuous bounded functions 

defined on [to, oo) endowed with a sup norm. Let n be the 8ubset of Bp defined 

by 

0 = { x E Bp : 0 :::; x ( t) :::; 1 for t ~ to} . 



Define a map J : 0 -7 Bv as follows: 

where 

and 

(J2 x) (t) = 

where 

ln (2 - µ) 
c;----

- (T - to) . 

~ ft~-r (s - t - r) q (s) exp (a (t - g (s))J x (g (s)) ds 

+~ Lt+-r:Stk<oo (tk - t - r) Qk 

exp [a (t - g (tk))] x (g (tk)), 

t '?. T 
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We can show that the map J satisfies all the assumptions of Krasnoselskii's 

fixed point Theorem, and so J has a fixed point x in 0. Clearly, x (t) > 0 for 

t '?. t0 . Consequently, it is easy to verify that 

y (t) = x (t) e-at 

is a solution of equation (203). This completes the proof of Theorem 4.10. 

Corollary 4.4. Assume that 0 < p < 1, T > 0 and there exist constants 

Q*, a- > T such that 0 ~ q (t) ~ Q*, g (t) '?. t - a- finally. If the "majorant" 
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that is, inequality (204) holds. Then, by Theorem 4.9, equation (203) has a 

positive solution. 

4.4 Unstable type equations 

4.4.1 Equations with constant coefficient p 

Com;ider the second order linear neutral impulsive differential equation of the form 

{ 

[y ( t) - p y ( t - T) ]" = Q ( t) y (g ( t)) , t ~ to , t ~ S 

~ [y (tk) - PY (tk - T)j' = QkY (g (tk)), tk ~to, V tk E S, 
(208) 

where p E R, Qk ~ 0, q E PC ([to, oo), R+); g E C ([to, oo) , R) ; lim g (t) = 
t-+oo 

OOj T > 0. 

In general, equation (208) always has an unbounded non-oscillatory solution. 

Therefore our task now is to find conditions for which all bounded solutions of 

equation (208) are oscillatory. 

Theorem 4.11. Assume that 

i} 0 < p < 1, T > 0 are constants; 

ii} g (t) ~ 1 and g is non-decreasing fort ~ t0 ; 

iii} the inequality 

lim sup [rt (s - 9 (t)) q (s) ds + I: (tk - g (t)) Qkl > 1 (209) 
Hoo Jga (t) 

g(t):S:tk<OO 

holds. 

Then every bounded solution y(t)of equation (208) is oscillatory. 
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Proof: Assume by contradiction that y(t) is a finally positive bounded solution 

of equation (208). Define 

z (t) = y (t) - py (t - T). (210) 

We have z" (t) > 0 for t ~ T ~ t0 , 6. z' (tk) > 0 for k : tk ~ T ~ t0 . If 

z' (t), 6.z (tk) > 0 fort ~ T' > T and k: tk ~ T' > T , then tlim z (t) = oo, which 
-+oo 

contradicts the boundedness of y(t). Therefore, z' (t), 6. z (tk) ~ 0 for t ~ T and 

k: tk ~ T . 

Here, we observe that there exists two possibilities for z(t) : 

i) z (t) > 0 for t ~ T ; 

ii) z (t) < 0 for t ~ T" ~ T. 

In case (i), we integrate equation (208) from s to t and obtain 

z' (t) - z' (s) = 1t q (s) y (g (u)) du+ L QkY (g (tk)). 
s s$tk9 

(211) 

Again, integrating equation (211) ins from g(t) tot, we obtain 

z' ( t) ( t - g ( t)) - z ( t) + z (g ( t)) rt 1t q (u) y (g (u)) duds 
}g(t) s 

+ I: I: qky (g (tk)) 

= 1t (s - g (t)) q (s) y (g (s)) ds + L (tk - g (t)) QkY (g (tk)) 
g(t) g(t)9k$t 

> 1t (s - g (t)) q (s) z (g (s)) ds + L (tk - g (t)) Qk z (g (tk)) 
g(t) g(t)$tk$t 

~ z (g (t)) [1t (s - g (t)) q (s) ds + L (tk - g (t)) Qkl · 
g(L) g(t)$tkt 

Hence for t ~ T , 

z (t) + z (g (t)) (1t (s - g (t)) q (s) ds + L (tk - g (t)) Qk - 1) ~ 0, 
g(t) g(t)$tA;$t 
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which contradicts the positivity of z(t) and condition (209). 

In case (ii), we have 

y ( t) < p y ( t - r) < p'y ( t - 2r) < . . . < p•y ( t - n r) 

() 0 C equently lim z (t) == 0. 

hi h 
· lies that lim Y t == · ons ' Hoo 

for t > T2 + n r' w c imp Hoo -
1 

th oof of Theorem 4.11. 
This is a. contradiction and therefore comp etes e pr 

R emark 4 .2. Theorem 4.11 is also true for p == O. 

Theorem 4.12. Assume that 

i) p < 0, q, > 0 and q (t) > 0, for all k E z and t ~to; 

ii) g (t) == t - a, where ais a constant, a > r; 

iii) There exists a > 0 such that 

. { q (t) qk } - () 
lim sup , -

l.Lk-+oo q (t - r) Q (tk - T) 

(212) 

and 

lim sup [Jt ( s - ( t - (a - r))) q ( s) ds 
t-+oo t-(u-r) 

+ E (tk - (t - (a - T)))] > 1 - op. (213) 
t-(u-r}:=;t:=;t 

Then every bounded solution of equation (208) is oscillatory. 

Proof: Let us assume, by contradiction, that y(t) is a bounded, finally positive 

solution of equation (208) and that z(t) is defined by equation (210). As shown 

before, z" (t), 6 z' (tk) > 0, z' (t) , 6 z (tk) < 0 and z (t) > 0 finally, where z(t) 

is defined b.r equation {210). 
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From condition (212) and inequality (213), there exists a constant M > 1 such 

that 

lim sup [ f' (s - (t - (u - T))) q (s) ds 
t,tk-+oo l t-(u-r) 

+ L ( tk - ( t - ( u - T)) )] > 1 - Map, 
t-(u-r)9k~t 

{214) 

q (t) Qk < M 
( ) , ( ) a, t , tk~ti, Q t - T Q tk - T 

(215) 

where t1 is a sufficiently large number. We rewrite equation (208) in the form 

{ 

z" ( t) - p q(t~~) z" ( t - T) = q ( t) z ( t - u) , t rf- S 
(216) 

6. z' (tk ) - p ~ 6.z' (tk - T) = QkZ (tk - u), \::/ tk E S. 

Substituting inequalities (215) into equation (216), we obtain 

Set 

Then 

{ 

z'' ( t) - M a p z" ( t - T) ~ q ( t) z ( t - u) , t ~ ti, t <t S 
(217) 

6.z' (tk) - Map 6.z' (tk - r ) ~ QkZ (tk - u), tk ~ t1, \::/ tk ES. 

w ( t) = z ( t) - M apz ( t - T) . 

{ 

w" ( t) ~ q ( t) z ( t - u) > 0, 

6.w' (tk) ~ QkZ (tk - u) > 0, 

(218) 

(219) 

By the boundedness of the function y(t), it is seen that w(t) > 0, w'(t), 6.w (tk) :5 

0 for t, tk ~ t2 ~ t 1 . Since z(t) is decreasing, 

w(t) = z(t ) - Mapz(t - T) :5 (1 - Map)z(t - T), t ~ t2. (220) 
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Combining inequalities (219) and (220), we obtain 

{ 

w" ( t) ~ 1 _it np q ( t) w ( t - (a - T)) , t ~ S 

~w' (tk) ~ 1-l1ap QkW (tk - (a - T)), v tk Es. 

Integrating inequality (221) from s tot fort~ s ~ t2 we have 

w' ( t) - w' ( s) 

We integrate inequality (222) in s from t - (a - T) tot and obtain 

w' ( t) (a - T) - w ( t) + w ( t - ( <J - T)) 

Thus, 

> l ~ [ft r q ( U) W ( U - ( <J - T)) duds 
- O:p t-(u- s) l s 

+ t-(•-~~"~''~' q;w (t; - (u - r))] 

-
1 
~ ft (u - (t - (a - T))) q (u) w (it - (a - T)) du 

- O:p t-(u-r) 

> W (t - (a - T)) 
1- Mo:p [ rt ( U - ( t - ( O" - T))) q ( U) du 

lt-(u-r) 

+ L (tk - (t - (a - T))) Qkl , 
t-(u-r)9k$t 

W (t) + W (t - (a - T)) { l [rt (u - (t - (et - T)))q(u) du 
1 - M O:p lt- (o-r) 
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(221) 

(222) 

+ L (tk - (t - (o: - T)))qkl - 1} ~ 0. 
t-(o-r)$tk$t 
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This contradicts condition (214) and therefore completes the proof of Theorem 

4.12. 

Theorem 4.13. Assume that 

i) p = 1, Qk > 0 and T > O; 

ii) g (t) ~ t and g is non-decreasing fort ~ to; 

iii) either 

(223) 

or 

lim [t 100 

q (s) ds + tk L Qkl = oo. 
t.ti,-+oo t t$t1i:<oo 

(224) 

Then every bounded solution of equation (208) is oscillatory. 

Proof: Let us assume, by contradiction, that y(t) is a bounded finally positive 

solution of equation (208) and z(t) is defined by equation (210). There are two 

possibilities for z(t) here: 

a) z" (t), .6. z' (tk) ~ 0, z' (t), .6. z (tk) ~ 0, z (t) < 0 for t, tk ~ ti ~ to; 

b) z" (t), .6.t' (tk) ~ 0, z' (t), .6.z (tk) ~ 0, z (t) > 0 fort, tk ~ti~ to. 

In cru>e (a), there exists a finite number a > 0 such that 

lim z (t) = -a. 
t-+oo 

Thus, there exists t2 ~ti such that -a< z (t) < -~, t ~ t2, that is, 

Hence y (t - r) > ~. t ~ t2. Then there exists t3 ~ t2 such that y (g (t)) > ~, t ~ 



t 3 . From equation (208), we have 

{ 

z" (t) ~ IQ (t), t ~ t3, t fJ. S 

D..z' (tk) ~ IQk, tk ~ tJ, V tk E S. 

In case (b), we have 

y (t) > y (t - T) , t ~ti. 

Then there exists L > 0 such that y (t) ~ L, t ~ t 1 . Hence 

{ 

z" ( t) ~ L q ( t) , t ~ t3 , t fJ. S 

D..z' (tk) ~ L Qk, tk ~ t3, tk E S. 
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(225) 

(226) 

Therefore, in both cases, we are led to the same inequality (226). Integrating 

inequality (226) from t to T for T > t, tk ~ t3, we have 

z' (T) - z' (t) ~ L [lr q (s) ds + L Qkl , t3 ~ t, tk < T , 
t T~t1c~T 

which implies that 

100 

q ( s) ds + I: Qk < oo, 
to to~t.1c<oo 

and so 

- z'(t) ~ L [t q(s) + tS~oo q•]. (227) 

Integrating inequality (227) from t to T for T > t, we obtain 
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= z (T) + L [1T (u -T) q (u) du + (T - t) fr00 

q (u) du 

+ L (tk - T) Qk + L Qkl , titk 2: t2, 
t~t1cT T~t1c<oo 

which leads to a contradiction to the boundedness of z(t) in either of the cases in 

equation (223) or (224). This completes the proof of Theorem 4.13. 

Example 4.3. Consider the equation 

(228) 

It is easy to see that all the assumptions of Theorem 4.13 are satisfied. Therefore, 

every bounded solution of equation (228) is oscillatory. 

Equation (228) may have unbounded oscillatory solutions. For example, 

equation (228) has a solution y(t) = t sin t. 

Theorem 4 .14. Assume that p > I . Then equation (208) has a bounded positive 

solution if and only if 

(229) 

Proof 

i) Necessity: Let y(t) be a bounded positive solution of equation (208) and z(t) 

is defined by equation (210). Then equation (208) becomes 

{ 

z" ( t) = q ( t) y (g ( t)) , t rt S 

.0.z' (tk) = Qk y (g (tk)), V tk E S. 

At this point, there exists two possibilities for z(t) : 
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As in the proof of Theorem 4.13, in either case we are led to the inequality 

{ 

z" ( t) ~ L q ( t) , t ~ t2, t r/. S 

tlz' (tk) 2: L Qk, tk 2: t2, V tk E S, 
(230) 

where L > 0 is a constant and t2 is a sufficiently large number. Integrating 

inequality (230) twice, we obtain 

z(t)-z(T ) ~ L [t { q (u) duds+ ,~ET ,~T Q•] 

L [J.T ( u - t) q ( u) du + ,~ET ( t• - t) Q•] , 

for T > t , tk 2: t2. Letting T ~ oo, it is obvious that inequality (229) is satisfied. 

ii) Sufficiency: The sufficiency part of Theorem 4.14 is derived from the following 

more general result. 

Theorem 4.15. Assume that p > 1, Qk > 0 and q E PC ([T0 , oo) , R) such that 

(231) 

Then equation (208) has a bounded positive solution. 

Proof: Let T 2: t0 be sufficiently large so that t + T 2: t0 , g (t + r) 2: t0 for 

t 2: T, and 

(232) 

Consider the Banach space Bp of all piece-wise continuous bounded functions 

defined on [to, oo )with the sup norm. Set 

0 = { y E Bp : ~ ~ y (t) ~ 2p, t 2: to}. 

Clearly, n is a bounded closed convex subset of Bp. Define a mapping J : n ~ Bp 
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as follows 

p - 1 + ~y ( t + T) - ~ ft~T ( S - t - T) Q ( S) Y (g ( S)) ds 

-~ Et+r~t.1;<oo (tk - t - T) QkY (g (tk)), t ~ T (233) 

( J y) (T) , t0 ~ t ~ T. 

For any y E S1 and from inequality (232) we obtain 

(J) (t) ~ p + 1~ 100 
(s - t - T) lq (s)llY (g (s))I ds 

p t+T 

fort, tk ~ T, and 

(Jy) (t) ~ 1 1100 p - - - - (s - t - T) lq (s)l IY (g (s))I ds 
2 p t+r 

1 p -- I: (tk - t - T) lqkl IY (g (tk))I ~ 2' 
P t+r~t.1;<00 

for t , tk ~ T. Therefore, TO ~ n. 

We shall show that J is a contraction mapping on n. In fact, for any Y1 I Y2 E n, 

1 
l(Jy1) (t) - (Jy2) (t)I ~ - IY1 (t + r) - Y2 (t + T)I 

p 

1100 +- (s - t - T) lq (s)l IY1 (g (s)) - Y2 (g (s))I ds 
p t+T 
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which implies that 

llJ Y1 - J Y2ll - sup l(JY1) (t) - (Jy2) (t)l 
t ,tk~to 

- sup l(T y1) (t) - (Ty2) (t)I ~ ~ (1 + ~) llY1 - Y2ll · 
t ,tk~T p 

Since~ ( 1 + ~) < 1, it follows that J is a contraction mapping. Hence there exists 

a fixed point y E n. Then 

{ 

[y(t+T)-y(t)]" = q(t+T)y(t+T)) , t ~ T, t rt s 
.6. [y (tk + T) - y (tk)]' = q (tk + T) y (tk + T))' tk ~ T, v tk E S, 

That is, y(t) is a bounded positive solution of equation (208). This completes the 

proof of Theorem 4.15. 

Remark 4.3. Using a reasoning analogous to that given in the proof above, we 

can show that Theorem 4.15 is also true for p E (0, 1). 

The following result is about the existence of asymptotically decaying positive 

solution of equation (208). 

Theorem 4.16. Assume that 0 < p < 1 and that there exists a constant o > 0 

such that 

pear + l oo (s - t) q (s) exp [o (t - g (s))] ds 

+ L (tk - t) Qk exp [o (t - g (tk))] ~ 1 
l~lk<OO 

(234) 

finally. Then equation (208) has a positive solution y(t) satisfying y (t) --7 

0 as t --7 oo. 

Proof: Notice that if the equality in condition (234) holds finally, then equation 

(208) has a positive solution 
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In the rest of the proof, we may assume that there exists a number T > t0 such 

that 

and 

t - T ~ to, g ( t) ~ to for t ~ T 

f3 =peat + £00 

(s -T) q (s) exp [a (T - g (s))] ds 

+ 2: (tk -T) qkexp [a (T - g (tk))] < 1 
T$t1c <oo 

and condition (234) holds fort~ T. 

(235) 

Let BP denote the Banach space of all piece-wise continuous bounded functions 

defined on [t0 , oo) and endowed with the sup norm. Let n be the subset of Bp 

defined by 

0 - { x E Bp : 0 ~ x ( t) ~ 1, t ~ to} . 

Define a map J : n ~ Bp as follows: 



where c = In <2-.8) and 
(T-to) 

ft00 
(s - t) q (s) exp (a (t - g (s))] x (g (s)) ds 

x exp [a (t - g (tk))] x (g (tk)), 

t?:. T 

( J2x) (T) , to ~ t ~ T. 
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(237) 

Notice that the integral in (237) is defined whenever x E 0. Obviously, the set 

0 is closed. bounded and convex in Bp. 

We shall show that for every pair y, x E 0 

(238) 

In fact, for any y, x E 0 , we have 

(J1y) (t) + (J2x) (t) = pea-ry (t- T) + 1= (s - t) q (s) x 

x exp (a (t - g (s))] x (g (s)) ds 

+ L (tkt) Qk exp [a (t - g (t1J)] x (g (tk)) 
t:5tk<OO 

~ pe0
r + 100 

(s - t) q (s) exp [a (t - g (s))] ds 

+ L (tk - t) Qk exp [a (t - g (tk))] ~ 1, 

t ?:. T 

and 



(J1y) (t) + (J2x) (t) - (J1y) (T) + (l2x) (T) +exp [c (T - t)] - 1 

= .B+exp [c (T-t)]-1 

~ .B+exp [c (T-to)]-1 

= 1, 

to~ t ~ T 
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Obviously, (J1y) (t)+(J2x) (t) ~ 0 for t ~ t0. Thus, condition (238) is true. From 

inequality (235), we know that pe0
' < 1, which implies that 11 is a contraction 

mapping. 

We shall now show that 12 is completely continuous. In fact, from inequality 

(234), there exists a positive constant M such that 

100 

q (s) exp [a (t - g (s))] ds + L qk exp [a (t - g (tk))] ~ M, 
t t$ti.<oo 

fort~ T. Thus, we have 

:t (J2x) (t) = j[ 00 

q (s) exp [a (t - g (s))] x (g (s)) ds 

+a [
00 

(s - t) q (s) exp [a (t - g (s))] x (g (s)) ds 

+ L Qk exp [a (t - g (tk))] x (g (tk)) 
t'.Stk<oo 

+a L (tk - t) Qk exp [a (t - g (tk))] x (g (tk)) 

~ 1100 

q ( s) exp [a ( t - g ( s))] x (g ( s)) ds 

+ L Qk exp [a (t - g (tk))] x (g (tk)) 

+ a [[
00 

( s - t) q ( s) exp [a ( t - g ( s))] x (g { s)) ds 

+ «E~ (g, - t) q, exp[<> (t - g (t.) )] x (g (t,))] 
~ M +a, t > T 
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and 

d 
dt (12x) (t) = 0, to ~ t < T. 

This shows the quasi-equicontinuity of the family 12 n. On the other hand, it 

is immediately obvious that 12 is piece-wise continuous and the family of 12 n is 

uniformly bounded. Therefore, J2 is completely compact. 

By Krasnoselskii 's fixed point theorem, J has a fixed point x En. 
That is, 

x (t) = 

peaT x ( t - T) + f/"0 ( s - t) q ( s) 

exp [a: ( t - g ( s))] y (g ( s)) ds 

+ 2=t$tk<OO (tk - t) Qk 

exp [a: (t - g (tk))] y (g (tk)), 

t ~T 

x (T) +exp [c (T - t)] - 1, t0 ~ t ~ T. 

(239) 

Since x (t) ~ exp [c (T - t)] - 1 > 0 for t0 ~ t < T, it follows that x(t) > 0 for 

t ~to. Set 

Y (t) = X (t) e-CtT• 

Then equation (239) becomes 

y ( t) = p y ( t - T) + l oo ( S - t) q ( S) y (g ( S)) ds 

+ L (tk-t)qky(g(tk)), t~T. (240) 
t$tk<oo 

Thus, y(t) is a positive solution of equation (208) and y (t) ~ Oas t ~ oo. This 

completes the proof of Theorem 4.16. 

Remark 4.4. The conclusion of Theorem 4.16 still holds for the case p = 0 if 

g(t) < t. 
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Corollary 4.5. Assume that 0 < p < 1, and there exist constants q* > 0 and 

u > 0 such that 

0 ~ q (t) ~ Q*, g (t) ~ t - a. (241) 

If the "majorant" equation 

(242) 

has a bounded positive solution, then equation (208) also has a positive solution 

y(t) that converges to zero as t tends to infinity. 

P roof: The corresponding characteristic equation of equation (144) has the form 

or 

Let a: = -A> 0, then 

( • )n1 ( • )n2 
-1 + pe<XT 1 - :~a + q* e0

u 1 - :~a = 0. 

Considering the case where n 1 = n2 = 0, we obtain 

(244) 

Equation (242) has a bounded pooitive solution if and only if its characteristic 
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equation (243) has a real root a E (0, oo) . This immediately means that equation 

(244) holds. Combining conditions (241) and equation (244), we realize that for 

sufficiently large t, 

pear+ 100 

(s - t) q (s) exp [a (t - a)] ds + L (tk - t) Qk exp [a (t - a)] 
t t~tk<oo 

By Theorem 4.16, equation (208) has a positive solution y(t) which converges to 

zero as t-+ oo. This completes the proof of Corollary 4.5. 

Example 4.4. Consider the equation 

(245) 

In our notation, p = 2
1
e, Q* = ie 1 T = 2 and a= 2. The "majoront" equation 

is 

{ 
[Y (t) - 2~Y (t - 2) ]" I ieY (t - 2) I t ¢ s 
~ [Y (tk) - 2

1eY (t - 2)] = 8~y (tk - 2), 'V tk E S 
(246) 

and the characteristic equation (243) becomes 

or 

(247) 

Setting ni = n2 and a= - >i, equation (244) becomes 

1 1 
-e2a + --e2a = 1. 
2e 8ea2 (248) 
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It is obvious that a = -~. Consequently, >. = ~ is a real root of equation (247), 

and hence, equation (246) has a bounded positive solution. By Corollary 4.5, 

equation (245) has a positive solution y(t) that converges to zero as t ~ oo. 

4.4.2 Equations with variable coefficient p 

We now consider the second order neutral impulsive differential equation 

{ 

[y ( f) - p ( f) y ( t - T) ]" = Q ( t) y ( f - CT) , t ~ to, f rt S 

~ [y (tk) - PkY (tk - T)]' = QkY (tk - CT), tk ~to, V tk E S, 
(249) 

where T, CT E (0, oo); Qk ER; p, q E PC ([t0 , oo), R). 

Theorem 4.1 7. Assume that 

i} 0 ~ p (t) ~ 1, t ~ t0 ; 

iii} for any >. > 0, 

(250) 

Then every bounded solution of equation (249) is oscillatory. 

Proof: Let y(t) be a bounded, finally positive solution of equation (249) . Assume 

further that y (t - T), y (t - a) > 0 for t ~ti ~ t0. Set 

Z (t) = y(t) - p(t)y(t - T). (251) 

It is not difficult to show that z" (t), ~z' (tk) > O; z' (t), ~z (t.1:) < O; z(t) > 0 

for t ~ ti, where ti is large enough and 

lim z (t) = lim z' (t) = 0. 
t-+oo t-+oo 
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Then from condition (ii) 

{ 

z" (t) ~ h1Y (t - a) , t ~ti , t rt S 

/:::,.z' (tk) ~ h1Y (tk - a), t1.: 2: ti, V tk E S 
(252) 

and 

{ 

z" (t) ~ h2Y (t - a), t ~ ti, t rt S 

6.z' (tk) ~ h2y (tk - a), tk 2: tli V tk ES. 
(253) 

Define a set A as follows: 

(254) 

finally. It is clearly seen that ../hi. E A, that is, A is nonempty. We shall show 

that A is bounded above. In fact, condition (252) implies that 

{ 

z" (t) ~ h1z (t - a), t ~ t1 +a, t rt S 

6.z' (tk) ~ h1z (tk - a) , tk ~ti+ a, V tk E S. 
(255) 

Integrating inequality(255) from t to t + ~' we obtain 

and then 
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This implies that 

z (t) > a z (t - ~) , t ~ti+ er, 

where 

Applying condition (256) four times, we discover that 

z (t) > a z (t - er), t ~ ti + 2cr. 

In view of the boundness of y(t), it is not difficult to see that 

lim inf y (t) = 0. 
t-+oo 

Choose a sequence { sn} such that Sn ~ ti + 2cr, n = 1, 2, 

and 

Integrating inequality (252) twice, we have 
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(256) 

(257) 

lim Sn= oo, 
n-+oo 

z (t- u) > h1 [ l,_
0 
J,' y (u - u) duds+ •-•~•«•~~9 y (t, - u)] , 

t, tk ~ t1 +CT 

and 



--

that is, 

y (Sn - CJ) < f3 z (Sn - CJ) , n = 1, 2, · · · , 

where 

2 
/3= -h 2· 

1 (J 

Then from inequalities (253) and (257), we obtain 

which implies that J o:-4(3 h2 E A, that is, A is bounded above. 
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Set Ao= sup A. Then Ao E (o, Jcx-4/3 h2). For any o: E (0, 1) we discover that 

for sufficiently large t, 

{ 

z" ( t) ~ (a Ao) 2 z ( t) , t rt S 

~z' (tk) ~ (o: Ao)2 z (tk), V tk E S. 
(258) 

Set 

z ( t) = z' ( t) + o: hoz ( t) . 

Then 

z' (t) - o: Ao z (t) = z" (t) - (a Ao)2 z (t) ~ 0 

finally. It implies that z (t) e-oAot is non-decreasing. Since z (t) --t 0, z' (t) --t O as 



t ~ oo, so z (t) ~ 0 as t ~ oo. Thus, z (t) < 0, that is, 

z' (t) +a >.0z (t) ~ 0 

finally. Set w ( t) = z ( t) eet -Xot. Then 

{ 

w' (t) = [z' (t) +a >.oz (t)] e0 -Xot ~ 0 

.6.w (tk) = [.6.z (tk) +a >.oz (tk)] eetAotk ~ 0. 

We can rewrite equation (249) in the form 

{ 

z"(t) =p (t -<7) q~~~)z"(t-r)+q(t) z(t -<7) 

.6.z' (tk) = p (tk - a) ~ .6.z' (tk - r) + QkZ (tk - a). 

Then by condition (258), we have 

z" ( t) ;:::: (a >.0 ) 
2 p ( t - <7) t ( t) ) z ( t - r) + q ( t) z ( t - a) 

q t -T 
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(259) 

=(a >.0)
2 p (t - <7) q (t) w (t - r) e-etAo(t-T) +q (t) w (t - a) e-cr-Xo (t - a) 

q (t - r) 

;,, [ca Ao)
2 
p (t - er) q (~ ~) r(""T + q (t) e•"-•] z (t), 

.6.z' (tk) 2:: (a >.o)2 p (tk - a) ( Qk ) z (tk - 1) + QkZ (tk - er) 
Q tk -T 

= (a >.o)2 P (tk - u) Qk w (tk - 1) e-a.Xo(tk-T) + QkW (tk - a) e-a.Xo(tk-u) 
q (tk - r) 

;:::: [(a Ao)2 p (tk - a) ( Qk ) ecrAoT + q (t) eetAou] z (tk), 
Q tk -T 

which implies that 
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Letting a ~ 1, we have 

which contradicts condition (250). This completes the proof of Theorem 4.17. 

Remark 4.5. Noting that eY ~ 1, eY ~ e; y2, for y ~ 0, condition (250) can be 

replaced by condition 

lim inf {p (t - er) t (t) ) + e
4

2 

cr2q (t)} > 1 
Hoo qt-T 

Remark 4.6. In the case where p(t) = p, q(t) = q are constants, condition (250) 

is also a necessary condition for the bounded oscillation of equation (249). 

Theorem 4.18. Assume thatp(t) =:; 0, q(t) > 0, er> T, 

and 

{ 
t1:!.~ sup {-p (t - er) q(~~~) } = o E (0, oo) 

lim sup {-p(tk-cr) --9.k_(t _ )} = o E (0, oo) 
tk-+OO I/ k T 

(260) 

lim SU p [ t ( s - t + (CT - T)) q ( s) ds 
t-+oo l t-(u-r) 

+ .L (tk - t + (er - 7)) qkl > 1 - a . (261) 
t- (u-r)~tk~t 

Then every bounded solution of equation (249) is oscillatory. 

Proof: Let y(t) be a bounded, finally positive solution of equation (249) with 

y (t - T) ~ 0, for t ~ t1. Then z" (t) , f:::,.z' (tk) ~ 0, z' (t), f:::,. z (tk) < 0, z (t) > 
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0, t ~ ti. From condition (261), there exists a constant h > 1 such that 

lim sup [lt (s - t +(er - T)) q (s) ds 
t-+oo t-(u-T) 

+ L (tk - t +(er - T)) Qkl > 1 - ha (262) 
t-(u-T)~tk~t 

and there is a t2 > ti such that 

{

-p(t- T) q(~~~) ~ha, t 2:: t2, t fl_ S 

-p(tk - T) ~~ha, tk 2:: t2, \/ tk ES. 

From equation (259), we have 

{ 

z" ( t) - h a z" ( t - er) ~ q ( t) z ( t - a) , t ~ t2 , t fl. S 

6.z' (tk) - ha 6.z' (tk - er) ~ QkZ (tk - er), tk ~ t2, V tk E S. 

We set 

Then 

W (t) = Z (t) - ha Z (t - T). 

{ 

w"(t) ~ q(t) z(t-er), 

6.w' (tk) ~ QkZ (tk - er), 

(263) 

(264) 

and it is immediately obvious that w (t) > 0, w' (t), 6.w (tk) ~ 0, t, tk ~ t 2 . 

By the monotone property of z(t), we have 

W ( t) = Z ( t) - h a Z ( t - T) ~ ( 1 - h a) Z ( t - T) 
1 

t ~ t2 

or 

1 
Z ( t) 2:: 1 h W ( t + T) 1 t 2:: t2 . 

1- a 
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Substituting this into inequality (264), we obtain 

{ 

w" (t) 2 1_\aq (t) w (t - (a - T)), 

D.w' (tk) 2 1_~ 0qkw (tk - (a - T)), 
(265) 

Integrating inequality (265) from s tot fort 2 s, we have 

w' ( t) - w' ( s) 2 
1 

_ \ o: [1t q ( u) w ( u - (Cl - T)) du 

+ L QkW (tk - (a - T))] , s 2 t2. 
s$tk$t 

Integrating the resulting inequality again in s from t - (a - T) to t, we have 

Thus, 

w' ( t) (a - T) - w ( t) + w ( t - (a - T)) 

2 l \ [ rt ( U - t ( C7 - T)) q ( U) W ( U - ( C7 - T)) du 
- Ct lt-(u-r) 

+ L (tk - t +(a - T)) qkw (tk - (a - T))l 
t-(u-r)$tk$t 

2'. w (t; ~:: r)) [J.~(•-T) (u - t + (u - r)) q (u) du 

+ L (tk - t +(a - r)) Qkl , t, tk 2 t2. 
t-(u-r)$tk$t 

W ( t) + W ( t - ( C7 - T)) (-1 + l [ rt ( U - t + ( C7 - T)) q ( U) du 
1 - h Ct lt-(u-r) 

+ L (tk - t +(a - r)) Qkl) ~ 0 
t-(u-r)$tk$t 
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which implies that 

We reach a contradiction and thus, complete the proof of Theorem 4.18. 

4.5 Forced oscillation 

Consider the second order neutral impulsive differential equation with a forcing 

term 

II 

[y (t) +PY (t - T)j + f (t, y (t - a)) = Q (t), 

t ~ t0 , t ¢-. S 

We introduce the following conditions: 

H4.5.1: p, T > 0 and a~ O; 

H4.5.2: f, fk E C ([to, oo) x R, R) , y · f (t, y), y · fk (tk, y) > 0, y # O; 

H4.5.3: there exists a function u (t) E 0 2 ([t0 , oo), R) such that 

{ 

Q ( t) = u" ( t) 

Q (tk) = ~u' (t,.) 

and u changes sign on [T, oo) for any T ~ t 0 . 

Set 

(t) _ . { a ( t - T) 2 ( t ) } u,. -mm -
2 , 2p ' 

u~ (t) =max {u. (t), O}, u; (t) =max {-u,. (t), O}. 

.... 

(266) 
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Lemma 4.8. Assume x E PC ([t0 , oo) , R) , {3 E PC ([to, oo), R+) and x (t) + 

px (t - T) ~ {3 (t) ~ 0, t ~ t0 , where p, T > 0. Then for each t• ~ to+ T, 

there exists a set A= {t: t• ~ t ~ t• + 2T, x (t - T) ~ {3. (t)} with the measure 

m es (A) ~ T, where 

/3 (t) _ . { {3 ( t - T) {3 ( t) } 
• - mm 2 , 2P . 

Proof: For any fixed t• ~ t0 + T, we define a set 

If B is empty (B = <J?), then px (t - T) ~ ¥, fort E [h, t * + T], that is, A = 

[h, t * + T]. Now we consider the case that B =<I>, then mes (B) = a E (0, T). 

Let B denote the closure of B. In view of the piece-wise continuity of x, we have 

x (t) ~ ¥ , t EB. Define a set f3 +T = {t, t-T E f3}. Then, x (t -T) ~ .B<t;.,.) 

for t E ( B + T) . 
Set 

Then mes (A) = T and x (t - T) ~ {3. (T) on A. This completes the proof of 

Lemma 4.8. 

Theorem 4.19. Assume that conditions H4, 5.1 - H4.5.3 hold. Further assume 

that f and fk are non-decreasing in x and 

f E f (t, ut (t + T - CT)) dt + EE'.5tk fk (tk, -ut (tk + T - CT))= oo, 

fE f (t, -u; (t + T - a)) dt + EE:9k fk (tk, -u; (t + T - a)) = -oo 
(267) 

for every closed set E whose intersection with every segment of the form 

[t - T, t + T], t ~to+ T, has a measure not smaller then T. Then every solution 

of f(Juation (266) is oscillatory. 
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Proof: Without loss of generality, let us assume by contradiction, that y(t) is a 

finally positive solution of equation (266) for t ~ to. Set 

z (t) = y (t) + py (t - r). 

n I 

Then (z (t) + u (t)) < 0 for t ~ t 0 +r. It is easy to show that (z (t) - u (t)) > 0 

finally, which implies that 

1°" 1 (t, y (t - <7)) dt + I: !k (tk, y (tk - <7)) < oo. 
to to9k<OO 

(268) 

On the other hand, it is easy to show that z (t) - u (t) > 0 finally. Then we have 

z (t) = y (t) + py (t - r) ~ u+ (t) , t ~to+ r. 

By Lemma 4.8, for every t• ~ t0 + 2r, there exists a set A = 

{t: t• ~ t ~ t• + 2r, y (t - r) ~ ut (t)} with mes (A) ~ r. Let us consider the 

set A- (r - <7) = {t: t + (r - <7) EA}. It is obvious that mes (A - (r - <7)) ~ r 

and y (t - <7) ~ ut (t + (r - <7)), t E (A - (r - <7)). From condition (268), we 

have 

which contradicts assumption (267). This completes the proof of Theorem 4.19 . 

, 
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The following result is for equations of the more general form 

II 

[y (t) + p (t) y (t - T)] + f (t, y (g (t)), '!/(er (t))) = Q (t), 

t ~ s 
~ [y (tk) + PkY (tk - T)]' + fk (tk, Y (g (tk)), 6.y (er (tk))) = Q (tk), 

(269) 

Theorem 4.20. Assume that 

i} p E PC ([to, oo), R+) and Pk~ 0, tk ~to; 

ii} g,o- EC ([t0 , oo), R) and Q EC ([to, oo), R) , t ~to;. 

iii} g is non-decreasing and lim g (t) = oo. 
t--.oo 

iv} f E C ([to, oo) xR2, R) and f (t, u, 11) u > 0, u -=f. O; 

v} for any T ~to; 

lim inf [J,J. Q (s) ds + LT<tk<t Qk] = -oo, 
t--.oo -

lim sup [J~ Q (s) ds + LT<tk<t Qk] = oo, 
t--.oo -

t~~ inf [J;. J;. Q (u) duds+ LT$tk<t LT$tk<s Qk] = -oo, (270) 

lim sup [JJ.. J; Q ( u) duds 
t--.oo 

Then every solution of equation (269) ~ oscillatory. 

Proof: Without loss of generality, let us assume by contradiction that y(t) is a 

finally positive solution of equation (269). Set z (t) = y (t) + p (t) y (t - T) . Then 

z (t) > 0, t ~ T ~ to. From equation (269), we discover that z" (t) < Q (t). 

Thus, 

z' (t) - z' (T) <ht Q (s) ds + L Qk. 
T T9k<t 

(271) 
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Theorem 4.21. Assume that 

i) p > 0, a > 7 > 0, Qk ;::: 0, a, {3 E (0, 1], q (t) 2:: 0, t 2:: to; 

ii) either 

lim sup [rt [u - (a - 7)] q (u) du 
t-+oo lt-(w-T) 

+ :L (tk - (a - 7)) Qkl > o, 
t-(u-T)$tc<t 

{3 < a (274) 

or 

lim sup [ft [u - (t - (a - 7))] q (u) du 
Hoo lt-(u-T} 

+ L [tk - (t - (a - 7))] Qkl > p, 
t-(o-T)$tk<t 

(3 =a, (275) 

where p E (0, 1) for a= 1, p E (0, oo) for a E (0, 1); 

iii) every solution of the second order impulsive differential equation 

{ 

z" (t) + >.q (t) ( t~u ) 13 
zl3 (t) = 0 

6.z' (tk) + AQk ('kt~u) 13 
z13 (tk) = 0 

(276) 

is oscillatory, where 0 < >. < 1 is a constant. Then every solution of equation 

(273) is oscillatory. 

Proof: Without loss of generality, let us assume by contradiction that y(t) is a 

finally positive solution of equation (273) and define 

Z ( t) = y ( t) - p ya (t - 7) . (277) 
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From equation (273) , we know that z" (t) :5 0. If z' (t) < 0 finally, then 

lim z (t) en = oo. Thus, lim y (t) = oo and there exists a sequence {{n} such 
t-+oo t-+oo 

that lim {n = oo and y ({n) = max y (t) -7 oo 
n4oo to$t9,. 

as n -7 oo. Hence, 

is a contradiction. Therefore, z' (t) > 0. If z (t) < 0, then z (t) > - pya (t - T). 

Then 

( 
z(t))~ y(t-T) > -p (278) 

Substituting condition (278) into equation (273), we have 

{ 

Z 11 (t) - q (t) (z(t-(;-r)))fl/a :5 0, t rt S 

~z' (tk - Qk) (z(tk-1u-T)))'
81

a :5 0, V tk ES. 
(279) 

As in the proof of Theorem 3.10, inequality (279) cannot have a finally negative 

solution under the given assumptions. This contradiction shows that z (t) > 0. 

By equation (133) of the proof of Theorem 3.13, for each h E (0, 1), there is a 

th ~ to such that 

t-a 
z (t - a)~ h-t-z (t), for t ~th. (280) 

Substituting inequality (280) into equation (273), we have 

{ 

Z
11 (t) + hfl e~u)fJ QkZfJ (t) :5 0, t rt S 

~z' (tk) + hfl Ckt:u)fJ QkZfJ (tk) :5 0, V tk ES 
(281) 

which implies that equation (276) has a non-oscillatory solution, contradicting the 



151 

assumptions of condition (iii). This completes the proof of Theorem 4.21. 

Now we consider the unstable type of equation (273). For the sake of 

convenience, we write Q (t) = -q (t) ~ 0, t ~to. 

Theorem 4.22. Assume that 

i) p, T, a > 0, Qk ~ 0, and {3 E (0, 1], Q (t) ~ 0, t ~to; 

ii) the inequality 

lim sup [rt (s - (t - a)) Q (s) ds 
t-+oo lt-u 

+ t-u~,<t (tk - (t - a)) Qk] > 1. (282) 

holds. 

Then every bounded solution of equation (273) is oscillatory. 

Proof: Let us assume, by contradiction, that y(t) is a finally positive solution of 

equation (273). Then, z" (t) ~ 0. By the boundedness of z, we have z' (t) < 0 

finally. If z(t) > 0 finally, integrating equation (273) twice, we have 

z' ( t) 'Y - z ( t) + z ( t - a) = [~u 1t Q ( u) yP ( u - a) duds 

+ 2: 2: Qky13 (tk - a) 
t-u$tk <t s$tk<t 

= lt [u - (t - a)] Q (u) yP (u = a) du+ L [tk - (t - a)] QkyfJ (tk - a) 
t-u t-u9k <t 

~ zP (t - a) [l~u [u - (t - a)] Q (u) du+ L [tk - (t - <J)] Qkl . (283) 
t-u$tk<t 

It is immediately seen that lim z (t) = 0. Hence there exists a T > t0 such that 
t-+oo -
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z (t - e7) < 1, fort ~ T. Thus, statement (283) leads to 

z (t)+z (t - a) [{. [u - (t - er)] Q (u) du+ t-a~.<t [t• - (t - cr)J Q. - 1] ~ 0 

which contradicts condition (282). 

If z (t) < 0, then z (t) s -d < 0 for some d > 0. Hence -py0 (t - T) S -d, or 

y0 (t - T) ~ ~ > 0. From equation (273), we get 

(284) 

We note from condition (282) that 

(285) 

Hence inequality (284) implies that lim z (t) = oo, which is a contradiction. This 
t--+oo 

completes the proof of Theorem 4.22. 

Theorem 4.23. Assume that 

i} p, T > 0, C7 ~ 0, a~ 1, (3 > 0, Qk ~ 0, Q (t) ~ 0, t ~ t0 ; 

ii} There exists a constant >. > 0 such that 

ap exp {>.aT + >.t (1- a)}~ L < 1 (286) 

and 

p exp { >. a T + >. t ( 1 - €)} + 100 

( s - t) Q ( t) exp { >. ( t - ,B ( s - C7))} ds 

+ I: (tk - t) Qk x 

x exp{>. (t - (3 (tk - e7))} ~ 1 (287) 

hold finally. Then equation (273) has a positive solution y(t) which converges to 
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We introduce the following conditions: 

H4.7.1: TE C ([t0 , oo), R), Tis a non-decreasing function in R+, T (t) ~ t for 

t ER+ and lim T (t) = +oo; 
t-+too 

H4.7.2: r E PC1 ([t0 , oo), R+) and r (t) > 0, r (tt) > 0, fort , tk ER+; 

H4.7.3: q E PC ([t0 , oo), R+) and Qk ~ 0, k EN; 

H4. 7.4: fooo r~) = 00. 

Theorem 4.24. Assume that 

(289) 

Then every solution of equation (288) is oscillatory. 

Proof: Let us assume, by contradiction, that y(t) is a finally positive solution of 

equation (288) . It is easy to show that r (t) y' (t) > 0 for t ~ T ~ t0 . Then 

(290) 

which contradicts equation (289). This completes the proof of Theorem 4.24. 

In what follows, we want to derive some oscillation criteria for equation (288) 

when 

(291) 

Lemma 4.8. Let y (t) > 0, t ~ti, be a solution of equation (288). Set 

(t) 
= r (t) y' (t) 

w y (t) . (292) 
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Integrating equation (295) from t to T for T ~ t ~ ti. we have 

1
T w2 

( s) w2 
( t ) 1T 

w (T) - w ( t) + -( -) ds + L ( ) + q ( s) x 
t r s t<t <T r tk t 

- k 

(1r(s) w (u)d '"°"' w (tk) ) d xexp --u+ ~ -- s 
s r (u) s$tk<r(s) r (tk) 

(296) 

Because r (t) y' (t) > 0, so w (t) > 0. We shall show that lim w (t) = 0. In fact, 
t-+oo 

if tlim r (t) y' (t) = c > 0, then there exists a t2 ~ t1 such that for t ~ t2 , 
-+oo 

y (t) ~ [y (t2) + rt 
2 

c( )ds + I: 
2 

~ )] -+ oo, t--+ oo, 
lt2 r s t <t <r r tk 2_ k 

and hence, lim w (t) = 0. If lim r (t) y' (t) = 0, then lim w (t) = 0 also. Letting 
t-+oo t-+oo t-+oo 

T --+ oo, in equation (296), we obtain condition (294). This completes the proof 

of Lemma 4.8. 

Lemma 4.9. Equation (288) has a non-oscillatory solution if and only if there 

existti a positive differential function ¢ (t) such that 

¢' (t) + ¢
2 

(t) ~ -q (t) exp ( r(t) w (s) ds + I: w (tk) ) , t ~ t2. (297) 
r(t) it r(s) t$ti.<r(s) r(tk) 

Proof: The necessity follows from Lemma 4.8. Now we assume that inequality 

(297) holds. Then, ¢' (t) < 0 and hence lim ¢ (t) = -oo, a contradiction. 
t-+oo 

Therefore, lim ¢ (t) = 0. Integrating inequality (297) from t to oo, we obtain 
t-+oo 
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which implies that 

and 

For all functions x(t) satisfying 0 ~ x (t) ~ </> (t), t '2: t2, define a mapping J by 

100 x2 (s) x
2 

(t ) 100 

( J x) ( t) = -( ) ds + L: ( /) + q ( s) x 
t r s t~t.i.<oo r k t 

(1T(s) x (u) d "°' X (tk)) d 
xexp -u+ i.J - s 

11 r (u) s9.i.<r(s) r (tk) 

(1r(s) x (u) X (tk)) 
+ L Qkexp -( )du+ L -(-) , t ~ t2· 

t$t.1:<00 s r u s~tk<T(s) T tk 

If is easy to see that 0 ~ x1(t) ~ x2 (t), t ~ t2 , implies (Jx1 ) (t) ~ 

(Jx2)(t) , t ~ t2. 

Define Yo(t) = 0 and Yn(t) = (JYn-1) (t) , n = 1, 2, · · · . Then Yn-l (t) ~ 

Yn (t) ~ <P (t), n = 1, 2, · · · , and J~ Yn (t) = w (t) ~ ¢ (t) . By the Lebesgue 
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Dominated Convergence theorem, we have 

w (t) = roo w2 (s) ds + I: w2 (tk) + 10() q (s) x 
lt r(s) t<tk<oo r(h) 

Set 

Then 

and 

- (1T(s)w(u) '°"' w(tk))d 
x exp --dtt + L..J ( ) s 

s r (u) s9k<T(s) r tk 

(1T(s) w (u) d '°"' W (tk)) t > t . + L Qk exp -- u + L..J ( ) , - 2 
s r (u) s<tk<T(s) r tk 

t9k<oo -

() 
r(t)y'(t) 

w t = y (t) 

{ 

(r(t)y'(t))' + q(t)y(T(t)) = 0, t ~ t2, t ~ S 

~(r(tk)y'(tk)) + qky(T(tk)) = 0, tk ~ t2, \I tk E S, 

That is, y(t) is a non-oscillatory solution of equation (288). This completes the 

proof of Lemma 4.9. 

Theorem 4.25. If equation (288) has a non-oscillatory solution, then the second 

order linear impulsive differential equation 

{ 

(r(t)y'(t))' + q(t)y(t) = 0, t rt S 

~(r(tk)y'(tk)) + Qky(tk) = 0, \I tk E S 
(299) 

is non-oscillatory. Conversely, if equation (299) is oscillatory, then every solution 

of equation (288) is oscillatory. 
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Proof: Assume that equation (288) has a non-oscillatory solution. By Lemma 

4.9, there exists a positive differential function </> ( t) such that 

</>' (t) + </>
2 

(t) ~ -q (t) exp (1r(t ) </> (u) du+ L </> (tk)) , t ~ t2 , (300) 
T (t) t T (u) l9,1<<r(t) T (tk) 

which implies that 

</>' (t) + ~
2 

(~~) ~ -q (t). (301) 

Taking advantage of Lemma 4.9 for the case in which h (t) = t, equation (299) is 

non-oscillatory. 

Consequently, the second part of the theorem is immediately obtained. This 

completes the proof of Theorem 4.25. 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

Although this research project focuses on the oscillations of neutral impulsive 

differential equations, we never lost sight of the fundamental problem of the theory 

of oscillations in our discussion. We recall that these problems include, but are not 

limited to, proving the existence of, and, where possible, the actual determination 

of oscillatory motions that are solutions of a given impulsive differential equation, 

and the study of the behaviour of the other solutions in relation to the given 

oscillations. To effectively handle this, we made a distinction between the theory 

of linear oscillations and that of nonlinear oscillations/non-oscillalion. 

In the theory of nonlinear oscillations, we considered the general nonlinear 

neutral delay impulsive differential equation of the form: 

{ 

[y(t) - py(t - T)j" + q(t)j(y(t - a(t)) = 0, t ft S 

~[y(tk) - py(tk - T)j' + qkfk(y(tk - a(tk)) = 0, \I tk ES 

under the following assumptions: 

H5.1.1: p, T and qk are positive numbers, V k E Z; 

H5.1.2: q. a E C(R+, R+), t~~ (t - a (t)) = oo, a (t) > T; 

H5.1.3: f EC (R. R) , f is increasing and f( -y) = - f (y); 

H5.1.4: f (y · x) ~ f (y) f (x) when y · x > 0, f (oo) = oo; 

H5.1.5: fk (y · x) ~ fk (y) fk (x) when y · x > 0. fk(oo) = oo, V k E Z. 

H5.1.6: lirn [LJ=J. . b..) = oo or lim [M. b..) = 1. 
:z:-+0 J: :r r-+0 .c r 

(302) 

We also considered the generalized form of the second order nonlinear neutral 
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impulsive differential equation 

[y (t) - L~1 Pi (t) y (t - Ti)] 
II 

+ LJ=l fj (t, y (gjl (t)' ... ' y (9jL))) 

= 0, t ~to ER+, t rt S 

6. [y (tk) - L~1 PikY (tk - Ti)] 
I 

+ Ei=1 fjk (tki y (9il (tk), · · · , y (gj1 (tk)))) 

= 0, tk ~to E R+ , V tk ES 

subject to the following conditions: 

162 

(303) 

H5.1.7: Ti> 0, Pik ~ 0, Pi E PC1 ([to, oo), R+), i = 1, 2, · · · , m and there 

exists 8 E (0, 1] such that 

m n 

LPi (t) + LPi ~ 1- 8, t, ~ to ER+; 
i=l j=l 

H5.1.8: 9is E C ([to, oo), R) , t~ 9js (t) - oo, j - 1, 2, n, s -

1, 2, '• • I £; 

H5.1.9: fj E PC ([to, oo) x R'-, R), xifj (t, x11 · · · , xe) > O; xifik (tk, xi· · · , x1) 

> 0 for X1Xi > 0, i = 1, 2, ... ' e, j = 1, 2, ... ' n. Moreover, 

{ 
lh (t, Yi, . . . ' Yt)I ~ lh (t, Xi, ... ' Xt)I 

l/ik (tk, Yi . . . ' Yt) I ~ lfjk (tk, Xi , ... ' Xt)I 

whenever 

lxil ~ IYil and YiXi > 0, i = 1, 2, ... ' e, j = 1, 2, . . . ' n; 

H5.1.10: Set 

m 

x ( t) = y ( t) - L Pi ( t) y ( t - Ti) . 
i=i 

As a major achievement, we were able to establish conditions for the oscillation 
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of all solutions of equation (302). By way of these conditions, the oscillation 

problem for neutral impulsive differential equation(302) was reduced to the same 

problem for the corresponding delay impulsive differential equations and, as the 

case was, to the corresponding impulsive ordinary differential equation. For 

the second order nonlinear neutral differential equation (303), we were able to 

introduce the classification of its non-oscillatory solutions and to establish various 

existence results of non-oscillatory solutions of different types. 

In conclusion, we have observed that every solution of equation (302) oscillates 

if and only if the solutions of the corresponding delay impulsive differential 

equations are oscillatory. 

Finally we discussed and developed certain theorems that helped us to: 

i) Arrive at the conclusion that the solutions of nonlinear impulsive differential 

equations are either all oscillatory or all non-oscillatory; 

ii) Establish some existence results for each kind of non-oscillatory solution of 

equation (303); 

iii) Find the relation between oscillation/non-oscillation and other qualitative 

properties such as boundedness and convergence of solutions to zero; 

iv) Obtain conditions for the oscillation of all solutions of nonlinear equations 

with a forcing term of the form 

[y (t) +PY (t - r)]" + f (t, y (t - u)) = Q (t), 

t 2 to , t rf. S 

!:::.. [y (tk) +PY (tk - r)]' + fk (tki y (tk - u)) = Q (tk), 

tk 2 to, V tk E S. 

subject to the following conditions: 

H5.1.11: p, T > 0 and u 2 O; 

(304) 

H5.1.12: f , fkEC([to ,oo)xR,R), y·J(t,y), y·fk(tk,y)>O, yfO; 
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at the conclusions that every oscillation criterion for the second order impulsive 

differential equation (167) became an oscillation criterion for the second order 

neutral impulsive differential equation (306), and also that, 

for the linear impulsive differential equation (306), solutions are either all 

oscillatory or all non-oscillatory. 

As a mark of achievement, we were able to 

i) Establish the criteria for the existence of oscillation or non-oscillation of all 

solutions. 

ii) Find the relation between oscillation and boundedness of all solutions. 

iii) Obtain conditions such that an impulsive differential equation has an 

oscillatory or non-oscillatory solution with some asymptotic property. 

iv) Establish conditions for oscillation of all bounded solutions of unstable type 

second order linear neutral impulsive differential equation of the form 

{ 

(y ( t) - p y ( t - T) ]" = Q ( t) y (g ( t)) , t '?: to, t tf_ 8 

D. [y (tk) - PY (tk - T)]' = QkY (g (tk)), tk '?:to, 'V tk E S, 
(307) 

where p E R, Qk ?: 0, q E PC ([to , oo), R+), g E C ([t0, oo), R); lim g (t) = 
t--+oo 

oo, T > 0 for the cases p constant and p variable. 

v) Establish conditions for existence of bounded positive solutions of equation 

(307). 

vi) Establish conditions for the existence of asymptotically decaying positive 

solutions of linear equation (307). 

vii) Obtain conditions for oscillation of all solutions of impulsive differential 

equations with advanced argument of the form 

{ 

(r (t) y' (t))
1 

+ q (t) y (T (t)) = 0, t tf_ 8 

D. (r (tk) y' (tk)) + QkY (T (tk)) = 0, 'V tk ES, 
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where 6(r(tk)y'(tk)) - r(tt)y'(tt) - r(tk)Y'(tk) subject to the following 

conditions: 

H5.1.14: TE C ([t0 , oo) , R), Tis a non-decreasing function in R+, T (t) ~ t for 

t ER+ and lim T (t) = +oo. 
t-ttoo 

H 5.1.15: r E PC1 ([t0 , oo), R+) and r (t) > 0, r (tt) > 0, fort, tk ER+· 

H 5.1.16: q E PC ((t0 , oo), R+) and Qk ~ 0, k EN. 

H 5.1.17: J~ r1!> = oo. 

5.2 Suggestions for future work 

Oscillation theory, though very old, is one of the most dynamic areas that has 

attracted investigations on the qualitative properties of differential equations. It 

appears that its source is inexhaustible and more often than not, continues to 

attract considerable interest by researchers. Simultaneously, interesting results 

have been obtained and this can be observed in the study of oscillatory properties 

of differential equations with deviating arguments. 

In the last decade, an intensive investigation into the oscillatory properties of 

various classes of impulsive differential equations has earnestly commenced. The 

oscillation theory for the solution of neutral impulsive differential equations is one 

of the direct consequences of this great effort. However, there still remains a lot 

in this direction for future consideration. These include the following: 

i) the study of the oscillatory nature of solutions of equation (173) when the 

coefficient q(t) oscillates; 

ii) extension of some of the results in chapter 4 to equations where the coefficient 

p(t) is in ranges different from those described therein; 

iii) the extension of results in section 4.2 to equations with positive and negative 

p's and/or equations with positive and negative q's; 
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iv) consideration of the neutral impulsive differential equation 

{ 

[y ( t) + Po y ( t - T) ]" + q ( t) y ( t - a) = 0, t i S 

~ [y (tk) + Po y (tk - T)j' + QkY (tk - a) = 0, \:/ tk E S, 

where TE (0, oo), a E [O, oo), q E PC([to, oo), R+), Qk > 0 and 

i,00 

q( s )ds + L Qk = +oo. 
to to:~Stk 

The verification of whether or not every non-oscillatory solution of this 

equation tends to zero as t -+ +oo constitutes an interesting problem; 

v) consideration of the delay neutral delay impulsive differential equation 

where p E R\{0} , TE (O,oo), a E (0,oo), q E PC((O,oo), J4), Qk > 0 

together with the given restrictions: 

a) -1 :s; p < 0. The condition 

should not be assumed; 

b) p > 0 and a :s; T. 

The study of each of the above cases and also, finding the sufficient conditions for 

the oscillation of all solutions under the indicated restrictions on the function q(t) 

and the delays T and a provide yet another interesting investigation problem. 

The developments in the field of differential equations over the last thirty years, 

particularly in the area of impulsive differential equations, have helped to further 

strengthen the understanding of the potentials of the mathematical sciences in 
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general. There are still vast areas in the new body of knowledge yet untapped. It 

is believed that keeping abreast with the developments in the new area is the only 

way to prevent ourselves from being thrown out overboard. This work is aimed at 

assisting intending researchers in coping with these new developments and what 

is more, providing a new sense of direction to the weary ones. We sincerely hope 

that these goals have been achieved. 
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