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ABSTRACT

Since Sturm’s famous memoir in the 17th century, it is observed that a great
deal of interest has been focused on the behaviour of solutions of ordinary and
delay differential equations in spite of the existence of extensive literature in these
fields. Still more interesting, the theory of impulsive differential equations has
brought in yet another dimension to the whole scenario and has helped to usher
in a new body of knowledge for further considerations. The effects of these
new inputs can be observed in the study of oscillatory properties of impulsive
differential equations with deviating arguments as well as the investigation of
neutral impulsive differential equations which have recently captured the attention
of many applied mathematicians as well as other scientists around the world. This
work considers second order neutral delay impulsive differential equations and
investigates the oscillatory properties and asymptotic behaviour of its solutions.
Here, we demonstrate how well known mathematical techniques and methods can
be extended in the prove of theorems for the oscillation and non-oscillation of
all solutions of linear and nonlinear neutral differential equations with constant
and variable coefficients and retarded arguments, prove of theorems for the
oscillation and non-oscillation of bounded solutions of unstable type neutral delay
impulsive differential equations with constant and variable coefficients, prove of
the existence of positive solutions for stable and unstable type neutral delay
impulsive differential equations, prove of theorems for the oscillation of all solutions
of impulsive differential equations with advanced arguments and classification
of non-oscillatory solutions of the generalized form of non-linear neutral delay
impulsive differential equations. all within the framework of impulsive differential
equations.

Word count = 271
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CHAPTER ONE

GENERAL INTRODUCTION

1.1 Introduction

Oscillation theory of the solutions of differential equations is one of the
traditional trends in the qualitative theory of differential equations. Its essence
is to establish conditions for existence of oscillating (non-oscillating) solutions, to
study the maxima and minima of the solutions, to obtain estimates of the distance
between the neighbouring zeros and the number of zeros in a given interval, to
describe the relationship between the oscillatory and other basic properties of the
solutions of various classes of differential equations, etc.

The development of oscillation theory for ordinary differential equations dates
back to the 1840s when the classical work of Sturm (1836) appeared. In the
said work, the theorems of oscillation and comparison of the solutions of second
order linear homogeneous ordinary differential equations were proved. The first
oscillation results for differential equations with a translated argument were
obtained by Fite (1921). He paid attention to the great differences between the
oscillatory properties of the solutions of differential equations with a translated
argument and of the corresponding equations without a translation of the
argument.

Differential equations of neutral type, to whose aspect the present research
work is devoted, play an important role in the theory of functional differential
equations. In recent years, the theory of this class of equations has become an
independent entity. Unfortunately, the number of research results on this subject
continues to be elusive. Neutral equations find numerous a pplications in natural
sciences and technology but, as a rule, they enjoy specific properties w hich make
their study difficult but interesting both in aspects of ideas and techniques.

These difficulties explain the relatively small number of results devoted to the
investigation of the oscillatory properties of the solutions of neutral equations.

Norkin (1977) published a paper concerning the oscillation theory of neutral




)

¥

functional differential equations. The heavy restrictions imposed on it, however,
practically eliminate the influence of the neutral member. The first work in which a
criterion for oscillation of the solutions of neutral equations that proved essentially
different from the classical criteria, was published by Zahariev and Bainov (1980).
Some general approaches to the investigation of the oscillatory and asymptotic
properties of the solutions of the neutral equations were later given by Bainov,
Myshkis and Zahariev (1987, 1989), Myshkis, Bainov and Zahariev (1984), Gyori
(1989) and Ntouyas and Sficas (1983).

The development of the theory of impulsive differential equations is yet another
mile-stone in the history of qualitative theory of differential equations (Bainov,
Dimitrova and Dishliev, 2000; Bainov and Simeonov, 1985; Bainov and Simeonov,
1986; Chen and Feng, 1997;Dishliev and Bainov, 1990; Gurgula, 1982; Krishna,
Vasundlara and Satyavani, 1991; Kulev and Bainov, 1989; Kulev and Bainov,
1991; Lakshmikantham, Bainov and Simeonov, 1989; Lakshmikantham and Liu,
1989; Peng and Ge, 2000; Samoilenko and Perestyuk, 1977; Zabreiko, Bainov and
Kostadinov, 1988; Zhang, Zhao and Yan, 1997; Isaac, Lipscey and Ibok, 2014).
There are many monographs related to this subject (Bainov and Simeonov, 1998;
Samoilenko and Perestyuk, 1995; Agarwal, Benchohra, O'Regan and Ouahab,
2004; Deo and Pandit, 1982), etc. In this direction, credit must be given
to Professor Drumi Bainov, Lakshmikantham and Pavel Simeonov, to mention
just a few, for their contributions in the development of the oscillatory and
non-oscillatory properties for various classes of impulsive differential equations
with delay and with advanced arguments.

It is worthy to note here that the theory of impulsive differential equations
in general, and that of impulsive neutral differential equations in particular, were
first brought into the Department of Mathematics, University of Calabar, by Isaac
(2008) while presenting his Ph.D. dissertation.

The pioneering efforts of Isaac and Lipcsey over here in identifying some

of the essential oscillatory and non-oscillatory conditions of neutral impulsive
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differential equations of the first order is also worth commending (Oscillations
in Systems of Neutral Impulsive Differential Equations, Isaac and Lipcsey,
2009d; Oscillations in Non-Autonomous Neutral Impulsive Differential Equations
with Several Delays, Isaac and Lipcsey, 2009c; Linearized Oscillations in
Nonlinear Neutral Delay Impulsive Differential Equations, Isaac and Lipcsey,
2009a;Oscillations in Neutral Impulsive Logistic Differential Equations, Isaac
and Lipcsey, 2009b; Oscillations in Neutral Impulsive Differential Equations
with Variable Coefficients, Isaac and Lipcsey, 2010b; Oscillations in Linear
Neutral Delay Impulsive Differential Equations with Constant Coefficients, Isaac
and Lipcsey, 2010a; Nonoscillatory and Oscillatory Criteria for First Order
Nonlinear Neutral Impulsive Differential Equations, Isaac, Lipcsey and Ibok,
2011a; Oscillatory Conditions on Both Directions for a Nonlinear Impulsive
Differential Equation with Deviating Arguments, Isaac, Lipcsey and Ibok, 2011b;
Linearized Oscillations in Autonomous Delay Impulsive Differential Equations,
Isaac and Lipcsey, 2007). The results of their subsequent investigations reveal
that neutral impulsive differential equations are dependable tools, not only in
applied mathematics, but also in science in general. For example, in the present
drive to improve information and computer technology (ICT), neutral impulsive
differential equations remain at the center stage. Indeed, neutral impulsive
differential equations appear in networks containing lossless transmission lines
(as in high-speed computers where the lossless transmission lines are used to
interconnect switching). They are involved in the study of vibrating masses
attached to an elastic bar, and also as Euler equation in some problems of variation
(Gyori and Ladas, 1991).Therefore, through the study of oscillations of neutral
impulsive differential equations, one gets deeper insight into the dynamics of
solutions to equations modelling applied problems in engineering, technology and
natural sciences.

There is no doubt that this study will further improve upon the existing results

in view of its role and timing of the oscillatory and asymptotic properties of neutral




)

impulsive differential equations of the second order.
At this point we define a general second order neutral delay impulsive

differential equation as follows:

[w(®) +p)y(t — )" +q(t)y(t —0) =0, t#ty
A [y(tk) +pky(tk - ‘T)]’ + qky(tk —o)=0, t=1t 1 < k< oo

This is an equation with the impulsive conditions in which the second order
derivative of the unknown function appears in the equation, both with and
without delay. It is worth mentioning here that our aim is not to find the
unknown function or solution y(t), but to determine its nature and behaviour in

oscillatory sense.

1.2 Basic definitions

Let E be our set of subscripts which can be the set of natural numbers N or
the set of integers Z. Except otherwise stated, we will assume that the elements

of the sequence S := {t;}xcr are the moments of impulsive effects and satisfy the

following properties:
H1.2.1: If ¢; is defined ¥V k£ € IN then 0 < tr < trs1, Yk € N and kh'm t = 00;
—+00
H1.2.2: If t; is defined V k € Z then ¢, < tk+1, Yk € Z and kh&l t = %o0.
4 o0

Definition 1.1. The differential equation

y™(t) = f(t,y(2), ¥'(t), " (t), .. ¥ V() t¢ S

(1)
Ay(“_l)(tk) = fk(y(tk).y"(tk), .-.,y‘“"’(tk)L i €5,

where

Ay(te) = y(tx +0) — y(tx — 0)
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and
y(te +0) = Eli{‘noy(tk +¢) and y(tx — 0) = eh}noy(tk +€)

is called an n** order impulsive differential equation.

Definition 1.2. The function y(t) is said to be the solution of equation (1) in the

interval J = (o, 8) C R if

i) the function y(t) admits n* order derivative y™(t) and satisfies the equation
Y™ () = fty(@), ¥'(t), ¥ (1), ...y V(t)) for t € J, t ¢ S;

ii) the functions y(¢) and ¥/(t), ..., ¥~V (t) satisfy the relations
v () -y = fely(t), ¥ (8), ' (8, - v R (),

Y(tF) =y ({tx), 0<j<n-—1 for e JNS.

Usually, the solution y(t) for t € J, t ¢ S of the impulsive differential
equation or its first derivative 3/(t) is a piece-wise continuous function with points
of discontinuity tx, tx € JNS. Therefore, in order to simplify the statements of
the assertions, we introduce the set of functions PC' and PC" which are defined
as follows:

Let r € N, D := [T,00) C R and let the set S be fixed. We denote by
PC(D, R) the set of all values ¥ : D — R which is continuous for all t € D, t ¢
S. They are functions from the left and have discontinuity of the first kind at
the points for t € S. By PC"(D,R), we denote the set of functions ¢ : D —
R having derivative ZJT? € PC(D,R), 0 < j < r. To specify the points of
discontinuity of functions belonging to PC and PC", we shall sometimes use the

symbols PC(D, R; S) and PC"(D,R;S), r € N.
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1.3 Scope and objectives of the study

Whereas Isaac’s work (2008) focused on first order neutral impulsive
differential equations, the present investigation is deeply concerned with the second
order neutral delay impulsive differential equations and is intended to investigate
the oscillatory properties and asymptotic behaviour of their solutions. The reason
for the choice of this topic is that the area presently attracts very little attention,
and as such, very few results are known. Also, one of Isaac’s recommendations was
the extension of his oscillation results to second and higher order neutral delay
impulsive differential equations. In view of these, we systematically present the
results and demonstrate how well known mathematical techniques and methods

can be extended in the

i) Prove of theorems for the oscillation of all solutions of linear neutral impulsive
differential equations with constant and variable coefficients and retarded

arguments;

ii) Prove of theorems for the oscillation of all solutions of nonlinear neutral
impulsive differential equations with constant and variable coefficients and

retarded arguments;

iii) Prove of theorems for the oscillation and non-oscillation of bounded solutions
of unstable type neutral delay impulsive differential equations with constant

and variable coefficients;

iv) Prove of theorems for the existence of positive solutions for stable and unstable

type neutral delay impulsive differential equations;

v) Classification of non-oscillatory solutions of the generalized form of non-linear

neutral delay impulsive differential equations.

vi) Prove of theorems for the oscillation of all solutions of neutral delay impulsive

differential equations with nonlinear neutral term;
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vii) Prove of theorems for the oscillation of all solutions of neutral delay impulsive

differential equations with a forcing term;

viii) Prove of theorems for the oscillation of all solutions of neutral impulsive

differential equations with advanced arguments;

within the framework of impulsive differential equations. Applications will be

considered in those cases where they are possible and needed to drive home the

understanding of the expected results.
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CHAPTER TWO

LITERATURE REVIEW

In this chapter, we present a review of literature on various studies carried
out in the fields of related disciplines, namely, t he oscillation t heory for ordinary
differential equations with delay and the oscillation theory of neutral ordinary

differential equations.

2.1 Introduction

In chapter one, we remarked that since Sturm’s famous memoir in 1836,
oscillation theory has become an important area of research in the qualitative
theory of ordinary differential equations (Angelova and Bainov, 1981, 1982a,b;
Brands, 1978; Burkowski, 1971; Burton and Haddock, 1976; Chen, 1977, 1978;
Foster and Grimmer, 1979; Garner, 1975; Graef, 1983; Grammatikopoulos, 197T;
Hino, 1974; Isaac, 2008; Ivanov and Shevelo, 1981; Kartsatos and Manougian,
1976; Kung, 1971; Lillo, 1969; Lim, 1976; Liossatos, 1970; Onose, 1982; Graef,
Katamura, Kusano and Spikes, 1979).

Oscillation theory of ordinary differential equations with delay is a natural
extension of oscillation theory of ordinary differeﬁtial equations, being that
some results from oscillation theory of ordinary differential equations carry
over to the said differential equations with delay. By this, some fundamental
knowledge in oscillation theory for ordinary differential equations is essential for
an understanding of the oscillation theory of ordinary differential equations with

delay.

Some facts about ordinary differential equations are now presented here.




2.2 Definitions of oscillation

There are various definitions of the oscillation of solutions of ordinary
differential equations (with or without delay). Here, we shall list some definitions
used most extensively in this context and which are similar to those most
frequently used in literature.

To achieve our goal, we shall restrict our discussion to those solutions y(t) of

the equation

y'(t) +a(t)y(t — 7(t)) =0 2)

which exist on some interval [T}, o0), T}, > 0 and satisfy sup {|y(t)|:t>T} >0
for every T > T,. In other words, |y(t)| # 0 on any unbounded interval [T, c0).
Such a solution sometimes is said to be a regular solution.

We shall assume that a(t) > 0 or a(¢) < 0 in equation (2), and in doing so

we imply that a(t) # 0 on any unbounded interval [T}, 00).

Definition 2.1. A nontrivial solution y(t) (implying a regular solution always)
is said to be oscillatory if and only if it has arbitrary large zeros for ¢t > ty,
that is, there exist a sequence of zeros {t,}32, [y(t,) = 0] of y(t) such that

n=1

lim t, = 400, otherwise y(t) is said to be non-oscillatory (Isaac, 2008).

For non-oscillatory solutions there exist a ¢; such that y(t) # 0, for all ¢t >
t;. This means that throughout the range, y(¢) must be eventually positive or
eventually negative. That is, y(t) is positive for all ¢ > t; or is negative for all

t2>1t.

Definition 2.2. A nontrivial solution y(t) is said to be oscillatory if it changes

sign on (7', 00), where T is any number (Isaac, 2008).

Notice that when 7(tf) = 0 and a(t) is continuous in equation (2), the
two definitions are equivalent. However, for higher order equations where the

possibility of multiple zeros of non-trivial solutions is likely, it becomes increasingly
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difficult to sustain this balance. The above definitions can be extended to include
systems of equations with delays. Let us see how this is demonstrated in the case
of two-dimensional first order systems.

Consider the first order system of equations with deviating arguments

2'(t) = fi(t, z(t), z(na (1)), y(t), y(72(2)))
Y(t) = folt, z(t), z(na(2)), y(D), y(7(2))).

(3)

The solution (z(t), y(t)) is said to be strongly oscillatory if each of its components

is oscillatory and weakly oscillatory if at least one of its components is oscillatory.

2.3 Oscillation theory for ordinary differential equations

As mentioned earlier, we shall recall only those facts concerning oscillation
theory of ordinary differential equations that will be useful in our discussion.

We consider a second order linear ordinary differential equation
y'(t) +a(t)y(t) = 0. (4)

Sturm’s comparison theorem for equation (4) is very important in oscillation
theory (Leighton, 1981). Using this comparison theorem, it is easy to draw the

following conclusions:

i) For the linear ordinary differential equation (4), solutions are either all
oscillatory or all non-oscillatory. Equation (4) is said to be oscillatory if

every solution of it is oscillatory and it is said to be non-oscillatory otherwise.

ii) We consider another second order linear ordinary differential equation

y"(t) + b(t)y(t) = 0. (5)

If a(t) < b(t) forall t > ¢, and equation (4) is oscillatory, then so is equation

(5). Moreover, from (i), if equation (5) is oscillatory, then so is equation (4)
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(Domshlak, 1982; Grace and Lalli, 1989; Sibgatullin, 1980; True, 1975).

Using Sturm’s comparison theorem, we can obtain the oscillatory property
of an ordinary differential equation from some other ordinary differential
equation with known oscillatory behaviour. In fact, many good oscillatory

criteria have been obtained from Sturm’s comparison theorem.

iii) Assume that a(t) < 0, then equation (4) is non-oscillatory. This follows from

(ii).

The comparison method is one of the important methods in oscillatory theory
of second order linear ordinary differential equations (Barrett, 1969; Swanson,
1968; Willet, 1969). There is much literature on the extension of the comparison
method to nonlinear and higher order differential equations. Most relevant among
them include studies by Atkinson (1955), Butler (1979), Macki and Wong (1968),
Wong (1968), Wong (1975), Philos (1984) and Isaac (2008).

Now we consider a second order non-linear ordinary differential equation

y"(t) +a(t)f(y(t)) = 0. (6)

The interest in nonlinear oscillation problems for equations of this type began
with the publication of the pioneering work by (Atkinson, 1955). We would like
to point out that the nonlinearity of equation (6) may generate both oscillatory
and non-oscillatory solutions (Liossatos, 1970; Lovelady, 1975; Macki and Wong,
1968; Yan, 1983; Yeh, 1980; Yoshizawa, 1970; Zhang, 1980; Zhang, Ding, Feng,
Wu and Wang, 1982 ).

A special case of equation (6) is represented as

y'(t) + a(t)y*(t) = 0. (7)

Equation (7) is said to be superlinear if @ > 1 and sublinear if @ < 1.

(Ladde, Lakshmikantham and Zhang, 1987; Burkowski, 1971). We usually need
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to distinguish between these cases in our study because of the difference in the
type of results that are known (Isaac, 2008; Kusano and Onose, 1974; Kusauo and
Onose, 1973; Sficas and Stavroulakis, 1987;Graef, Grammatikopoulos and Spikes,
1980 ; Grammatikopoulos, Sficas and Staikos, 1979 )

For instance, consider the equation

V' (t) + a(t) ly(t)|* sgny(t) = 0, (8)

where a(t) € C(R4) and a(t) > 0. Then, for o # 1 (superlinear), equation (7)

is oscillatory if and only if }osa(s)ds = 00.
0

2.4 Second order linear differential equations with delay

Mathematical modeling of several real-world problems leads to differential
equations that depend on the past history rather than only the current state.
The models may have discrete time lags or delays.

In recent years, there has been much research activity concerning the oscillation
of solutions of delay differential equations and, to a large extent, this is due to
the realization that delay differential equations are important in applications.
New applications which involve delay differential equations continue to arise with
increasing frequency in the modeling of diverse phenomena in physics, biology,
ecology and physiology.

Much of the work in the theory of oscillations center on second order or
higher order ordinary differential equations, but in this section, we'll be looking at
second order linear differential equations with delay. The oscillatory behaviour of
functional differential equations with delay has been the subject of intense study in
the last three decades (Dosly and Rehak, 2005; Gyori and Ladas, 1991; Agarwal,
Grace and O’Regan, 2002 )

The oscillatory behaviour of a functional differential equation with delay and

of the associated ordinary differential equation are not always the same. Indeed,
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the delay differential equation

y'(t)+y(t—m) =0

admits sint and cost as oscillatory solutions. On the other hand, the associated

ordinary differential equation

y'(t) —y(t) =0

has the non-oscillatory solutions et and e'. Conversely, we see that the delay

differential equation

has a non-oscillatory solution y(t) = v/¢, while the associated ordinary differential
equation y”(t) — 5;y(t) = 0 admits ¢cos Int and ¢sinInt as oscillatory solutions.
Such a change in the oscillatory behaviour of a differential equation is obviously
generated or disrupted by the delay, and so the study of oscillatory solutions of
differential equations with delay is very important in applications. As an example,
oscillations caused by delays should be seriously taken into account in studying the
motion of a controlled craft moving with increasing velocities, where it is possible
to have a sudden release of oscillations leading to instability (Minorsky, 1962).
In this section, we attempt to uncover relevant literatures and as well present
the state of the art in this rapidly growing area. We shall begin with second order
linear ordinary differential equations with delay and proceed to the non-linear
equivalent of it exposing, where possible, the various techniques of extracting the

oscillatory properties of the solutions.
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2.4.1 Classification of solutions of linear equations

Consider the second order linear differential equation with delay in the general

form

f(t’ y(t): y'(t), y”(t)! y[t = T(t)]v y![t = T(t)]s y”[t - T(t)]) =0, (9)

where 7(¢) > 0. Let to be the given initial point. The delay 7(t) defines the initial

set Ey, given by
E,, = {to}|J{t — 7(t) < t for t > to}.

On E,, we shall assume that continuous functions ¢x(t), k& = 0,1 are given.
Furthermore, for equation (9), we shall assume that the initial values y.* (t), k=
0,1 are known, and ¢g(tp) = y((,o). Also, for equation (9), the basic initial value
problem consist of finding a continuously differentiable function y that satisfies it

for ¢ > ty and conditions
y®(te+0) =3, k=0,1
and
y B[t — 7(t)] = @elt — 7(t)] if t —7(t) < to, k=0,1.

In oscillation theory, we study solutions which are defined on an half open
interval [tg,00). Therefore, we are interested only in those equations for which
global existence theorems can be established.

A non-trivial solution y(t) of equation (9) is said to be oscillatory if it has
arbitrarily large zeros. Otherwise, y(t) is said to be non-oscillatory, i.e., y(t) is
non-oscillatory if there exist a t; > to such that y(t) # 0 for ¢t > ¢,. In other words,

a non-oscillatory solution must be eventually positive or negative. Equation (9)
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itself is said to be oscillatory if all its solutions are oscillatory (Agarwal, Grace
and O'Regan, 2003).
In this section, we extend the results of Norkin (1972) in the classification of

solutions of initial value problems of the type
(r(®)y' (1)) = p(t)y(g(t)), (10)

where p(t), g(t), r(t) € C(R4+,Ry), g(t) <t, r(t) >0 and g(t) is the general
delay function.

Initial conditions are given as follows:

y(s) = p(s) for s € By, y(to) =0, ¥'(to) = o,

where
Ey = {to} U{g(t) <to, t>t}, € C(Ey).

Definition 2.3. Let S denote the set of all solutions of equation (10). We define
the following subsets of S :

St®={ye8: lim y(t) = oo},

S ={ye$: Jimy(t) = oo},

§*={y € 5:0< limy(t) < oo},
S*={ye8:-0< tl_i)rgy(t) < 0},

§°={ye S:y(t)#0and tl_iglo y(t) = 0 monotonically },
S~ ={y € S :y(t) is oscillatory }.

We now present some sufficient conditions for the qualitative behaviour of the
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solutions of equation (10). We begin by considering the following lemma:

Lemma 2.1. Assume that

i) p>0, r > 0 are continuous;

ii) g € C(R+, R4), g(t) is non-decreasing, g(t) <t and tliglo g(t) = oo;
iii) tliglot{t & = co.

Then it can be shown that
i) ¢(t) 20 on E; and yy >0 imply y(t,¢,v;) € S*;
i) p(t) <0 on Ey, and y5 <0 imply y(t,¢,yp) € S~

Again, let conditions (i) and (ii) of Lemma 2.1 be satisfied and further assume

that
J(B(®) - R(s))p(s)ds = oo,
where R(t) = t{t —T%:—),

then, it is readily seen that
i) p(t) >0 on E,, ¢(t)#0 and y, >0 imply y € ST

ii) p(t) < 0 on Ey, ¢(t)#20 and y; < 0 imply y € S (Ladde,
Lakshmikantham and Zhang, 1987).

A very strong condition ensuring the correctness of the above statement is the fact

that

Note that here we have imposed the continuity condition on g(t), r(t) and p(t),

where g¢(t) is further restricted to be non-decreasing.
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Now, assuming that Lemma 2.1 holds and assuming that
fR(s)p(s)ds = o4,
0

it can also be seen that every solution of equation (9) belongs to either S° or S™.
In a related development, Professor Agarwal observed something similar. He

considered the second order linear delay differential equation

V) +pyt—n)+py(t — )+ qy(t —o1) + ¢y (t —o2) =0, (11)

where the coefficients py, p2, ¢, ¢2 and the delays 7, 7, o1, o0 are

non-negative numbers. The characteristic equation of equation (11)is
F(A) = A +pide™™ 4+ pade™™ + q1e™ " + goe™? = 0. (12)

The oscillatory behaviour of solutions of equation (11) depends on the location of
the roots of equation (12). In fact, the following theorem provides necessary and

sufficient condition for the oscillation of equation (11).
Theorem 2.1. The following statements are equivalent:
i) Ewvery solution of equation (11) is oscillatory.
it) The characteristic equation (12) has no real roots (Agarwal et al., 2003).

2.4.2 Existence of bounded oscillatory solutions

The methods of ordinary differential equations are adapted to delay differential
equations to obtain oscillation and non-oscillation criteria for linear delay
differential equations which are similar to known criteria for ordinary differential
equations (Bradley, 1970; G., 1971; Gollwitzer, 1969; Odaric and Sevelo, 1971;
Sevelo and Odaric, 1968; Shere, 1973; Staikos, 1970; Staikos and Petsoulas, 1970;
Travis, 1972; Waltman, 1968). In particular, the second order linear delay
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differential equation

y'(t) +q(t)y(g(t)) =0

with ¢(t) > 0, g(t) < t, lim g(t) = oo has been investigated by a number
of authors (Bradley, 1970; G., 1971; Gollwitzer, 1969; Odaric and Sevelo, 1971;
Sevelo and Odaric, 1968; Shere, 1973; Staikos, 1970; Staikos and Petsoulas, 1970;
Travis, 1972; Waltman, 1968).

In the study of oscillation and non-oscillation of differential equations the

restriction on the solution to be continuous is required. Consider the equation

y'(t) —y() =0 (13)

As we know, equation (13) has no oscillatory solution. On the other hand, consider

the same equation with delay m, so that we have
y'(t) —y(t —m) =0. (14)

It is easy to check that y; =sint, y; = cost are oscillatory solutions of equation
(14).

Now, let us consider the general linear equation
Y'(t) —pt)(t—7(t) =0; p(t) 20, t>t>0. (15)

We pose the problem: What conditions guarantee the presence of oscillatory
solutions for equation (15)7 It can be immediately noticed that this problem
has no meaning when 7(t) = 0. Ladde et al. (1987) obtained some sufficient

conditions for every bounded solution to be oscillatory. The following results were

obtained.
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Theorem 2.2. Assume that the hypothesis (i),(ii) and (iii) of Lemma 2.1 are
satisfied. Further assume that

t

fim foup;(lt—)g 4 = gl iplelte s 1. (16)

Then every bounded solution of equation (10) is oscillatory.

Gustafson (1974) verified this by proving a contradiction. The solution y(t) > 0
is assumed unbounded, and on integrating equation (10) by parts from s to ¢
and applying the monotonicity condition of y(t), we arrive at a contradiction to

equation (16); i.e., y(¢) is a bounded oscillatory solution.

Closely related to this are the following results:

Corollary 2.1. If 7 > 0, p(t) > 0 is continuous, and 72p(t) > 2 for ¢t > 0, then

bounded solutions of the equation

y'(t) —p(t)y(t—7) =0

are oscillatory (Ladas and Lakshmikantham, 1974).

Corollary 2.2. If £ > 1, p(¢) > 0 is continuous and

oK
p(t) = s

((1 = K)t)?

for large ¢, then bounded solutions of

are oscillatory.
The results of these two corollaries can be made clearer by considering these

examples:
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Example 2.1. The equation
(39) —4wvE=7=0; t22

satisfies the condition of Theorem 2.2. Therefore, all bounded solutions are

oscillatory. In particular, y(t) = cost® is a bounded oscillatory solution.

Example 2.2. Again, the equation
y'(t) —pt)y(t —m) =0, 0< 7> 2" (17)

does not satisfy the conditions of Theorem 2.2 as expected. Equation (17) has
a bounded non-oscillatory solution. Indeed, the characteristic equation F(A\) =
A2 — ¢7®7 = ( has negative real root ), and hence y(t) = e is a bounded
non-oscillatory solution. Note that if we do not require that f% = 00, but ensure

that 7(t) is non-decreasing and equation (17) is satisfied, then the conclusion of

Theorem 2.2 remains valid.
Now, there exist many relevant interesting conditions for the theory of
oscillation associated with differential equations with several delays. Let us

consider the linear equation with several delays

y'(t) - épi(t)y(gf(t)) o0, (18)

The following result is obtainable.

Theorem 2.3. Assume that

1. pi, gi € C([0,00),R), p>0, i=1, 2, ---, n, and for some index

ig, 1 <dg<m, pip(t) >0 fort>0;
2. gt(t) <t and tli{gogi(t) =00 fOT 4= 1: 21 ERE [

3. There exist a non-empty set of indices K = {ky, ka, -+, ke}, 1<k <
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ky < --- < kg < n, such that fort > to, gi(t) <t and gi(t) >
0 for k€K and

t

lim sup » f k(t) — gr(s)|pe(s)ds > 1,

t—o0
keEK g*(t)

where g*(t) = max gk(t).
Then every bounded solution of equation (18) is oscillatory (Ladas, Ladde and
Papadakis, 1972).

This verification is done by assuming the non-boundedness of the solution y(t)
of equation (16), and without loss of generality we can say that y(¢) > 0. Due to
the condition on g;(t), there exist a t; > tp such that y(gi(t)) >0 for t >t
and for i=1, 2, .-+, n. In view of equation (16), we have that y"(t) > 0
for t > t;. From the boundedness condition on y(t), it can be seen that there
exist a t; > t; such that y'() < 0 for ¢ > t;. From these observations and
knowing that y(t) is concave up and decreasing for ¢ > t,, we finally arrive at a
contradiction to equation (16) which shows that every bounded solution y(t) is
bounded.

One must note that the result of Theorem 2.3 can be extended to a more

general equation of the form

(r(t)y' (t)) Zp;(t)y(gs 0,

where r(t) > 0 and [§° ;75 = .

Now, consider the general second order differential equation

(a®)y' () +p(t)y (t) + c()y(t) + q(t) f(ylg(2)]) = e(t) (19)

under the assumption that

i) ¢, e, p, ¢ € C([to,),R), t >0, f€ C(R,R) and yf(y) >0 for
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Yy #0;
ii) a, g € C*([to,0), Ry), a'(t) >0;
iii) g(t) <t, ¢'(t)20 and lim g(t) = oo;

iv) there exist a number k such that f(y)sgny <k ly| for y#0,and f(y) is

increasing in y.

Agarwal et al. (2003), in their work titled Oscillation Theory of Second order
Dynamic Equations, provided sufficient conditions for all solutions of equation

(19) to be continuous or bounded. The following results are valid.

Theorem 2.4. Let conditions (i)-(iv) of equation (19) hold. Then any non-trivial
solution of equation (19) can be continued indefinitely on R, (Singh, 1980).

Do note that condition (iv) in equation (19)can be replaced by
f)sgny <kly[", 0<y<1

The following result provides a bound on the growth of non-oscillatory solutions
of equation (18).

Lemma 2.2. In addition to conditions (i)—(iv) of equation (19), suppose that

p(t) >0,

c(t) —p'(t) = 0 fort > to, (20)

= p(s)
/ mds < 00,

S

[ le(s)lds < oo (21)
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[ a5 <

and

/oo c(s)ds < oo.

Then all oscillatory solutions of equation (19) are bounded above.
Next, we now use Lemma 2.4 to find a criterion so that all solutions of equation

(19) are non-oscillatory.

Theorem 2.5. In addition to the conditions of Lemma 2.4, suppose that p(t) =0
and [* e(s)ds = oo,

then all solutions of equation (19) are non-oscillatory (Singh, 1977).

This is illustrated by the following example.

Example 2.3. Let us consider the equation
(ety/(t)) + 2e~3*+"y(t — ) = 4cosh2t, t > 0.

It is easy to verify that the conditions of Theorem 2.5 are satisfied. All solutions

of this equation are non-oscillatory. In fact, y(t) = e* is one of such equations.

2.5 Second order nonlinear differential equations with delay

We wish to extend in this section some results of section 2.4.1 to the

nonlinear equation

y'(t) = ft.y(t). y(g(2)) =0 (24)

subject to the following conditions:

i) feC[Ry x Rx R,R] and f(t,u,v) is non-decreasing in u and v for fixed

large t,
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i) f(t,u,v)u>0 if w-v>0,
iii) g€ C[R+ x R], g(t)<t, ¢'(t)>0 and l"l_i_}nmlc’g(t) =
iv) for any constant ¢ # 0, [*° f(s,g(s)c, g(s)c)ds = too.

As a nonlinear delay differential equation in this form, we examine the conditions

for the oscillation of the solutions via the following theorems provided by Ladde

(1972, 1973).

Theorem 2.6. Assume that equation (24) satisfies its conditions (i),(ii), ().
Furthermore, let y(t) be a bounded solution of equation (24), with |y(t)| < B for
large t, and B > 0. Let us assume that there ezist a functionGgz € C[R.., R4| such
that

22Gg(t) < z2f(t,z, 2) (25)

for sgnx = sgnz, x-sgnx < z-sgnz < B, and sufficiently large t. Further

assume that

lim sup f 9(t) — 9(s)] Ga(s)ds > 1. (26)

t—=o0

Then y(t) is oscillatory.

Corollary 2.3. Assume that equation (24) satisfies its conditions (i), (ii), (iii).
Furthermore, assume that for any 8 > 0, there exist a function G € C[R4, R4]
such that inequalities (25) and (26) hold, then every bounded solution of equation
(24) is oscillatory.

A similar result to this is the following:

Corollary 2.4. Consider the equation

y'(t) = pa(t)y(g(t)) — p2(t)y(t) = 0, (27)
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where p,(t), p2(t) > 0 and are continuous on R, and

t

Jim Lo [9(t) — g(s)] pa(s)ds > 1. (28)

Then every bounded solution of (27) is oscillatory.
This can be made clearer to the reader with the following illustration:

Example 2.4. Consider the equation
y'(t) — y(t — m)[(k + 1) + ky™(t — )] — ky(t)[1 +y*"(8)] = O, (29)

where k > 0, for any integer n > 0. For any 8 > 0, Gg(t) = (k + 1) satisfies the
condition (25). Then equation (26) reduces to

f k+1
/(k+1)(t—s)ds=T1r2> 1,

t
and by Theorem 2.6, every bounded solution of equation (29) is oscillatory. In
fact, equation (29) has bounded oscillatory solutions Acost + Bsint, where A

and B are any arbitrary constants.

2.5.1 Nonlinear equations with [;7° ;%% = 0o

We consider the second order nonlinear delay differential equation expressed

in the form

(r®y/ (8)) + f(t. y(), y(g(t), ¥/ (t), ¥/ (h(2)) = 0. (30)

Now, with respect to equation (30), the following results follow the development

of Zhang (1981).

Theorem 2.7. Assume that
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i) the conditions
r € C[R4+,Ry), T(t) >0 for t >1ty, to € Ry, tll}rono R(t) =00 (31)

hold,

where R(t) is defined by R(t) = [° 22 o
i) g,h € C[Ry, Ry, g(t) <t, lim g(t) = o0,

iii) f € C[Ry x R4, R] and uf(t,u,v,w,2) >0 for u-v>0, t=>tg,

iv) there exist a constant B such that 0 < 8 < 1 and

© 1o LB IO VOV O, _
J. #ae Wo®)F e @

for every positive non-decreasing or negative non-increasing function y(t). Then

every solution of equation (30) oscillates.

One must note that the strict inequality in condition (iii) of Theorem 2.7 can
be relaxed. Again, Theorem 2.7 remains valid if the argument g(t) is of mixed

type, that is, it is advanced or retarded for certain values of ¢.

Example 2.5. To understand Theorem 2.7 better, we consider
(ty'(®)) +p(t)ys () (1 + (V1)) = 0, (33)

where p(t) > 0 and [ p(s)ds > 0.
According to Theorem 2.7, if [*(Inlnt)3p(t)dt = oo, then every solution to
equation (30) is oscillatory.

Consequently, in equation (30),if

F(ty(t). y(g(1), ¥ (1), Zps ) [u(g(@®)*™ sgny(g(2)), (34)

=1
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then by Theorem 2.7, we have the following results:

Corollary 2.5. Assume that r(t), g(t) satisfy conditions (i) and (ii) of Theorem
2.7, and p; € C[R4,Ry], 0<aq; <1, i€ I,. Further assume that

j ” R*(g(t))px(t)dt = oo for some k € I, (35)

Then every solution of equation (34) is oscillatory.

Theorem 2.8. Assume that conditions (i), (ii), (i) of Theorem 2.7 hold. Further

assume that there exist a positive number ¢ such that 0 < € < 1 and

* pie gty LEV0: VOOV VO, V(1)

to y(g(t)) i (36)

for every positive non-decreasing or negative non-increasing function y(t). Then

every solution of equation (30) is oscillatory.

Now consider the equation

(rOYO) + 3 p@)y* ((2) = 0. (37)

i=0

The following result is valid.

Corollary 2.6. Assume that r(t) and g(t) satisfy the conditions (i) and (ii) of

Theorem 2.7, and p; € C[R4, Ry] for ¢ € I,,. Furthermore,

| R(g(8) (> pi(t))dt = 00, 0<e< 1. (38)

i=0

Then every solution of equation (37) oscillates.

It is easy to see that equation (37) satisfies the conditions of Theorem 2.8. In
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particular, for n = 0, equation (37) becomes
(r(t)y'(t)) + p(t)y(9(t)) =0 (39)
and condition (38) becomes
/m R™(g(t))p(t)dt =00, 0<e< 1.
We note that ecannot be equal to zero. In fact, this is seen in the equation
o+ pigte ()=

which satisfies the condition [* R(g(t))p(t)dt = oo, but it has a non-oscillatory

el

solution y(t) = t3.

Theorem 2.9. Assume that conditions (i), (ii),(iii) of Theorem 2.7 hold. Further

assume that there is a constant S > 1 such that

f ” Rig(t)~ (&, y(t), y(9(®), ¥ (?). ¥ (h(?))) ,, _

00, 40
to y(g(t))I? o)

for every positive non-decreasing or negative non-increasing function y(t). Then

every solution of equation (30) is oscillatory.

Corollary 2.7. Consider the equation

rOY @Y + 3 ne)y?* (9(2)) = 0. (41)

i=0

Assume that r(t) and g(t) satisfy all conditions of Theorem 2.9,

pi(t) 20, (i=1,2,..,m)
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and

n

7 RO pit)at = oo. (42)

i=1

Then every solution of equation (41) is oscillatory.

We observe that the condition (42) cannot be improved. Equation (41),
including the equation " (t) +p(t)y***'(t) = 0, n > 1, was discussed by Atkinson
(1953), but condition (42) is a necessary and sufficient condition for the oscillation
of Atkinson’s equation.

These illustrations are of importance to help in the understanding of these
concepts.

Example 2.6. Consider the equation

V'(0) + agy(H) =0 (43)

It is well known that every solution of equation (43) oscillates.

Example 2.7. The second equation,
V'(8) + =550 (}) = 0 (49)
4a%t?

has a non-oscillatory solution y(t) = at?, but for the equation

¥'(t) + 558’ (AM) =0, 0< A<, (45)

4a2t?
every solution of equation (45) oscillates (according to Corollary 2.7). These
examples show that the order of the deviating argument g(t) is very important for
the oscillation of the solutions. If g(t) is of the same order as ¢, then we can obtain

a necessary and sufficient condition for the oscillation of a functional differential

equation. The following result is based on the above idea.
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Theorem 2.10. Assume that conditions (i),(ii) and (iii) of Theorem 2.7 hold,
and further assume that tllglo gt)=c, ¢>0, r(t) and r(g(t)) are of the same

order if t — o0, and

[ R LV OL GO, _ )

to ly(g(t))|

for some B > 1 and every positive non-decreasing or negative non-increasing

function y(t). Then every solution of equation (30) is oscillatory.

Theorem 2.11. Consider the equation
(r(®)y' (1)) +p()(¥(t) +y(9(2)))**** = 0. (47)

Assume that p(t) > 0, r(t), g(t) satisfy the conditions of Theorem 2.10. Then,

a necessary and sufficient condition for (47) to be oscillatory is that
f R(t)p(t)dt = oo.

Corollary 2.8. Under the conditions of Theorem 2.11, equation (47) has a

bounded oscillatory solution if and only if

[ Ryt < oo. (48)

Corollary 2.8 gives birth to the following theorem.

Theorem 2.12. Assume that r(t) and g(t) of equation (41) satisfy the conditions
of Theorem 2.10 and p;i(t) > 0, i=1, 2, ---, n. Then a necessary and sufficient
condition for equation (41) to be oscillatory is that

I R(t)(i;ps(t))dt — (49)

Corollary 2.9. Under the conditions of Theorem 2.12, equation (41) has a
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bounded oscillatory solution y(t) if and only if

[ ReYE m(®)it < . (50)
i=1

Now, observe that for the equation

(r(@)y' ()’ + p(t)y()** (g(t)) = 0, (51)

where n is a positive integer, if p(t) > 0, r(t) and g(t) of equation (51) satisfy the
conditions of Theorem 2.12, then a necessary and sufficient condition for equation

(50)to be oscillatory is that

f ” R(t)p(t)dt = 0. (52)

This is an extension of Atkinson’s theorem.

The following results are also known to be valid.

Theorem 2.13. Every solution of equation (30) is oscillatory if and only if
o0
f R(t)p(t)dt = oo. (53)

Corollary 2.10. Under the conditions of Theorem 2.13, equation (30) has a

bounded non-oscillatory solution if and only if
f ~ R(t)p(t)dt < oo.

Theorems 2.4.7 -2.4.13 are quite recent and are the results of Ladde’s work
(Ladde et al., 1987).
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. . h ro0 __4._8_
952 Nonlinear equations with [ &

o ds. < oo relative 1O
In this section, W€ chall discuss the case where [y 7

i i i the equation
equation(SO). For simplicity we shall restrict our discussion to the €q

(54)
iy @) + f ) t) =0

Definition 2.4. Equation (54) is called:

z ¥ . . d
i) Superlinear if, for each fixed t, _ijﬂl is non-decreasing in y for y > 0 an
non-increasing in y for y > 0;
ii) Strongly superlinear if there exist a number o > 1 such that, for each fixed

t,%“'%ls gny is non-decreasing iny fory > 0 and non-increasing in y for y > 0;

i) Sublinear if, for each fixed t, f—(?y—“) is non-increasing in y for y > 0 and

non-decreasing in y for y > 0;

iv) Strongly sublinear if there exist a number 7 < 1 such that, for each

£ !l%’[%‘lsgny is non-increasing in y for y > 0.

Let us look at some important results obtained for equation (54) under the

stated condition.

Lemma 2.5. Assume that

i) 7(t) is positive continuous for ¢t > a and [;° % < OO}
ii) g(t) is continuous for ¢t > a and g(t) < t, tlim g(t) = o0;
=300

iii) f(y,t)is continuous for |y| < oo, t > aandy- f(t,y) fory #0, t > a.

If y(t) is a positive solution of equation (54), then it is bounded above and satisfies

y(t) = —r(t)y' (t)e(t) (55)
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for all sufficiently large t, where p(t) = [ % for all £ > 0.

A follow up to this are the following theorems.

Theorem 2.14. Assume that equation (54) satisfies assumptions (i) to (iii) of
Lemma 2.5 and furthermore that it is either superlinear or sublinear. A necessary
and sufficient condition for equation (54) to have a non-oscillatory solution which

is asymptotic to a non-zero constant is

fm p(t) | f(c,t)| dt < oo for some c # 0. (56)

Theorem 2.15. Assume that equation (54) satisfies assumptions (i) to (iii) of
Lemma 2.5 and furthermore that it is either superlinear or sublinear. A necessary
and sufficient condition for equation (54) to have a non-oscillatory solution which

is asymptotic to a - p(t) as t = oo for a #0 is that
/ ” f(eplg(t)), t)dt < 0o for some c. (57)

Theorem 2.16. Assume that conditions (1),(ii) and (%ii) of Lemma 2.5 hold and
let equation (54) be strongly superlinear. A sufficient condition for equation (54)

to be oscillatory is that
(o o]
f F(cp(t), t)dt = 0o for all ¢ > 0. (58)

One must note that from Theorem 2.15, it follows that if equation (54), whether

superlinear or sublinear, is oscillatory, then
/ f(ep(t),t)dt =00 forall ¢>0, t>1t (59)
151

In some cases, conditions (58) and (59) are equivalent. Indeed, such cases can be

made clear from the following illustration.




35

Example 2.8. Let us rewrite the coefficient r(t) and the general delay function

g(t) of equation (54) in the following forms:

i) r(t) = ct(logt)*, g(t) =t% or g(t) =vt, where ¢>0, a>1 0<f<1

and O0<v<l;
ii) r(t) = ct?, g(t) =vt, where ¢>0, p>1 and 0 <v < I;

iii) r(t) = ce®, g(t) =t—7(), 0<7(t) < M, where ¢>0, ¢ >0 and
M > 0.

Under the above considerations, equation (58) is certainly a necessary and
sufficient condition for the oscillation of equation (54).

However, there exist some cases where there are disparities between both
conditions and this is made clearer in the following illustration.

Example 2.9. Consider the delay equation
[y @) + ey =0. (60)

It satisfies equation (59) but does not satisfy condition (58). In fact, this equation
has a non-oscillatory solution y(t) = %

The just mentioned equivalence and non-equivalence of equations (58) and (59)
are by the way. Let us return to the subject matter of the context. The following

theorem is also valid for the solutions of equation (54) to be oscillatory.

Theorem 2.17. Assume that conditions (i),(ii) and (iii) of Lemma 2.5 hold and
let equation (54) be strongly sublinear. A sufficient condition for equation (54) to

be oscillatory is that

f " p(O)f(c,t)dt = 0o forall ¢>0 (61)

By combining Theorems 2.14 and 2.17, we now have the following theorem.
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Theorem 2.18. Assume that conditions (i),(#) and (i) of Lemma 2.5 hold and
let equation (54) be strongly sublinear. A necessary and sufficient condition for

3 equation (54) to be oscillatory is that equation (61) remains valid (Kusano and
Naito, 1976; Kusano and Onose, 1977).

2.6 Oscillations of neutral differential equations

A neutral delay differential equation is a differential equation in which the
highest order derivative appears in the equation both with and without delay
(Gyori and Ladas, 1991). These equations find numerous applications in natural
sciences and technology. In contrast with delay differential equations, neutral
equations inherit special structure which makes their study more difficult, but
interesting. However, we are not going to delve into the details of this issue for
now, but may touch its peripheries as we progress. For a better understanding,
we begin the study of the concept of neutral delay differential equations with that
of the first order.

A neutral delay differential equation of the first order is an equation of the

form

() +p()y(t — 7)) +a(t)y(t — o) =0, (62)
where

p, ¢ € C([to,00),R) and 7, ¢ € [0,00). (63)

Let v = max{r, o} and let ¢; > t,. By a solution of equation (62) on [t;,00), we
mean a function y € C([t; — 1, 0), R) such that y(t) +p(t)y(t — 7) is continuously
differentiable for ¢ > ¢; and such that equation (62) is satisfied for ¢ > ¢,.

Let ¢, > to be a given initial point and let ¢ € C([t; — v,t], R) be a given
initial function. Then, as can be proved by method of steps (Grammatikopoulos

and Marusiak, 1995; Gyori and Ladas, 1991), equation (62) has a unique solution

A R g e .
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on [t1, 00) satisfying the given initial condition
y(t) = p(t), for ty —y<t<t. (64)

As usual, when we say that each solution of the first order neutral delay
differential equation (62) oscillates, we mean that for every initial point t; > tg and
for every initial function ¢ € C([t; — ~,t1], R), the unique solutions of equations
(62) and (64) on [t,,00) has arbitrary large zeros. If it is false, then there exist a
t; > to, an initial function ¢ € C([t; —~,t1], R) and aT > tsuch that the solutions
of equations (62) and (64) are either eventually positive or negative for ¢ > T
(Isaac, 2008).

As earlier remarked, the theory of neutral delay differential equations, in
general, presents a lot of very interesting complications. In one of such cases, it is
observed that there exist some results which are true for non-neutral equations, but
are not necessarily true for neutral equations. One then wonders what stands as
the easiest methods for finding their solutions and how they are likely to behave
in the entire process after all. Snow (1965) makes it clear, for example, that
even though the characteristic roots of a neutral differential equation may all
have negative real parts, it is still possible for some solutions to be unbounded.
Similarly, Slemrod and Infante (1972) arrived at the same conclusion.

In spite of these limitations, the oscillatory behaviour of the solutions of neutral
systems is important both in theory and applications, such as the motion of
retarding electrons, population growth, the spread of epidemics and networks
containing lossless transmission lines (Driver, 1984; Gyori and Ladas, 1991; Hale,
1977; Krisztin and Wu, 1996).

The aim of this section is to present a review of some recent literature on

neutral equations.



A .‘\

——

2.6.1 Oscillations of neutral delay equations with constant coefficients

Consider the neutral equation of the form

%(y(t) +pylt = 7)) + qylt — 0] = 0, (65)

where p, ¢, 7, ¢ € R. The main results are the following theorems which
give necessary and sufficient conditions for the oscillation of all unbounded
and bounded solutions of equation (65) by means of its characteristic equation
(Gopalsamy and Zhang, 1990; Grammatikopoulos et al., 1986; Ladas and
Partheniadis, 1989; Ladas et al., 1988; Ladas and Sficas, 1986; Li and Liu, 1996;
Li, 1997; Philos, 1989; Wong, 2000).

F(A) =X+ Ape™ +ge™ = 0. (66)

Theorem 2.19. Assume that p, q, T and o are real numbers, then the following

statements are equivalent:

i) Every unbounded solution of equation (65) oscillates;

ii) The characteristic equation (66) has no roots in [0,00) (Ladas et al., 1992).

Theorem 2.20. Assume that p, q, 7 and o are real numbers, then the following

statements are equivalent:

i) Every bounded solution of equation (65) oscillates;

i) The characteristic equation (66) has no roots in (—oo, 0).

One can observe here that zero cannot be a multiple root of equation (66),
therefore it is necessary to assume in condition (ii) of Theorem 2.19 that zero is
not a root of equation (66). It is well known that all solutions of equation (65)
oscillate if and only if equation (66) has no real roots. These results can easily

be established by using Laplace transforms. However, the method of Laplace
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transforms cannot be applied to unbounded solutions of equations when the
deviating arguments are not all delays. In fact, the Laplace transforms of such
solutions may not exist (Farrel, 1990; Ladas and Schultz, 1989; Grove, Kulevonic
and Ladas, 1987 ; Grove, Ladas and Schinas ,1988a ; Grove, Ladas and Schultz,
1988b ; Kulenovic, Ladas and Meimaridou, 1987 ; Agarwal and Saker, 2001;
Bainov and Mishev, 1991; Gopalsamy et al., 1992; Sficas and Stavroulakis, 1987;
Graef, Grammatikopoulos and Spikes, 1991;1991a;1993 ).

2.6.2 Oscillations of neutral delay equations with variable coefficients

Consider the neutral differential equation of the form

L)+t -+t o] =0, 210 (67)

where p(t), q(t) € C([to,o0), R) and the delays 7 and ¢ are non-negative real

numbers.

Let ¢(t) € C([to — p,to], R), where p = max{7,o} is a given function and let 2,

be a given constant.

Definition 2.5. The function y(t) € C([top — p, 0], R) is said to be a solution of

equation (67) if
y(t) = »(t), t € [to— pstol;

%ly(t) + )y (t = 7)]li=to = 215

The function y(t) + p(t)y(t — 7) is twice differentiable for ¢t > to and y(t) satisfies
equation (67) for t > t.

We shall note that theorems of existence and uniqueness of the solutions of
neutral differential equations were obtained by Driver (1965, 1984), Bellman and

Cooke (1963) and Hale (1977). The results in this section are primarily those of
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Grammatikopoulos, Ladas and Meimaridou (1985,1987).
We shall investigate the oscillatory properties of the solution of equation (67).

The following results remain valid.

Theorem 2.21. Assume that

i) p(t) € C([to,o0),R), p1 < p(t) < p2 for t € [to,00), where py and p; are

constants;
ii) q(t) € C([to,0), R), q(t) 2 Q>0 for t € [to,0);
iit) -1 <py <p2<0.
Then each non-oscillating solution y(t) of equation (67) tends to zero as t = oo.

A careful analysis of this illustrates that if condition (ii) of Theorem 2.21
is violated, the result may not be true. Consider the neutral delay differential

equation

g:_? [y(t) + (—% +(t-1) )y(f - 1)]

+i(t =22 (t‘% - %(t - 1)—%) y(t—2)=0, t>2.

L

All conditions of Theorem 2.21, except for condition (ii), are satisfied. Note
that the function y(t) = v/ is a solution with tl_zix& y(t) = oo.
In the subsequent theorems, sufficient conditions are given for oscillation of

the solutions of equation (67).

Theorem 2.22. Consider the neutral delay differential equation (67) and assume
that conditions (i) and (ii) of Theorem 2.21 hold. Furthermore, assume p(t) is

not eventually negative, then each solution of equation (67) oscillates.

Theorem 2.23. Consider the neutral differential equation (67) and assume that

conditions (i) and (Vi) of Theorem 2.21 are satisfied with

~1<p <pp <0 (68)



41

Suppose also that there exist a positive constant r such that

q(t)
.| (o
plt+7—0) 4 (69)
and
1ic—717 1

Then each solution of equation (67) oscillates.

Theorem 2.24. Consider the neutral differential equation (67) and assume that
conditions (i) and (ii) of Theorem 2.21 are satisfied with

p2 < 0. (71)

Suppose also that there ezist a positive constant r such that

q(t) -
pt+71—0) = (72)
and

&—7
2

> % (73)

Then each bounded solution of equation (67) oscillates.

The following illustration gives a better understanding of Theorem 2.24.

Example 2.9. Consider the neutral delay differential equation

£ o= BB -0 20

All conditions of Theorem 2.24 are fulfilled. Therefore, each bounded solution of

this equation oscillates. For instance, y(t) = sint is such a solution.
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In Theorems 2.25 and 2.26 given below, condition (ii) of Theorem 2.21 is not

required.

Theorem 2.25. Consider the neutral differential equation (67) and assume that

the following conditions are eventually fulfilled:

q(t) >0, —-1<p(t)<0 and 2 q(s)ds = oo.

to
Then each unbounded solution of equation (67) oscillates.

Theorem 2.26. Consider the neutral differential equation (67) and assume that
the following conditions are eventually fulfilled:

0 < p(t)=P is constant;

q(t) >0, q(t)#0 and T - periodic.

Then every solution of equation (67) oscillates.

2.6.3 Oscillations of Nonlinear Neutral Delay Equations
In this section, the oscillatory properties and asymptotic behaviour of the

solutions of nonlinear neutral differential equations of the form
d?
@) +p)y(t — 1) +a()fly(t - 0)) =0, t=1 (74)

are investigated, where p(t),q(t) € C([to,0),R), f € C(R,R) and the delays
are non-negative constants. The results of this section are due to Graef,
Grammatikopoulos and Spikes (1988). We shall note that the first oscillation
criterion for second order equations, valid for both linear and nonlinear neutral
differential equations, was obtained by Zahariev and Bainov (1980).

Consider the following conditions:
H2.6.1: p(t), q(t) € C([to,0),R), f(u) € C(R,R);
H2.6.2: q(t) >0 for t € [ty,0), p(t)#0, q(t) #0;
H2.6.3: uf(u) >0 for u#0,;
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H2.6.4: If eventually, the inequality y(tf) > a > 0 holds, where a € R, then there
exist a constant A such that eventually we have f(y(t)) > A > 0;
r H2.6.5: [° q(s)ds = oc;

H2.6.6: There exist a continuous function b(t) such that b(t) = o(t), t = oo

and b(t) < p(t) <0.

We shall say that conditions (H2.6) are met if conditions (H2.6.1)-(H2.6.6) hold.
First, we consider the asymptotic behaviour of the non-oscillating solutions of

equation (74) contained in the following Lemma. Note that sufficient conditions for

the oscillation and asymptotic behaviour of the solutions of second order nonlinear

neutral differential equations were obtained by Erbe and Zhang (1989), Grace and

Lalli (1987, 1989).

Lemma 2.6. Let y(¢) be a non-oscillating solution of equation(74). Then the

following statements are valid for
2(t) = y(t) + p(t)y(t — 7).

i) Assume conditions (H2.6) are fulfilled. If y(t) is eventually positive, then the

functions z(t) and 2/(t) are either both decreasing with

lim z(¢) = lim 2/(t) = —o0 (75)

t—o00 t—=o0
or Z/(t) is decreasing with

Jim 2'(t)=0, 2/(t)>0 and z(t) <0. (76)

ii) Assume conditions (H2.6) are fulfilled. If y(t) is eventually negative, then the

functions z(t) and 2/(t) are either both increasing with

Jim zh) = Lim 2(t) =0 (77)
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or 2'(t) is increasing with
Jim Z'(t)=0, 2'(t) <0 and z(t) > 0. (78)

iii) Assume conditions (H2.6.1)-(H2.6.5) are fulfilled and that there exist a

constant p; < 0 such that
p <p(t) <0. (79)

If y(t) is eventually positive, then either equation (75) holds or 2'(t) is

decreasing with

lim 2(t) = Jim 2'(t)=0, 2'(t) >0 and z(t) <O0. (80)

t—o0

iv) Assume conditions (H2.6.1)-(H2.6.5) are fulfilled in addition to condition
(79). If y(t) is eventually negative, then either equation (77) holds or 2'(t) is

increasing with
: e o s '
tlirgloz(t) = lim 2 (t)=0, 2'(t) <0 and 2(t) > 0. (81)

v) Assume conditions (H2.6.1)-(H2.6.5) are fulfilled in addition to condition (79).
If p; > —1, then equation (80) holds when y(t) is eventually positive and
equation (81) holds when y(t) is eventually negative.

The following theorems are consequences of Lemma 2.6.

Theorem 2.27. Assume conditions (H2.6.1)-(H2.6.5) are fulfilled. If equation
(79) holds with py > —1, that is

-1<p <p(t) <0, (82)

then each non-oscillating solution y(t) of equation (74) satisfies
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y(t) = 0 as t — oo.

Theorem 2.28. Let p(t) > 0. Then each non-oscillating solution y(t) of equation
(74) satisfies the following:

i) |y(t)| < bit for some constant by > 0 and all t > max{1,t,};
i) If t(p(t))~! is bounded, then y(t) is bounded;
iii) Ift(p(t))™* = 0 as t = oo, then y(t) =0 as t = oo.

In the subsequent theorems, results concerning the oscillatory behaviour of
solutions of equation (74) were obtained by Zahariev and Bainov (1988). The first

result in this direction is an immediate consequence of Lemma 2.6.

Theorem 2.29. Assume conditions (H2.6.1)-(H2.6.5) are fulfilled in addition to
condition (79) with p; > —1, that is,

-1<p(t) <0. (83)

Then each unbounded solution y(t) of equation (74) is oscillatory.

We need to observe here that under the present hypothesis, part (iv) of Lemma
2.6 implies that all non-oscillating solutions of equation (74) are bounded. It can
also be observed that Theorem 2.29 reduces to Theorem 2.25 in section 2.6.1 and to
the second order version of Theorem 12 in the monograph by Grammatikopoulos,
Sficas and Stavroulakis (1988) when f(u) = u.

In the next theorem, we obtain the conclusion of Theorem 2.29 without

requiring condition H2.6.5, but with more restrictive condition on f(u).

Theorem 2.30. Assume conditions (H2.6.1)-(H2.6.3) are fulfilled in addition to

condition (83) and that f is increasing,

/tm f:o q(v)dvds = o0 (84)
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and

=T | -0 ]
/c mdu < 0o and /c md’u < 00 (85)

for every constant ¢ > 0. Then every unbounded solution of equation (74) is

oscillatory.

We now give sufficient conditions for all solutions of equation (74) to be

oscillatory.

Theorem 2.31. Assume conditions (H2.6.1)-(H2.6.3) are fulfilled, that f is

increasing,

0<p(t) <1 (86)
and

| a(s) (1 = p(s = @)le)ds = oo (87)

for any positive constant c. Then all solutions of equation (74) oscillate.

Careful survey shows that Theorem 2.31 extends Theorem 1 in the monograph
by Grammatikopoulos et al. (1985) and reduces to the second order version of
Theorem 10 in the monograph by Grammatikopoulos, Ladas and Meimaridou
(1988) when f(u) = u. When ¢ = 0 and p(t) = 0, Theorem 2.31 reduces to a

well-known oscillation result for ordinary differential equations.

Theorem 2.32. Assume conditions (H2.6.1)-(H2.6.5) are fulfilled and that p(t)
is not eventually negative. Then any solution y(t)of equation (74) either oscillates

or satisfies

Ll_igloinf ly(t)| = 0.
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Next we obtain as a corollary to the verification of Theorem 2.32, a necessary

condition for equation (74) to have a non-oscillating solution.

Corollary 2.11: Assume that

i) q(t) > ¢>0;
ii) p1 < p(t) < po;

iii) there exist a constant A > 0 such that

|f(u)] > Alu| forall v (88)

iv) p(t) is not eventually negative.

Then all solutions of equation (74) are oscillatory.

Note that Corollary 2.11 is an extension of Theorem 2.22 in section 2.6.2, the
second order version of Theorem 7 in the monograph by Grammatikopoulos et al.
(1988a) and Theorem 4 in the article by Ladas and Sficas (1986). Theorem 1 in
Zahariev and Bainov (1980) includes Corollary 2.11 when p(t) = p > 0 and 7 = 0.
However, their method of proof does not appear to carry over under the hypothesis
of Corollary 2.11. A similar remark can be made about the second order versions
of the result in the work by (Zahariev and Bainov, 1986).

It seems reasonable to ask if the conclusion of Corollary 2.11 can be obtained
with equation (88) replaced by either condition H2.6.4 or requiring f to be
increasing. Another interesting question is whether this corollary can be verified
without the requirement that p(t) is not eventually negative. Theorem 2.29 may be
considered a partial answer to the last question in case p(t) is eventually negative
and bounded from below by -1.

The next theorem shows that if p(t) is bounded, with upper bound less
than -1, then conditions H2.6.4 and H2.6.5 are sufficient to ensure that bounded

non-oscillating solutions of equation (74) tend to zero as t — oo.
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Theorem 2.33. Assume conditions (H2.6.1)-(H2.6.5) are fulfilled and there exist

constants p, and ps such that

p <p(t) <ps< -1 (89)

Then each bounded solution y(t) of equation (74) either oscillates or satisfies

y(t) = 0 as t — oo.

We conclude with an oscillation theorem for equation (74) when ¢(t) is

T-periodic.

Theorem 2.34. Assume conditions (H2.6.1)-(H2.6.3) are fulfilled, that p(t) =

p >0, q(t) is T-periodic and that f is increasing and satisfies

flut+v) < f(u) + f(v) if u,v>0;

flu+v) > f(u)+ f(v) if u,v<0;

f(ku) < kf(u) if k>0 and u>0 (90)

and

flku) > kf(u) if k>0 and u <0. (91)

Then each solution of equation (74) is oscillatory.

Theorem 2.34 includes Theorem 2.26 in section 2.6.1 and the second order

version of Theorem 9 in the monograph by (Grammatikopoulos et al., 1988b) as

special cases.
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2.6.3 Linearized oscillation

We consider the second order non-linear delay differential equations

v'(t) + A@Y () + B()f(y(t — 7)) =0, ¢20 (92)
and

y'(t) — A@®)Y(t) + B(t)f(y(t — 7)) =0, 20 (93)
where

7>0, A BeC(Rs+,(0,00), feC(RR),

tl_i+11010A(t) =a € (0, 00), Jim B(t) =b € (0,0). (94)
The sunflowing equation

a b
y'(t) + ;y'(t) - siny(t—7)=0, t>0 (95)
is a special case of equation (92). Under some assumptions, the following equations
are called the linearized limiting equations of equations (92) and (93) respectively:
y'(t) +ay'(t) +by(t —7) =0, t>0 (96)
and

y'(t) —ay/(t) + by(t —7) =0, 20 (97)
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respectively (Kulenovic et al., 1987a,b).

We establish the relations between the oscillations of equations (92), (93) and
that of their linearized limiting equations, (96) and (97) respectively.

The following lemmas are useful for the formulation of the theorems on

oscillation.

Lemma 2.7. Assume that a, b, 7 € (0, 00) and every solution of equation (96) is

oscillatory. Then there exist an ¢ € (0, b) such that every solution of the equation

Z(t)+(a+e)d(t)+(b—¢€)z(t—7)=0 (98)

is oscillatory also.

Lemma 2.8. Assume that A, B € C'(R4,(0,00)), f € C(R,R), u- f(u) >
0 as u#0 and |u| < H,

where H € (0,00) and f is non-decreasing in [-H,H]. If

o) 2 [ [ B)fwu—1)ep(- [ A)do)duds, t>T (99)
has a positive solution y(t) : [T — 7,00) — (0, H], then

2(t) > ft = A " B(u)f(2(u — 7)) exp(— fu " A(v)dv)duds, t>T (100)
has a positive solution z(t) on [T — 7,00)and

0 < 2(t) < z(t). (101)

The following important theorems are direct consequences of the above.
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Theorem 2.35. Assume that

i) uf(u) >0 for u#0, |u| < H, where H € (0,00) and il-%%u) =1,
i) The characteristic equation of equation (96)
fA) =X +ar+be* =0 (102)

has no negative roots.
Then every solution of equation (92) whose graph lies eventually in the strip R, x
[—H, H] is oscillatory.
Theorem 2.36. Assume that
i) u- f(u) >0 for u#0, lim m=1,

|u|=o0 U

i) The characteristic equation of equation (97)

fA)=X2—a\+be> =0 (103)

has no positive roots. Then every solution of equation (93) is oscillatory.

The following results are about the existence of non-oscillatory solutions, where

condition (94) is no longer required.
Theorem 2.37. Assume that
i) there exist a > 0, b> 0 such that A(t) >a, B(t)>b, t>0;

ii) there exist an H > 0 such that u- f(u) >0, for u € (0,H], f(u) <

u for u € [0, H], and f is non-decreasing on [0, H];
iti) The characteristic equation (102) has a real root.

Then equation (92) has an eventually positive solution y(t) lying in the strip Ry X
(0, H] eventually.
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Theorem 2.38. Assume that

i) u- f(u) >0 for u##0;
ii) there exist an M > 0 such that f(u) <wu, for u> M ;

iii) there exista > 0, b >0 such that A(t) >a, B(t)<b, t>0andf is

non-decreasing on [0,00); f(u) <u for u € [0, H];
iv) The characteristic equation (103) has a real root.

Then equation (93) has an eventually positive solution y(t) lying in the strip Ry X

(0, H] eventually.
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CHAPTER THREE

METHODOLOGY

3.1 Introduction

The theory of impulsive differential equations is based on the behaviour of

p[OCﬁ&Sﬁﬁ under the influence o fs hort-time b ut i ntensive p erturbations. The

duration of these perturbations are extremely small and can be ignored compared
to the total duration of the process itself. Therefore, they are regarded as
‘momentary’, that is, the perturbations are of impulsive type.

In ordinary differential equations,the solutions are continuously differentiable
at least once or more, whereas impulsive differential equations generally possess
non-continuous solutions. Since the continuity properties of the solutions play a
fundamental role in the analysis of the behaviour, the techniques used to handle
the solutions of impulsive differentiations are basically different, including the
definitions of some of the basic ¢ oncepts. Such concepts as the positive (negative)
solutions defined on the interval [ty, 00), the oscillatory behaviour of some solutions
and the existence of solutions on the given interval are some of the concepts most
affected (Isaac, 2008).

In this chapter, we will visit some of the regularly used concepts which are
clearly different from those of ordinary differential equations. Moreover, we will
provide some basic lemmas used in establishing the oscillatory behaviour of the

solutions of the differential equations in question.

3.2 Existence of solution

LetQ2C R"™ be an open set and let D = R, x. Let us assume that for

eachk =1, 2, --- 7 € C[(0,00)], 7k(y) < 7k41(¥) and lim 7.(y) = o0
k—o0

for y €82 For convenience of notation, we shall assume that 7 = 0 and that k
always runs from 1 to co. Also, let § := {t : t = 7(y), y € R"} which are surfaces

Yk 1<k,
In addition let y : (a,b) C R — Q and let Ay(t) = y(t +0) — y(t - 0).

53
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Let f : D — R"™ be a continuous (differentiable, local or global Lipschitz
continuous function). Let lx(y) : @ — R*,V k € N be a piece-wise continuous
function.

Consider the initial value problem of the impulsive differential system

y' == f(t1 y)! t 7& Tk(y)
Ay(t) = l(y), t=7(y) (104)
y(tg) =yo, to =0,

where f: D — R" and [;: Q2 — R*, Yk € N.

Definition 3.1. A function y : (fp,tp +a) = R*, t; > 0, a > 0 is said to be a

solution of system (104) if
i) y(tg) = vo and (t,y(t)) € D for t € (to,to + a);

ii) y(t) is continuously differentiable and satisfies ¥/(t) = f(t,y(t)) for t €
(to,to +a) and ¢ # i (y(t));

iii) If t € (to,to+a) and t = 7(y(t)), then y(t*) = y(t) + l(y(t)), and for such

t's we always assume that y(t) is left continuous.

Lemma 3.1. The solution y as defined in definition 3.1 fulfils: 36 > 0 such that
s # 7i(y(s)), (y(t)) =t<s<d&VjelN.

Proof. The proof follows from the definition of 7%, k € IN and the properties of the

solution.

a) From the properties of 74,k € N: Since 7,(y) < Tis1(y), Yy € , Yk € N
follows that ®x(y1, ¥2) = Tks1(¥1) — Te(%2), V (v1,%2) € Q% Q is strictly positive

on the diagonal. By the continuity of ® at (y,y) € Q x Q, 34(y) > 0 such that

20, (y,
Pi(y1, 42) > #, Y (y1,¥2) € Bsy)(y) % Bsg)(v).

b) By the same property 7x(y) < Te1(y), Yy € Q, Vk € N follows that

Pr(v1,92) = Tera(n1) — () < () — e (w1) + Cu(v1,32) = 7(w) —
Tk(y2)! Vi>k.
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c) Since 7x(y(t)) = t < s is investigated, s # Tk(y(t)) = t. y is continuous on

an interval t < s < §. Hence 37 > 0 such that y(s) € Bsyu)(y(t)), V1t <

29k (y(t), y(t))
3
definition of 6, < s < 8,5 # Tk+1(y(s)). Hence by (b) the statement stands

for all k € IN.

s < t +n. Moreover let § := min{n, }. Then by (a), (b) and

O

It should be observed that instead of the usual initial condition y(ty) = o, we
have imposed the limiting condition y(§) = yo which, in general, is natural for
system (104) since (¢o, o) may be such that ¢y = 7(yo) for some k. Whenever
to # 7i(wo) for any k, y(t§) = yo will be understood in the usual sense of initial
condition y(to) = Yo.

Unlike ordinary differential systems, the impulsive system (104) may not have
any solution at all even if f is continuous (or continuously differentiable) since
the only solution y(t) of the problem ¥’ = f(t,v), y(to) = yo may totally lie on a
surface S. Hence we need some extra conditions on 7 and/or f besides continuity
in order to establish any general existence theorem for system (104).

Consequently, we state the following theorem:

Theorem 3.1. Assume that

i) f: D — R" is continuous at t # Tr(y), V k € N and for each (t,y) € D,

there exist an [ such that, in a neighbourhood of (t,y),

|f(s,2)| < U(s); (105)

ii) If 3k € N, t, = 7(y1) implies the existence of a & > 0 such that

t # T(y) (106)

forany 0<t—t; <8 and |y—w|<d.
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Then for each (to, yo) € D, there exist a solution y : (to,to+a) — R™ of the initial
value problem (104) for some a > 0.

It is obvious that condition (106) is reasonable only for irregular functions
Tk(y) since the theory of implicit functions implies that if 7; is differentiable at
Yo and Ti(yp) # 0, then condition (106) can never hold. However, we have the

following theorem where some regularity conditions on 7 (y) are required.

Theorem 3.2. Assume that

i) f: D — R" is continuous
i) T : 2 — (0, 00) are differentiable

i) Ifty = Te(y1) for some (t1,11) € D and k > 1, then there is a § > 0 such
that

(22, 1) #1, (107)

for (t,y) € D such that [y— 11| <6 and 0 <t —1t, < 4.

Notice that the left hand side of relation(107) represents a scalar product.
Then for each (to,%) € D, there exist a solution y : (tg,to + a) — R™ of the
system (104) for some a > 0.

Here we limited ourselves to the simplest conditions and theorems only. When
delay is introduced, the situation becomes much more complicated because on the
right side of the system (104) there may be more discontinuities than in the case
without delay. When t ¢ S, y(t) should be continuous.The right side of system
(104) may, however, contain a delay point y(t — 7;) such that t — t; € S, thus

forcing the right side to be continuous (Isaac, 2008).
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3.3 Qualitative behaviour

In this section, we will formulate some basic concepts about the qualitative
behaviour of impulsive differential equations. But first, we will consider an
ordinary differential equation given as follows:

Let f : [0,00) X Q — Q be a continuous function and let f fulfil Lipschitz
condition in the spatial variable for each fixed ¢t. We also assume that f is
continuously differentiable with respect to the spatial variables.

The qualitative analysis examines the solution of an initial value problem of

the form

y'(t) = f(t,y(t), y(to) = w.

Here we select an arbitrary solution of the initial value problem and desire to see
how the other solutions behave. In other words we investigate the behaviour of
the difference between our selected solution y(¢) and another solution z(t). We
therefore need the equation describing the difference z(t) — y(t), where y(t) is

’known’ while z(t) varies. This leads to the following equation:
Z(t) —y'(t) = f(t, () — f(t,y(t))-

We let ¢(t) = z(t) — y(t), VYt belonging to the specified domain and have that

i*i;_iﬂ = f(t,0(t)) +y(t) = F(t,y(2)).

If f is differentiable then

260 - I o) +1(t, 000,

where the difference between y(t) and z(t) is described by a non-homogeneous
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linear differential equation of

dp(t
200 _ A@e() +r(t,0(0).
Here li%ﬁrnﬂ% = (0 holds, hence the identically zero function is a solution.

Having discussed this, we now assume y(t) to be the solution of an arbitrary

impulsive differential equation.

Definition 3.2. The solution y(t) is said to be regular if it is defined on a half
line [T, co) for some T, € R and sup{|y(¢)|: t > T} >0 V T > T,.

The oscillatory solutions will be defined in a way different from the classical
theory since the solutions are piece-wise continuous only.

Let us begin with the non-oscillatory behaviour of the solution.

Definition 3.3. The solution y(t) is said to be

i) finally positive, if there exist T' > 0 such that y(t) is defined and is strictly

positive for t > T}

ii) finally negative, if there exist T > 0 such that y(t) is defined and is strictly
negative for ¢ > T (Isaac et al., 2011b).

Definition 3.4. The solution y(t) is said to be non-oscillatory, if it is either finally

positive or finally negative.

Definition 3.5. The solution y(t) is said to be oscillatory, if it is neither finally

positive nor finally negative.

It can be seen that finally positive or finally negative solutions are regular
solutions. Moreover, regular oscillatory solutions are the real oscillatory solutions

because Definition 3.5 is fulfilled by an identically zero solution.
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Having defined these concepts, let us examine some theories that will serve as
tools for the results of the main work and the determination of the oscillatory (or

non-oscillatory) behaviour of solutions.

3.4 Fixed point theory

Over the last 50 years the theory of fixed points has been revealed as a very
powerful and important tool in the study of nonlinear phenomena, especially in
problems related with the existence and uniqueness of solutions of differential
equations. In fact, fixed point methods are most important in solving non-linear
differential problems. There are several ways to reduce a non-linear existence
problem to a fixed point problem (for a mapping in function space). The theory
itself is a beautiful mixture of analysis (pure and applied), topology, and geometry.
In particular fixed point techniques have been applied in such diverse fields as
biology, chemistry, economics, engineering, game theory, and physics.

On the other hand, fixed point theorems concern maps f of a set X into
itself that, under certain conditions, admit a fixed point, that is, a point z € X
such that f(z) = z. In mathematics, their applications abound in the theory of
existence of solutions for differential,integral and other equations in the diverse
areas of mathematics.

In order to fully understand the concept of fixed point theory and its
application to the obtainability of sufficient conditions for the existence of
solutions of differential equations, we will begin by giving some definitions of

associated terms.

3.5 Some basic definitions

Definition 3.6. Given a vector space X over a subfield F of the complex numbers,
a norm on X is a real-valued function p(z) : X — R with the following

properties:
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i) p(z) =0, & p(z)=0,YVz € X;
ii) p(az) = |a|p(z), Va € F,Vz € X;

iii) p(z+y) < plz) +p(y), Yz, y € X.

Definition 3.7. A vector space X on which a norm ||-|| is defined is called a

normed vector space.

Definition 3.8. A subset S of a normed vector space X is said to be bounded if

there is a number M such that ||z|| < M forallz € S.

Definition 3.9. A subset S of a normed vector space X is called convex if, for

anyz, y€ S, az+(l—a)y€ Sforallac€ [0,1].

Definition 3.10. A sequence {z,} in a normed vector space X is said to converge
to the vector z € X if and only if the sequence |z, — z|| converges to zero as

n — 00,

Definition 3.11. A sequence {z,} in a normed vector space X is a Cauchy
sequence in X if for every € > 0 there exists an N = N(¢) such that ||z, — z,.|| < €

for all n, m > N (g).

Remark 3.1: Clearly, a convergent subsequence is a Cauchy sequence, but the

converse may not be true.

Definition 3.12. A space X where every Cauchy sequence of elements of X
converges to an element of X is called a complete space. A complete normed

vector space is said to be a Banach space.

Definition 3.13. Let M be a subset of a Banach space X. A point z € X is said
to be a limit point of M if there exists a sequence of vectors in M which converges

to z.
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Definition 3.14. We say a subset M is closed if M contains all of its limit points.

The union of M and its limit points is called the closure of M and will be denoted

by M.

Definition 3.15. Let N, M be normed spaces, and X, a subset of N. A mapping
T :X — M is continuous at a point x € X if and only if for any £ > 0 there is a

6 > 0 such that |7z — Ty|| < € for all y € X such that ||z — y|| < 4.

Remark 3.2: T is continuous on X, or simply continuous, if it is continuous at
all points of X.

The following result is worth knowing.

Theorem 3.3. Every continuous mapping of a closed bounded conver set in R"

into itself has a fized point.

Definition 3.16. A subset S of a Banach space X is compact, if every infinite
sequence of elements of S has a subsequence which converges to an element of
S. We say M is relatively compact if every infinite sequence in S contains a
subsequence which converges to an element in X. That is, M is relatively compact,

if M is compact.

Definition 3.17. A family S in C([a, b], R) is called uniformly bounded if there
exists a positive number M such that |f(t)| < M forall ¢t € [a,b] andall f€S.

Definition 3.18. S is called equicontinuous if for every varepsilon > 0 there
exists a 0 = d(e) > 0 such that |f(t1) — f(t2)| < € for all ¢;, t2 € [a,b] with
|t; —t3] <6 and forall fe€S.

Theorem 3.4. (Arzela-Ascoli Theorem) A subset S in C([a,b], R) with norm

Ifll = sup |f(z)|

z€la,b]
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is relatively compact if and only if it is uniformly bounded and equicontinuous on

[a,b].

Definition 3.19. A topology T on a linear space E is called locally convex if

every neighborhood of the element zero includes a convex neighborhood of zero.
Definition 3.20. A real valued function p(z) defined on a linear space X is called
a semi-norm on X if the following conditions are satisfied:

i) p() 20, z=0=p(z) =0, Vz € X;

ii) p(az) = |a|p(z), Ya € R, Vz € X
i) p(z+vy) <p(z) +p(y), Vz,y € X.

Remark 3.3: From this definition, we can prove that a semi-norm p(z)

satisfies

p(z1 — x2) > |p(z1) — p(22)]

However, in contrast to norms, it may happen that p(z) =0 for z # 0.

Definition 3.21. A family P of semi-norms on X is said to be separating if to

each = # 0 there exists at least one p € P with p(z) # 0.

Remark 3.4. For a separating semi-norm family P, if p(z) = 0 for every p € P,
then z = 0.

A locally convex topology T on a linear space is determined by a family of
semi norms {p, : @ € I'}, I being the index set.
Let E be a locally convex space, and z, {z,}:%, € E. Then z, — z in E if

= and only if py(z, = z) = 0 as n — oo, for every a € I.

Definition 3.22. A set S C E is bounded if the set of numbers {p,(z), = € S}

is bounded for every a € I.

‘
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Definition 3.23. A complete metrizable locally convex space is called a Frechet

space.

Example 3.1. The space of functions C([tp,00), R) is a locally convex space
consisting of the set of all continuous functions. The topology of the space is
the topology of uniform convergence on every compact interval of [y, 00). The
semi-norm of the space C([tg,00), R) is defined by p.(z) = wg{l%?é ' |z(t)|, where

z €C, a € [ty,0).

Definition 3.24. Let X be any set. A metric on X is a functiond: X x X - R

having the following properties for all z,y,2 € X:
i) d(z,y) >0 and d(z,y) =0ifandonlyifz =y

11) d(y’ :L') = d(:z:,y)

iii) d(z, 2) < d(z,y) + d(y, 2).
A metric space is a set X together with a given metric on X.

Definition 3.25. A complete metric space is a metric space X in which every

Cauchy sequence converges to a point in X.

Definition 3.26. Let (X, d) be a metric space and let T : X — X. If there exists

a number 7 € [0,1) such that d(Tz,Ty) < r-d(z,y) for every z,y € X, then we

say T is a contraction mapping on X.

Having established some background knowledge of necessary topological
concepts for the understanding of fixed point theory, we now give a list of
some well-known fixed point theorems. They include, but are not limited to
the following: Banach fixed point theorem (Contraction mapping principle),
Brouwer fixed point theorem, Knaster-Tarskifixed-point theorem, Atiyah-Bott
fixed-point theorem, Borel fixed-point theorem, Caristi fixed-point theorem,

Kakutani fixed-point theorem, Kleene fixed-point theorem, Lefschetz fixed-point
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theorem, Nielsen fixed-point theorem, Woods Hole fixed-point theorem, Schauder
fixed point theorem, Tychonoff fixed-point theorem, Krasnoselkii fixed point
theorem and Schauder-Tychonoff fixed point theorem.

We will examine the last four fixed point theorems due to their direct

application to the analysis of solutions of nonlinear functional equations.

Theorem 3.5. (Schauder’s fized point theorem) Let S be a closed conver and
nonempty subset of a Banach space X. Let T : S — S be a continuous mapping
such that T(S) is a relatively compact subset of X. Then T has at least one fized

point in S. That is, there exists an x € X such that Tz = x.

One observes here that in oscillation theory we usually want to prove that
the family of functions is uniformly bounded and equicontinuous on [tg, +00).
According to Levitan (1947), the family S is equicontinuous onlty, 0o) if for any
givene > 0, the interval [tg,00) can be decomposed into a finite number of
subintervals in such a way that on each subinterval all functions of the family

S have oscillations less than &.

Theorem 3.6. (Tychonoff fized point theorem) Let X be a locally convex
topological vector space, and let K C X be a non-empty, compact, and convez

set. Then given any continuous mapping f : K — K there exists x € K such that

fix) =2,

Remark 3.5. Notice that a normed vector space is a locally convex topological

vector space, therefore this theorem extends the Schauder fixed point theorem.
In 1935, the Soviet mathematician H. Tychonoft gave a generalization of the

Schauder fixed point theorem for locally convex vector spaces (Tychonoff, 1935).

This result is usually termed the Schauder-Tychonoff theorem.

Theorem 3.7. (Schauder-Tychonoff fized point theorem) Let X be a locally convex
linear space, S a compact convex subset of X, and let T : S — S be a continuous

mapping with T(S) compact. Then T has a fizxed point in S.
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Theorem 3.8. (Krasnoselskii’s Fized Point Theorem). Let X be a Banach space,
Q a bounded closed convex subset of X and A, B be maps of 0 into X such that
Az + By € Q for every pair z,y € Q. If A is a contraction and B is completely

continuous, then the equation Az + Bx = x has a solution in Q.

3.6 Nagumo condition

A Nagumo condition for ordinary differential equations is a given condition

which guarantees that each solution of the n** order ordinary differential equation

y(n) = f(:E! Y, y’! S ,y(n—l))

either extends or becomes unbounded on its maximal interval of existence.In
particular, the classical Nagumo condition for the second order ordinary

differential equation

y' = f(z,9,9) (108)

is a growth condition on f(z,y,y’) which implies that solutions of equation (108)
either extend or become unbounded on their maximal intervals of existence.
Nagumo (1937) used this growth condition on f(z,y,7y’) to prove the existence
of solutions of boundary-value problems, assuming that f(z,y,v’) is continuous.

One formulation of the condition is contained in the following theorem.

Theorem 3.9. Assume that equation (108) is a scalar equation with f(z,y,v)
continuous on (a,b) x R2. If for each M > 0 and each compact interval [c,d] C
(a,b) there is a corresponding positive continuous function ¢(s) on [0,00) such
that | f(z,y,9)| < ¢(|y']) for all (z,y,y') satisfyingc <z <d, |y| <M and such
that [5° z{;ds = +oo, then each solution of equation (108) either eztends to (a,b)

or becomes unbounded on its mazimal interval of existence.
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Other formulations from which Theorem 3.8 follows may be found in Hartman
(1964) and Jackson (1968).

This property of solutions which is stated as the conclusion in Theorem 3.8
along with the assumed existence of solutions of certain types of differential
inequalities plays an important role in demonstrating the existence of solutions
of boundary value problems, not only for second order equations but for higher
order equations as well (Hartman, 1964; Kelley, 1975; Klaasen, 1971; Schrader,
1969, Bebernes, Gaines and Schmitt, 1974 ).

We conclude this section by stating the following simple but very important

theorem.

Theorem 3.10. Assume that for each b > a - f(z,y,y’) satisfies a Nagumo
condition on [a,b] with respect to the pair a(z), B(z) € C'[a,0), where a(z) <
B(z) on [a,00), and a(z) and B(x) are, respectively, lower and upper solutions

on [a,00). Then for any a(a) < ¢ < B(a), the boundary value problem
y'=f(=z59), yla)=c (109)

has a solution y(z) € C?*[a,00) with a(z) < y(z) < B(z) on [a,o0).

There is yet another concept that will play an important role in the discussion
of the main work. This is Sturm’s Comparison Theorem. In what follows, we

present a brief discussion of the concept.
3.7 Sturm’s comparison theorem

We consider the second order linear delay equations of the form

(p(t)a' () +Zq; z (7i(t) +/ z(s)ds =0, t € [a,b) (110)

and

(p(t)y'(t) +ZQ= y(r.(t)+/ y(s)ds =0, t€ [a,b), (111)
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wherea < b < 0o, p € C'([a,b),(0,00)), ¢, @i, K(s,t), k(s,t)are continuous
functions over [a,b) and {(s,t): s <t, a <t < b}, respectively. Also, 7(t) < t,

where 7; is continuous, i =1, 2, ---, n, and
T(t) = min {Ti(s)'l § 2 t: 1= 11 21 S n} (112)

For a given initial function ¢ € C[r(a), a], there exists a unique solution z(t) to

equation (110) in [a,b) with
z(t) = ¢(t), t € [r(a),a] and z'(a*) = ¢'(a™). (113)

Let ¢4(t) € C[r(a),a] be an initial function for equation (111) and y(t) be the
corresponding solution to equation (111) with the initial condition given by ¥(t).

For equations (110) and (111) assume the following comparison conditions

hold.
(Al) Qi(t) > IQi(t)lv i=1,2 .-, m,
(A2) K(s,t) > |k(s,t)|, s, tE€{a,b),

) _ |ot)
¥a) = Ls( )

(A3)

, t€|[r(a),a].

If we assume that all of the g;(¢) and k(s,t) are nonnegative, then we can relax

condition (Aj3) to get the following conditions:
(B1) Qi(t) >qi(t) >0, i=1,2, -, n,

(B2) K(s,t) > k(s,t)20, s, te{a,b),

9@ =" Yla) > gay @

Likewise, if we assume that %(% > 0, we can relax conditions (A,) and (A;) to get

(Bs)
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the following conditions:

(C1) Qi(t) 20, Qi(t) >aq(t), i=1,2,---, n,

(Cy) K(s,t) 20, K(s,t)>k(s,t), s, tE€{a,b),
(

(1)
In the following, we will use the conditions:
(D1) Qi(t) > aq(t) >0, i=1,2 -, n,

(D2) K(s,t) > k(s,t) >0, s,te€{a,b),

(D3) ¥(a) #0 and (t) does not change sign in [r(a),a], ¢(a) =0, ¥'(a) #
0, and ¢(t) does not change sign in [7(a), a].
From conditions (A3), (Bj) and (C3), we obtain

¥(a) _ #(a)
5@ = 9@

(114)

Conditions (D;) — (D) imply conditions (B;) — (Bs). In fact, from condition
(D3), we see that ’;'(%l — 00 as t — a*. A new initial point a~ can be chosen so
that with the shifting of the initial interval to [r(a™), a"], the conditions (B;)—(Bs)

now hold.

Theorem 3.11. Assume that one of the sets of comparison conditions
(A1/By1/C1/D1)—(As/Bs/C3/Ds)holds, and that the solution y(t) of equation
(105) does not vanish in [a,b). Then, for allt € [a,b)

() _ ()
o) = 7(t)

(115)
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and

ul)  2(t) (116)

< .
y(a) ~ z(a)
As a consequence, z(t) does not vanish in (a,b).

Now, in order to understand the application of Sturm’s Comparison Theorems

to delay differential equations, we associate equation (111) with the delay equation

GO0 + L Q0 G0) + [ Klsi)x(s)ds =0, (117)
where
) <mt)<t, i=1,2 -, n. (118)

We assume that the initial condition

#(a*) = ¥/(a) (119)
holds. Furthermore, assume that

Qi(t), K(s,t)=0 (120)
and

Y'(t) <0 or ¥'(t) 20 in [r(a),a]. (121)

Theorem 3.12. Let y(t) and z(t) be, respectively, positive solutions of
equations(111) and (117)in [a,b), with the same initial value given by ¥(t).
Suppose that equations (118) and (120) hold and that ¥'(t) < 0 in [r(a),a].
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Then for all t € [a,b),

2(t) _y(t)

0 = ) )
and

2(t) < y(t). (123)

On the other hand, if ¢'(t) > 0 in [r(a),a] and both 2/(t) and y/(t) are
non-negative in [a, b], then the reverse inequalities hold in (122) and (123).

Theorem 3.11 asserts that for a decreasing solution, a ‘shorter memory’ slows
down oscillation, whereas for an increasing solution, it speeds up oscillation (in
the sense that the solution reaches its maximum or rebounces faster, and not that
the solution becomes zero faster).

We now apply Theorem 3.11 to an oscillation problem. We consider delay

equations of the form

B O) + Y al)s ((0) + [, Hoa(s)ds =0, ¢2a (129

i=1

with the assumptions that

gi(t) =0, k(s,2) 20 (125)
and
r(t) = min {r(t): i=1,2,---, n} 200, t = 00. (126)

We compare equation (124) with another delay equation

()Y () + i Qi(t)y (7(t)) + f ;) K(s,t)ds=0, t>a (127)
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The following results can be easily deduced from Theorems (113) and (114).

Theorem 3.13. Suppose that for sufficiently large s and t,

Qi(t) 2 Q‘L(t) 2 01 1= 1! 2! T, N (128)
K(s,t) > k(s,) 20, <t (129)
%:(t) 2 Ti(t)1 1= 0: 13 i W (130)

If equation (124) is oscillatory, so is equation (127).

Theorem 3.14. Suppose that p(t) = 1 and equations (125), (126) hold, and the

ordinary differential equation
y'(t) +0(t)y(t) =0 (131)
is oscillatory. Then so is the delay equation (124), where

The complete proof of the above theorem is unfortunately outside the scope of
this work. However, we will highlight some salient facts necessary to understand
and apply the theorem appropriately. A close examination of the theorem reveals
that the author approaches the proof by supposing the contrary and assuming the
eventual positivity of the solution z(t) of equation (124). This immediately implies
that the derivative of the solution z'(t) is also eventually positive. Consequently,
by the convergence of z'(t) implying the integrability of the second derivative of

the solution z”(¢), we arrive at the finiteness of the integral of the quantity t6(t),
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that is,
o o]
/ 16(t)dt < .
a

But it is well known that the above integral implies the non-oscillation of equation
(131) which contradicts the initial hypothesis. By taking a point (¢, z(¢1)) on the
solution curve and denoting by L the straight line joining this point and the origin
(0,0), we arrive at the condition of concavity, implying that L may intersect the
solution curve in at most two points. In the case that there are two points of
intersection, say, t; and t,, the part of the straight line between these two points
lies below the curve. Without loss of generality, we assume that £; < t,. Now, let
t3 > to be so large that 7(t) > t; for all ¢ > ¢3. For any t > t3, the line joining
(0,0) and any arbitrary point (t,z(t)) lies below L. Hence the part of this line
between 7(¢) and ¢t lies below the solution curve. This implies that

z(7(t)) > @x(t), for all ¢ > t3. (133)

We conclude this discussion by examining the case in which L is tangent to the
solution curve at £;. This can be treated as the degenerate case with ¢; = t;. Now
suppose the point (f1,z(¢1)) is the only point of intersection. If L lies below the
solution curve in the interval [a, t;], then equation (133) actually holds for ¢ > a.
Finally, let us note that the remaining case is void since the conditions of concavity

and Itl_i)m z'(t) = 0 dictate that the curve must meet L again.
o0

At this juncture, we may rewrite equation (124) in the form

(0 (1)) + (z a2 [ k(s,t)%ds) 2(t) = 0 (134)

and regard it as a linear equation without delay. By equation (133) the coefficient
is larger than 6(t). Therefore, from the classical Sturmian theory, equation(134)

or equivalently, equation (124) oscillates faster than equation (131), and so we
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have a contradiction.
It would be unfair to round up this chapter without mentioning these rather
unavoidable concepts, namely, convergence theorems, piece-wise continuity and

quasi-equicontinuity.

3.8 Convergence theorems

Convergence theorems are concerned with the analysis of the dynamics of
integrabilty in the case when sequences of measurable functions are considered.
Roughly speaking, a “convergence theorem” states that integrability is preserved
under the limit operator. In other words, if one has a sequence {f.},—, of
integrable functions, and if f is some kind of a limit of the f}s, then we would
like to conclude that f itself is integrable, as well as the equality [ f = n]j_)ngo ¥
Such results are often employed in instances of proving that some function f is
integrable and also in the construction of an integrable function.

We now examine two important convergence theorems.

Theorem 3.15. (Lebesque’s Monotone Convergence Theorem) Let (A, 3, ) be
a measure space and f1, fa, fs3, -+- a pointwise mon-decreasing sequence of
[0, o0) — valued Y —measurable functions. Let lim fn(t) == f(t) forallt e A,

then f is 3 — measurable and

Jim [ fudu= [ fdu.

Theorem 3.16. (Lebesque’s Dominated Convergence Theorem) Let {f,} be a
sequence of complex measurable functions on a measurable space (A, Y ,u) such
that ngrfw fn(t) = f(t) exists for almost every t € A. If there is a function g(t)
such that |fu(t)| < g(t) (n=1, 2,3, --- for almost

every t € A), where g(t) is an integrable function defined on A, then

lim [ falt)dp = [ F@®)d

n—+o0
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Definition 3.27. A function f(t) is said to be piecewise continuous on an interval
[a,b] if the interval can be partitioned by a finite number of points a =ty < t; <

ta < »++ <ty =bso that

i) f(t) is continuous on each subinterval (¢;_y,t;);

ii) f(t) approaches a finite limit as the endpoints of each subinterval are

approached from within the

interval.

Piecewise continuous functions express many natural relationships that occur
in physics, engineering, etc, and most importantly in impulsive differential

equations where the solutions are said to be piece-wise continuous.

Definition 3.28. Let {f,} be a sequence of functions from a topological space X
to be metric space Y. {f,} is said to be ¢ — related at a pointz € X if for every
arbitrarily chosen € > 0 there is a neighborhood U(z) of z such that, corresponding
to each point =’ € U(z), a positive number N,(z,z’) can be determined satisfying

the condition p[fn(z), fa(2’)] < € whenever n > N.(z,z’).

Definition 3.29. Let F be a family of continuous functions from a topological
space X to a metric space Y. F is said to be quasi-equicontinuous if in every

infinite subset @ of F' and at any point = € X there is a sequence { f,} contained

in @ which is € — related at .

As it stands, the main tools necessary for the proofs of the results of the thesis
have been assembled. We can now proceed to put them together for the attainment

of the set goals.




CHAPTER FOUR

RESULTS AND DISCUSSIONS

4,1 Introduction

Second order differential equations in general, are most important in
applications. Same also applies to neutral second order delay impulsive differential
equations which have been developed to model impulsive problems in physics,
population dynamics, biotechnology, pharmacokinetics, industrial robotics, and
so forth. The introduction of oscillation and non-oscillation theory has further
boosted the concept and particularly helped in identifying more areas of
applications both within and outside differential equations.

In this chapter, we investigate the oscillatory properties and asymptotic
behaviour of the solutions of linear neutral impulsive differential equations of
the second order, impulsive integro-differential equations and nonlinear impulsive
differential equations. Also, we obtain the necessary and sulficient conditions for
oscillation of solutions of linear neutral impulsive equations and finally estimate

the difference between the zeros of the solutions of same equations.

4.2 Oscillation criteria
4.2.1 Nonlinear case

Here, we deal with the oscillatory behaviour of solutions of the second order

neutral impulsive differential equation of the form

[y(t) —py(t — 7)) +q(t) f(y(t —o(t)) =0, t ¢S

(135)
Aly(te) = py(te = 7))’ + i fily(ts — o(t)) = 0. Vi €S

under the following assumptions:

H4.2.1: p, 7 and ¢ are positive numbers, V k € Z;
H4.2.2: q, 0 € C(R4+,Ry), al-i»f&(t —o(t)) =00, o(t)> 1;
H4.2.3: f € C (R, R), f is increasing and f(—y) = —f (y);

75
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H4.24: f (y-z) > f (y) f(z) wheny -z >0, f(o0) = oc;
H4.2.5: fx(y-x) = fi (y) fu(z) wheny -z >0, fi(oo) =00,V k€ Z,
H4.2.6: lim [£2, 28] — o0 or lim [12), L)) — 1,
The purpose of this section is to establish a relation between the oscillation
problems of equation (135) and a corresponding ordinary delay differential
equation. All investigations will be restricted to the strip H € (p,o0) except
defined otherwise.

The following lemmas will be used to prove the main results.
Lemma 4.1. Assume that g € C(Ry, Ry), g(t) < t and tl_iglo g(t) =00,z €
PC*(T, ), R)and z(t) >0, = (tx) >0, Az(tx) >0, z”(t) <0, Az’ (t;) <
0 on [T, co). Then for each £ € (0,1), there is a T; > T such that

e(0®) 2% ), t>1. (136)

Proof: It is sufficient to consider only those t € R, for which g(t) < t. Then by
the mean value theorem and the monotone properties of 3 and for t > g(t) > T,

we have

z(t)—z(g9(t) <z'(z(t)(z—g(2))
z(te) — (9 (t)) < Az (z (th)) ( — g ().

Hence

o) < 1+m_((;?'((5})2( —-g(t), t>g@®)>T, t ¢ S

z(tg)

=) 14 ST z(g(tk)) (tk—g(), ti>g(te) 2T, Vi€ S
Also,

2(g(t)) 2 2(T) +2'(g(t))(g(t) - T)
2(9(tx)) 2 2(T) + 2'(g(tx))(9(tx) — T)
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so that for any 0 < £ < 1, there is a T; > T for which the following relations hold:

e > tg(t), t2T, t ¢ S

gz(g(:k)) 2 gg(tk)l tk 2 Te, tk (o L

Hence

z(t) t+(€—1)g(t) :
o) S T an - ao t2Tn tES

z(t) ti+(€—1)g(tk) tg
o) S G - S ey k2 Te kES

This completes the proof of Lemma 4.1.

Let us discuss equation (135) for the cases where p € (0,1) and p > 1
respectively. The beauty of the said discussion will best be displayed in the lemmas
that follow.

Lemma 4.2. Assume that p € (0, 1) and the condition (H) holds. If the equation

# )+ @) f (ML 1) =0, t ¢ 5
A2 (tk) -+ qkfk (MZ (tk)) = 0, v t € S

bk

(137)

is oscillatory for some 0 < A < 1, then the non-oscillatory solutions of equation

(135) tend to zero as t — oo.

Proof: Without loss of generality, let y(¢) be a finally positive solution of equation
(135) and define

2(t)=y(@t) —py(t—7).

From equation (135), we have that z” () < 0 for ¢t > T and A2’ (tx) < 0V k :
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ty > T.If 2’ (t) < O finally, then

B & ()= =co (138)
t}l—rgo z(tk) = —0CQ.

But 2(t) < 0 finally implies that tl_l’rg y(t) = 0 which contradicts equation (138).
Therefore, 2’ (t), Az(ty) >0 for t>7, and V k:t; > T. Here, there are

two possibilities for z(t) :
i) 2() >0 for t 2T
ii) 2(¢) <0 for t > Th.

For case (i), there is a T; > T such that

z(t—o (2) > L=y (1), t>T, t¢S

t

z(te—o () > 42@) 5 (1)), t,>T, Vtr€ S

e
by virtue of Lemma 4.1 and for each £ € (0, 1). Since 0 < 2(t) < y(t) from
equation (135), we have

2'(t)+q (&) f (L2 Dz (1) <0, t ¢ S

t

A2 (te) + g fie (L5202 (4)) <0, V tx € S.

ik

Using Theorem 3.9, we see that equation (137) has a finally positive solution.
This contradicts the assumption. For case (b), as was mentioned before, this will

yield tllglo y(t) = 0. The proof of Lemma 4.2. is hereby completed.

Theorem 4.1. In addition to the conditions of Lemma 4.2, assume further that

lim sup (ftq (u—(t-—o(t)+'r))q(u)du)

t—o0 —o(t)+7
p, if lmi& —1
> 20 ¥ (139)
0, if lim {2 =c0

z—0
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tl_iglosup ( j (tx—(t—0o (t) + T))Qk)

—o(t) + T <<t

. . kz=
p, if lim L =1

> (140)

; e Bpld) _
0, if 11_1)1% - 00

Then every solution of equation (135) is oscillatory.

Proof: As in the proof of Lemma 4.2, it suffices to show that z (t) < 0 for
t 2 T is possible under the given assumptions. Suppose that y () > 0, 2”(t),
Az (t) <0, 2 (t), Az(tx) >0and 2(t) < 0 finally for t > T and k: t,. > T.
Then

z(t—o(t) + 7)>—py(t—o(t), t ¢ S

(141)
Z(tk - (tk)-i-‘l') > -py(tk— o (tk)), Vi € 5.

Substituting inequality(141) into equation (135), we have

2'(t) - Lf(2(t—0 (t)+7) <0
AZ (te) Bfi (z (te =0 (t) + 7)) SO

(142)

Integrating inequality (142) from s to t for ¢t > s, we obtain

70-26) - [ 0@IGu-0@+n)d

2 Y afile(te—o(t)+7) <0, (143)

P <<t

Integrating inequality (143) in s from ¢t — o (t) + 7 to t, we have

t

2(t) (0 () = 7)+Az (0 (t) — 7)— [ dz(s)+z(tx — o (t) + 7) — 2 ()

t—a(t)+ 1

o o O+ e f (e (w0 () 7)) du

P Jt—a(t)+T
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22T - o @)+ (2t — 0 () + 7)) <O.

Py o(t)+r<ti<t

Hence for t and t;, sufficiently large,

z(t—a(t)+‘r)—z(t)—%[ia(t)+f[u—(t—a(t)+7)] q(u) x

X(z(u—0o(u)+7))du<0,

"'(“hc—f?(t:e)""")“Z('fic)"l >, k= (—o(t)+1)]x

t—o(t)+r<tp<t

X qefi(2(te — o (te) +7)) <0.

Dividing inequalities (144) and (144) by 2(t — o (t)+7) and 2z (tx — o (tx) +7)

respectively and noting the negativity of these terms, we obtain

z(t) 1 t
T 2(t—o(t)+7) _pz(t—a(t)+‘r) /t_c(t)+f[u—(t—a(t)+'r)]x

xqu)f(z(u—0o(u)+7))du >0,

1— 2 (tk) - 1 "
z(te—o(te)+7) pz(te—o(ts)+7)

X Y. [te—(t—o(te)+7)gefe(z(t—o(te)+7)) > 0.

t—o(t)+r<te <t

We note that z(t) < 0 and z(fx) < 0 V k : t # t; finally implies that

zliglo z(t) =0 and tll—?éo 2 (tx) = 0. From inequalities (144) and (144), we have

1> 1 g [u— (£ 0 (0 +7)] g () Leleseliiend g

1 - Ju(z(ti—o(tx)+7))
1> 2 attrsuse e — (E = (£) +7)] g f"if::'i,?f:ﬁ;

which contradicts inequalities (139) and (140) respectively. This, therefore,

completes the proof of Theorem 4.1.
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Lemma 4.3: Assume condition (H) holds and p = 1. Then the non-oscillatory
solutions y(t) of equation (135) are bounded provided every solution of the

equation

2 (B)+q @) F(Q() 2(t)=0
A2 (te) + aefi (Q (t) z (k) =0

(144)

is oscillatory, where

Q) =35 (t—o ()
Q (t) =5 (t—0 (&)

Proof: Let y(¢) be a finally positive solution of equation (135) and z (t) =
y(t)—y(t—7). Then2" (t)< 0, Az (tx) <Ofort > to and Vk: tx > to.
If2(t) < 0, Az(ty) < Ofort > 1o andV k :ty > tp, then we have
Ll_x*rg 2 [§) = —o0; tl_l}g A (tx) = — 0o. Thus, for all large t and t;: k € Z,
y®)<y(t-7), t ¢S
y () <y(tx—7) Vir € S.

(145)

This implies that y(t) is bounded which is a contradiction to our assumption.
Therefore, 2/ (t) > 0, Az (t) >0, for ¢t > to and V k: t, > .

Assume z(t) > 0, 2(t) > 0, t > t, >4, Vk: tx > t5 > t. By
Lemma 4.1, for any £ € (0,1) and i =0, 1, 2, --- , there exists T; > t; = T such
that

.

z(t—o(t) — i7)> L2 4 (4

t—o(t)2 Tt ¢S
g . (146)
z(t—o () — i) > Qe oim 5 ()

ty — o (tx) > T;,Vir € 8.
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Since

r

yt—o@)=Xtgz(t—0o(t) —ir) + y(t—o (t) — n7)
>Yr,z(t—o(t) —ir), t ¢S

y (tk—o (te) = T z (e —0 () — i7) + y (b — 0 (t) — n7)
>yiaz(te—o () — ir), Yir € S,

\

(h.ere i = ) from equation (135) we have

Zt)+q@)f(EZiz(E—0o(t) —ir)) <0, t¢S
Az (tk)+Qkfk(§:?=1z (tk—a' (tk) - 2T)) <0, Vi, €8

Using inequality (146), we obtain

2 (t)+q () f(¢Tiho t—0 () — i) 2 (1) <0, t ¢ S
A2 (t) + qefi (£ 0o (te—0 (t) — i7) 2 (4)) <0, V& €,

that is,

Sincent < t—o(t) —Tp < (n+1)7, we have

M) +a ) f (& [t-0 )’ -T¢z(t) <0, t ¢S
A7 (t) + e fi (55 [t — 0 () — T8 2(84)) <0, ViHx€S.

Choose T > T, large enough, then it follows that

f@Hﬂ@)(t(ﬁ-(»%ﬁDSO,tET,t¢S
tk +qkfk(34 tk—O' tk Z(tk))so, th 2T, Y4 € 8.

Noting that 2 (t), z (tx) and z (T') are upper and lower solutions of equation (144)

respectively, and using the known result in Theorem 3.9, we observe that there is
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a solution y (¢) of equation (144) satisfying
z2(T)<z2(8) < 2(2)

2(T) < z(t) < 2 ().

This contradicts the fact that equation (144) is oscillatory.
Next we assume that z (t) < 0, 2(tx) < 0,for t > t, > tyandVk: t; >

ts > I Then

y(t) <yt-7), t 2t t ¢S
y(te) <yt —7), t > ta, Vix € S.

This implies that y(t) is bounded which completes the proof of Lemma 4.3.

Definition 4.1. Let E be a subset of R,. Define

H{EN, ¢}
t

p(E) = and p(E) = lim sup p,(E),

where yu is a Lebesgue measure.

Lemma 4.4. Assume p > 1. Then the non-oscillatory solutions y(t) of equation

(135) satisfy y () < py (¢t — 7) finally provided the following conditions hold:

i)

@) +q@®)f(QEAN)z()=0t¢S (147)
AZ (tk)+qkfk (Q (tk, /\) 2 (tk)) =0, VtpL € §

is oscillatory for all 0 < A < 1, where

Q (t, ) =2p="
Q (t, \) = %plk":’!lkl_
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if)

Jimsup (57 ['(t — w)a(u)f(u - o(w) + 7)du
t¢ E

' T G-tat)filt—o)+7)| >0  (148)

0<tp<t
holds for some p; > p and any set E with p(E) = 0.

Proof: First we claim that if the set E C R, and p(E) = p > 0, then for any
to € Ry and integer n, there exists a T' € (fo, to + 7) such that the set {T" +i7};c,
intersects E at least n times. If not, there exists a ¢, € R, and an integer N,
such that {T'+47}.2, intersects E at most N times for any T € [to, to + 7). This
implies that p (E) < co. But p(E) = p > 0 means there exists {; — oo such that
Pt (E) 2> & > 0. Thus,

,u{En [0, tn]} > gtn — 00 as n — 00
is impossible.

Again, let y(t) be a finally positive solution of the equation

’

(P (&) V() + Ty a @)y (1 () + [ (s, 1)y (s)ds =0,
< | t€la, b), t ¢ S (149)
(p(te) Ay (tk)) + Zisn @ixy (7i (tk)) + To(ay<te<e £ (tr 1) ¥ (t) = 0,

tke[a: b)s Vtkes

Then 2”(t) < 0, Az'(tx) < 0 finally. Here, we observe that there are three
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possibilities:

g (@) > 0, z(t)>0
1) ¢ -
Az (tk) > i), % (tk) = 0

i) 2ty <0, 28)<0
11 )
ﬁ Az(ty) <0, z(tx) <0

Z(t) >0, z(t)<0
iii) 4

Az (tk) >0, Z (tk) <}

finally.

i) Assume

i) 20, 2(t) >0, ¢t ¢ S
Az(te) > 0, z(te) > 0, V€S

fort > to> 0 and Vk: tx > t, > 0. Then equation (146) holds, and
for any t, t, € Ry, = {t;t + o (1) > Ty}, there exists a positive integer n such

that

Th<t—o(t)—nT<Th+T

To £ tk—a(tk)—m'<Tg + 7.
Since

(y(t—o() = SIFP2(t-0(t) - ir) + Py(t—o(t) - n7)
2> ThoPz(t—o(t) —iT), t¢S
y(te— o (t) = Tico Pz (te— o (t) — i) + Py (tx — o (tx) — n7)
>Yr Pzt —o(tk) —it), Vi €S,

\

from equation (135) we have

2'(t) + q(t) f (Zieop'z(t—0o(t) — i7)) <0, t ¢ S
AZ () + qfi (Crop'z(tk—o(te) — i7)) <0,V € S.
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In view of equation (146), we have

2'(t) + q(t) f (¢ o' (t—o(t) — ir)2(t)) <0, t ¢ S
A2 (tx) + qefi (£ Tiop' (e — 0 (te) —im) 2 (t)) <O, Vi €8,

that is,
O +a®)f [(EE-o®)ZE - T )2 (0)]
<0, t¢ S
¢ - (150)
A (t) + aufi [(£ (=0 () B — &2 T8, 0) 2 (1)
L <0,ViL €S
Since
n e ,npn+2_ (n+1)p“+1+p
2= w27
we have
n 1 n
£ (t—a(t)) - 1 %TZ ;
i=1
- = —£1)2t [( (t))( n+2 _ u+1) _T(npn+2 ~ (n41)pH +p)]
- - =mP? (=0 () - (4 D7)
—(t-c(@)+7)p+(t—0o(t)
> (p_fl)zt [T0™? ~ TyP™1 — (t = o (t) + 7) P+ (t — 0 1))
pr““z-}pt_a(t);T°+T2%pt_:(t), t¢g S (151)




87

and

k=1

= (p——i)it_k [(tk =t ] (tk)) (p"+2 _pn+1 -p+ 1) - (npn-!-‘z - (n 4 1)p"+1 +p)]

= a:ilm [tk — o (t) — n7) p"*% = (tk — o (k) — (R + 1) 7) p"H

-tk —o(te) +7)p+ (b — o ()]

14

> W [ToP"+2 —ToP™ —(tk—o(t)+7)p + (tk—0 (fk))]
— 1)t

2 tk—a(tk)—To'l‘Tziptk—O'(tk)
T tk

PR tiP , Vtr ¢S (152)
k

|

for some A € (0, 1) if Ty and ¢, t; are sufficiently large. Substituting inequalities
(151) and (152) into inequality (150) we obtain

M) +q @) f(3 P 2(1) <0, t¢S
A7 (te) +aufi (20228 2 (1)) <0, Vi, €.

Noting that z(t), z(tx) and 2(T,) are upper and lower solutions of equation (147)

respectively, and by the known result in Theorem 3.9, we observe that there is a

solution z(t) of equation (147) which satisfies the relation.

2(To)<z(t) < z(), t¢S
z (To)ﬁa:(tk) = = (tk), Vit €8.

This contradicts the fact that equation (147) is oscillatory forall 0 < A < 1.

s Voshs
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ii) Assume

F{B) <0, 280, t £ 8
Az (tk) = 1 Z(fk) <0, Vire$

fort > t5 > 0 and k: &t > to 2 0. Then

z))<—wt, t > by, t € S

Z(tK) S —wktk, tk = to, Vtk GS

for some w, wy > 0. We begin by saying that z(t) > —pf . Here p; > p is arbitrary,
that is, if E = {t y B) £ -—pé} , then, p(E) = p. Otherwise, p(E) = p > 0. As
in the beginning of the proof for any n, there exists a Ty € [t;,to + 7) such that
the set {T} + i7};-, intersects E at least n times. Assume

M_

= max
to<ttp<to+7

{y(t), v (t)}.

Then if n is sufficiently large,

T] +nT T

st
y(Ti+nr) <p"y(M)+z(Nh+nr)<p"M—p, 7 =p“M—p1+' <0,

which contradicts the fact that y(t) is finally positive.

It is immediately observed that condition (ii) implies that

[Taw fu-o@ + Ddut ¥ afilta—ot)+7) =00 (153)

0<t,<oo

Condition (ii) also implies that

Z{)<—u t ¢S

(154)
Az(ty) < —p, Vi €S
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finally, for all g > 0. Otherwise, for the same ¢ > 0 the condition

% Z@) > —p t ¢S
Az(tg) 2 —p, Vi € S

would have been satisfied for all ¢, { > T75. On the other hand,

y(t—1)232(t), t¢S
y(tx—7) 2 Lz(t), V& €S,

thus

() +qt)f(-Lz(t—o(t) + 7)) <0, t ¢S

(155)
Az’(tk) + qfr (— :1-, z(tk —U(tk) + T)) <0, Vt, €8S.

Integrating inequality (155) from T3 to ¢, we obtain

2(t)+ Az (t) + [;q(u)f(—%z(u—a(u) +T))d'u.
+ 3 Qkfk(—%z(tk_a(tk)+7))50’

or

Z(t) + Jha) f (—Il,z(u—cr(u) + 'r)) du< 0, t ¢S
Az (te) + Zry<o<t Wefr ("% z(te—o(te) + 'r)) <0, Vi €8S.

Noting that

z(t—o(t) + 1)< —w(t—o(t) +7), t¢S
z(tk—a(tk)+‘r)§—wk(tk—cr(tk)-’r'r), Vi €S,
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iii) Assume

Z(@#)>0, z(¢)<0, t¢S
Az(t) > 0, 2(t) <0, V€S

fort >t >0 and k:tx > to > 0. Then y(t) < py(t — 7) is obvious. This

completes the proof of Lemma 4.4.

Corollary 4.1. In addition to the assumptions of Lemma 4.3, further assume

that ¢ is a positive constant and

0o T+it+a
> (f (u—T) q(u) du+ > (tx = T) qx) = 00 (157)

i=0 \YTHiT T+ir<ty<T+it+a

holds forany T' € R, and 0 < a < 7, then all non-oscillatory solutions of equation
(135) tend to zero as t and t; — co.

Proof: Let us assume by contradiction that there exists a finally positive solution
y(t) satisfying lim - sup y (t) > 0, and this can only occur when 2" (t), Az’ (tx) <
0, 2/(t), Az(ty) > Oand z(t) < 0,forallt >t >0 and k:t; >ty > 0.
Hence, /(1) - 0 and z(t) » Oast, t, — 0. If tll}rg inf y(t) > 0, then

y(t) > a >0, t, tx >t; > to. Integrating equation (135) twice, we obtain

+[ (u—t)q(u) f(a)du+ D (t—1t) qfr(a) <

t<t<oo

which implies

tl_iglosup [j; (u—t) q(u) du+ Z (te—1) qe| <0

i<t <oo

and contradicts equation (157). Thus,

lim sup y(t) > 0 and tl_igloinf y(t) =0.
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Then, we can choose t; > t; > to such that y(ta — o) > y(t; — o). We claim

that
Jim infy(ta—o + nt) > 0. (158)
In fact,

n
yltj—o + nT)=Zz(tj—U + n7) + ytj—o), j=1 2

=1

Since z(ts—o+ir) = =z2(ti—o+ir) for 35 = 1,2,---,n, and
:l-l»glo infy(t—o+ n71) 20,

we have
Jim inf y(ta—o+nr)2y(ta—0)—y(t1—0o) >0.
Now choose tg < t; < ta < t3 such that for any T € [ts, 3],
y(th—o)<t(ta—0o)<y(T-o0).

From the above discussion, we observe that inequality (158) holds, that is, there
exists a 4 > 0 such that y (s — o+ n7) > u for all n. It is now obvious that for

T € [tg, t3],

WE

y(T — o+ n7) 2(T-o0+ it)+y(T —0)

i1

n
> z(ta—o+ ir)+y(t2 —0)

i=t

= y(ta— 0o+ n7) > U

From equation (135), we have

20+ [ a@) f@=o) dut ¥ afit—0) < 0, ty<s<t,

<t <t
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2t) + [ (—t0)gw) fly(u—0)) du

+ D (tk—to) afe(y(tx—0)) < 0, Vir 2t (159)

to<trp<t

Hence

z(to) + f(u)i [/:hfw (u—to) q(u) du+ ¥ (tx —to)qk} £ 10,

i=p |JtatiT to+it<tp<ts+iT

and then

z(to) + f M)Z [_[:H" (u—t2) q(u) du+ Z (tx —t2) qk] <0,

o +iT ta+ir <ty <tz+ir

thus contradicts equation (157). This completes the proof of corollary 4.1.

Corollary 4.2. In addition to the assumptions of Lemma 4.4, assume

further that o is a positive constant,

/tm(u—t)q(u)du-i- > (te—t) =00 (160)

t<tp<oo

and

i[ ( )[TJT”M(U‘T)Q(U)""fk(P") Z (tx — T) qx| =00

=0 THiT<tp<T+it+a

(161)

hold for any T € Ry and 0 < a < 7. Then all non-oscillatory solutions of

equation (135) tend to zero as t — co.

Proof: Approaching this by contradiction like in the proof of corollary 4.1, we

observe that there exists a finally positive solution y() satisfying the conditions

lim sup y(t) > 0 and Jim - inf y(t) =0.
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From the proof of Lemma 4.4, this can only occur when 2" (t),Az2 (t) <
0, 2/ (t),Az(tx) >0and z(t) < 0,fort >1toand k : t;x > to. Choose t, > t; >t

such that y (t2 — o) > y (t; — o) . Since

Yy(ta—o+n7) =) p"z(ta—o+ir) +p'y(t2 — 0),

y(h—o+n7t) =Y p"2(th— o +it) +p"y (h — 0),

2(ta—o+nt)> z2(t1—o+ir), i=1,2, ---, n,
and

y(ti—o+nt) >0, n=0,1, 2, .-+,
we see that

Y(ta—o+n7) 2p"(y(t2 —0) — y(th —0)) = Ap".

Similar to the proof of Corollary 4.1, we can show that there is an interval [to, t3]

such that
y(T — o+ nt) > Ap"

for T € [t5, t3] and for all n. From inequality (159), we obtain

d0) + 1) X[ =) ) 167) du

3+iT

* X, (te —t2) @ fi (") <0

to+iT <ty <tz+iT

which contradicts equation (161). This completes the proof of Corollary 4.2.
Now, we are ready to state the criterion for the oscillation of the solutions of

equation (135).
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finally, where ¢* () = min {q (t), ¢(t — 7)} and ¢} = min {g (t),q(tx —7)}.

Proof: Suppose y(t) > 0 for t > t,. Then z(t) > 0 for t > t5 +
2" (t), Az'(t) <Ofort>t = to+max {o,7}and k: t > t =

to + max {o,7}. Therefore, 2’ (t), Az (tx) > Ofort>t; and k: ¢, > t;. Then

') =a"(t) +pz”" (t—7)<—q(t) [y(t—o) + py(t—7~-0))

Il

—q¢*(t)z(t — o) (165)

and

A (tx) = Az (tg) + pAZ (e —7) < —q; [y(tk — o) + py(tx — 7 — 0))

= -z (tx —0). (166)

Similar to the above, we have z (t) > 0, 2'(t),Az(tx) > 0and 2” (t),Az' (tx) <0
fort2t22t1, Vk!tk2t22t1 and

') < —gx(t)z(t—0) < -q*(;) [z(t—0)+ pz(t—0c—7)]

and

AY () < -tz (b —0) < ——%
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This completes the proof of Lemma 4.5.

Theorem 4.3. Letp > 0, q > 0 and ¢ € PC(Ry,R;). Assume that the

second order impulsive differential equation

2 (t) + Aq(t) 52z(t) =0, t¢S

(167)
Az (tx) + Agr &2z (ty) = 0, Vtr € S

is oscillatory for some A € (0,1). Then every solution of equation (162) is

oscillatory.

Proof: Let us assume by contradiction that there exists a finally positive solution
y(t) of equation (162) and z(¢) is defined by equation (163). Then z(t) satisfies
all conditions of Lemma 4.1. Consequently, for every £ € (0, 1), there exists a

te > 0 such that

z(t—0o) > (5% 2(t), for t > t,, t ¢S
t

(168)
Z(tk—O') > ft-'kt:—az(tk), for tp > t, Vi € S,
which implies that
£(t—a) ¢*(t
2'(t) +4GRL0 2(t) =0, for t > t, t¢S ]

Az’(tk) +_t__((%gi Z(tk) =0, for t > t;, Vi € S.

By Lemma 4.5, inequality (164) is true. Combining inequalities (164) and (169),

we obtain

n £(t—a) g*(t)
2'(t) + 45525 2(t) <0, fort >, t ¢S (170)

A (ty) + 2% 2 (1) <0, for te > t, Vi € S,




98

which implies that

i l(t—o) q=(t [
() +LRE0 o4) =0, t ¢S o

Az (t) + 2B 2 () = 0, Vtr € S

has a non-oscillatory solution. This contradicts our initial assumption and thus,
completes the proof of Theorem 4.3.

From this theorem, every oscillation criterion for the second order impulsive
differential equation (167) becomes an oscillation criterion for the second order

neutral impulsive differential equation (162).

Corollary 4.3. Let p> 0, ¢x > 0and ¢ € PC (R4, R;). Then every solution

of equation (162) is oscillatory if for some a € (0, 1),

/0°°taq(t) dt+ 3 t8g =00 (172)

0<tg<oo
We now return to the linear equation with variable coefficient p as follows:

[y @) +pt)y ¢ —7) +at)y(t—0) =0, t > to, t¢5S
Aly (b)) +pey (tx — 7)) +axy(te—0) =0, tp > to, Vix € S.

(173)

Theorem 4.4. Assume that
r >0 050 m>0
i) g€ PC (R4, Ry) and q(t) > qo > 0;

iii) p € PC' (R4, R) and there ezist constants p; and py such that p, < p(t) <

p2 and p(t) is not finally negative. Then every solution of equation (173) is

oscillatory.

Proof: By contradiction, we assume that y(t) is a finally positive solution of
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equation (173). Set
z(t)=y@)+p@)y(t—7). (174)

Using arguments similar to those in the previous theorems, we can show that
2(t) < 0 finally. This contradicts condition (iii) and thus completes the proof of

Theorem 4.4.

4.3 Classification of non-oscillatory solutions

Consider the second order nonlinear neutral impulsive differential

'3

v (@) - SR @y =)

+ X0 filt y (g () oo+ 5 v (930)))
: =0,t2t061’%+,t¢5' (175)
Aly (t) — ZiZipiy (b — 7))

+ 51 Fik (tes y (930 (8) 5 -+ 5 y (951 (2k))))

=0, 2R, VIS

.

We introduce the following conditions:

H4.3.1: 7, >0, pix =0, p; € PC'([tg,©), Ry), i=1, 2, ---, m and there
exists d € (0, 1] such that

m n
Yopi(t)+Dd.p; < 1-6, t, > to € Ry;

H4.3.2: Gis = C([tg,OO), R), t}irgé gja(t) = 60, J = 1. 2’ v e (AR B=
1: 2’ =g e;

H4.3.3: fj e PC ([to, OO) X RC,R) 2 J:1fj (t,.‘L‘I, winie ,.'L‘g) > O', .’Elfjk (tk,xl s ,.’.L'l)

>0 for 22 >0,8=1,2, «», & j=1, 2, ++, n. Moreover,

|fJ (tvylv Ay yl)l > Ifj (tixl! Tty J"t)l
|fie (Gestn =<« we)| = |fie (o1, -+, z4)|
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whenever
I.’E,‘l < |y,-| and y,'.’L‘,')O, i=1, 2, ¥ 5 E, j=1, 2, i e 1
H4.3.4: Set

2O =y - r)yt-m). (176)

In this section, we give the classification of non-oscillatory solutions of
equation (175). But first, we establish the following lemmas which will be useful

in the discussion of the main results.

Lemma 4.6. Let y(t) be a finally positive (or negative) solution of equation (175).
If t&m y(t) = 0, then z(t) is finally negative (or positive) and th_glo z(t) = 0.

Otherwise, z(t) is finally positive (or negative).

Proof: Let y(t) be a finally positive solution of equation (175). From the same
equation (175), 2" (t), Az’ (tx) > 0 or z'(t), Az () < 0 finally. Also, z(t) >
0 or z(t) < O finally. If th_glo y(t) = 0, from equation (176), it follows that
lim z (t) = 0. Since z(t) is monotonic, so lim z’ (t) = 0, lim Az (tx) = 0 which
t—00 t—00 ty—oo

implies that 2’ (t) > 0, Az (tx) > 0. Therefore, z(t) < 0 finally. If tl_lglo y(t) #
0, then lim sup y (t) > 0. We show that z(¢) > 0 finally. If not, then z(t) < 0
finally. If y(t) is unbounded, then there exists a sequence {t,} such that nll’r{.lo i, =

0o, ¥(ts) = ax y(t) and lim y (t,) = oo. From equation (176), we obtain

2(ta) =y (ta) — ip (ta) ¥ (o —7) = y(ta) (1— >n (tn>). )

Thus, nli_,rglo z (t,) = oo, which is a contradiction. If y(t) is bounded, then there
exists a sequence {t,} such that lim ¢, = oo and lim y(t,) = Jim sup y(t).

Since the sequences {p;(t,)}and {y (¢, — 7:)} are bounded, there exists convergent




101

subsequences. Without loss of generality, we may assume that nll._{l;lo y(tn —7)
and nlggop,- (tn), i=1,2 ..., m, exist. Hence

0> lim z (t,) = lim (y (ta) — ipf (tn) ¥ (tn_""i))

n—oo n—00 o1
m
> tl_lglo sup y (t) (1 - ;Pi (tn)) >0,

which, again, is a contradiction. Therefore, z(t) > 0 finally. A similar proof

can be repeated if y(t) < 0 finally.

Lemma 4.7. Assume that tl_lglo Yomipi (t) = P € (0, 1], and y(t) is a finally

positive (or negative) solution of equation (175). If tl_ﬂr& z () = a € R, then

Jim y(t) =15 Iftl_igt z (t) =00 (or — o0), then Jim y (t) =oc (or —o0).

Proof: Let y(t) be a finally positive solution of equation (175), then y(t) > z(t)

finally. If lim z(¢) = oo, then lim y(¢) = co. Now we consider the case that
t—o0 t—o0

Jlim z(t) = a € R. Thus, z(t) is bounded which implies, by equation (177), that

y(t) is bounded. Therefore, there exists a sequence {¢,} such that lim ¢, = o0

and lim y(tp) = tllg% sup y(t). As before, without loss of generality, we may

assume that “15{.10 pi (t,) and ﬂli‘r{’loy(tn -7;), =1, 2, -+, n exist. Hence
a=Jim 2l =nu ) ~ 210 pils) iy (h-n)
=

> lim sup y (¢) (1~ 1),

= 2 lim supy(). (178)

On the other hand, there exists {t,} such that lim y(t,) = Jim - inf y(t).

Without loss of generality, we assume that Jim pi(t),) and lim y(t, —7), 1=
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1, 2, ---, m exist. Hence

a—hm:r:(t)—hmyt) thp, )JLngoy(t;t“"")

n—00
=1

< lim inf y(¢) (1 -p)
or

1— < lim inf y(t). (179)

p t—oo

Combining inequalities (178) and (179), we obtain Jim y(t) = 1%. A similar
argument can be repeated if y(t) < 0.

We are now ready to prove the following results.

Theorem 4.5. Assume that fim ¥, pi(t) = p € [0,1). Let y(t) be

a non-oscillatory solution of equation (175). Let A denote the set of all

non-oscillatory solutions of equation (175), and define

(0,0,0) _ ST L : -
A —{yeA.tErgy(t)—O, tl_lgloz(t)-o,

lim (2 (), Az (t)) =o},

ttr—00

(ba,0) _ . - B o B : =
A {yEA l_1+r&y(t)—b.— ; lim z(t) = a,

1—p t—oo

lim (' (t), Az (t)) =o},

ttr—00
A(o0r:0) — {y € A: tl_i)rgo yit) = oo,
lim z(£) = oo, ”uglm @ (1), Aa:(tk))=0},

t—o0

Alorood) {y € A: Jim y(t) = oo, lim z(t) =

t—o0

Jm (@ (1), Az (ty) = d # o}_
Then

& = A(0,0.D) U A(b,a,ﬂ) U A(oo,oo,ﬂ)UA{oo.co.d).
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Proof: Without loss of generality, let y(¢) be a finally positive solution of
equation (175). If tl—i-)IE:' y(t) = 0, then by Lemma 4.6, tl_i}g:r(t) = 0 and
Jim (2 (2), Az (te)) = 0, that is, y € A0 If lim y (¢) # 0, then by
s =00 o0

Lemma 4.6, z(t) > O finally and it therefore implies that 2/ (t), Az () >

0 and z”(¢t), Az'(tx) < 0 finally. If tl_igo z(t) = a > 0 exists, then
ul;lgm (' (t), Az (tx)) = 0. By Lemma 4.7, we have tlgg y#) = 2 =1b
that is, y € A®a0  [f ,11.12, z(t) = oo, then by Lemma 4.7, ll_iggy(t) o

co. Since 2”(t), Az'(tx) < 0 and 2'(t), Az(tx) > 0, we obtain
t’tlfinm (z'(t), Az (tx)) = d, whered = 0 or d > 0. Then either y € A(®>0 or
y € Alooo0nd),
This completes the proof of Theorem 4.5.

In what follows, we shall show some existence results for each kind of

non-oscillatory solution of equation (175).
Theorem 4.6. Assume that there exist two constants hy > hy > 0 such that

Ipi (t2) — pi (11)] < hafta—ta], |ps () — 2i (B)l < ha [tox — tul,

§=1, 2, v+, W,

ip,— (t) exp (ha7:) + exp (hat) ip,—k exp (—hi(tx— 7)) > 1

i=1 i=1

m

> > pi (t) exp (homi) + exp (hat) f:pik exp (—hs (tx — 7)) (180)

i=1 i=1

and

(ip‘ (t) exp (l17i) + exp (Ait) f:pik exp (—h1 (te — 7)) — 1) exp (—ht)

i=1 i=1

> /:rn (u—t) ifj (u, exp (=hagj1 (u)), ...,exp (=hagji (u))) du
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3 Z (tk - t) Eﬂ: fjk (tkaexp ('_hZ.gjl (tk))) y SR X

t<tr<oo j=1

% exp (—hagji (tx)) (181)

finally. Then equation (175) has a solution y € A©®0.0),

Proof: Let us denote by B, the space of all bounded piece-wise continuous

functions in PC' ([to, o0)) and define the sup norm in B, as follows:
Ilyll == sup |y (t)].
t>tg
Set

Yy € By: exp (—hit) < y(t) < exp (—hat)

ly (t2) —y ()] < Llta—tal, |y (b2x) — v (tae)| < L [tor — tuxl,

for ty,ta > to, VEk:ty, tor > toand for L > hy. Then (2 is a nonempty, closed

convex bounded set in B,.

For the sake of convenience, denote

[y (g W) =25 fi(wy (g (@), -, y (g (u)))

(182)
Fi (tx, y (9 (t))) = Zjza Fir (e ¥ (952 (&), -+ ¥ (931 (8))),
 f (u, exp (~hag (1)
1 =351 Jj (u, exp (=hatjy (u)), -+, exp (—hags (u))) (183)
fi (tk, exp (—hag (tk)))
= Y51 fik (te, exp (—hagjn (&), ---, exp (—hags (tk))) .




105

Define a mapping J on (2 as follows:

Yimpi(t) y(t—7) + ZiZy piry (8 — 73)

=7 (w—1) f (w,y (g (u))) du
(Jy)(t) = < — Dicty<oo (B — 1) + fi (tr: Y (g (t6))) (184)
A

exp (—K(y)t) .y exp (_K(y)tk) ’ tO S t} tk < T:

\

K = - 2UAD

T is sufficiently large such that ¢t —7; > to; &t — 7 > to; gjs (tk) = to; @ =
1, Dpves o =1, 2, wos, Be =1, 2 veu, 0608 & = T,

Now, we see that condition (181) implies that

/Tmf (u, exp (—hag () du + > fi (tk, exp (—hag (t))) < o0,

T<tp<oo

while from condition H4.3.1, it follows that for a given o € (1 -4, 1),

(@—-X™pi(t)L >[a=(1=8]L >0

(185)
(@ = ZZipa) 2 [a— (t=0)] L.
Therefore, T can be chosen so large that for ¢, ¢, > T,
o f(u, exp (hag(u)) du < (a— X% pi () L
Jr° f(u, exp (—ha g (u))) ( 1Pi () (186)

LT <ty<oo i (Br) €xp (—h2 g (t)) < (@ — TiZ; pir) L,

and

a+XZexp (ha(t—7)) <3
(a + Y exp (—he (tx — 7)) < % [ta—t1
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Hence from inequalities (180) and (181), it follows that

(Jy) (t) < fjp Oy (t-7) + im (te — 7

< Y opi (t) exp (—he (te — 7)) + D pixexp (—ha (tk — 7))
i=1

i=1

< exp (~hat) |30 (1) exp (hams) + exp (hat) S puwexp (<ha (b — 7))

i=1 i=1

< exp (—hat) for t, tx 2T,

and

(Jy) (t) = i_n:l?i (t) exp (=hy (t — 7)) + ipik exp (—hy (e — 7))

i=1

—/too (u—t) f (u, exp (=hag (w))) du— D (tx —t) fie (t, exp (—hag (tx)))

i<ty <oo

= exp (—hit) + exp (—h;t) (i?i (t) exp (h1m)

=1

+exp (hit) ipik exp (—hy (tx — Ti)))

- /t " (u=1) £ (w1 exp (=hag (u)) du
— 3 (te—1t) fx(tx, exp (=hag (tx))) > exp (=hat) for t, tx > T.

t<tp<o0

That is,

exp (—h1 (t)) < (Jy) (tx) < exp (=hatr), t > T.

By the definition of K(y) and the statement

exp (—hT) < (Jy) (T) < exp (—heT),
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It is clear that hy < K (y) < h;. Hence
exp (—hit) < (Jy) (t) < exp (—hqt), to < t, ti <T.

Next, we show that

[(Jy) (t2) = (Jy) (t2) | < L [ta —t], (187)

for t;, t2 € [to, 00) and k: ti, ta € [to, 00). Without loss of generality,
we assume that £, > ¢, > tp and V k: to > tie > tp. Indeed, for

to >ty > T and V k: ty > tip > T, using condition (186) and inequality
(187), we have that

(Jy) (t2) = (Jy) (t2)] = [(Jy) (t2) + (Jy) (a) — (JY) (1) = (Jy) (as)]

m

< Yolpi () y (h—7) + i (tw) ¥ (b — )

i=1

—pi (t2) y (t2 —7) — pi (tar) Y (tax — 7))

[Tt fay @@ du + X (tw—ti) i (twy (9 (t0))

t1<t)p<oo

. f:’ (u—t2) f (w,y (9 () du

- D (ta—t2) fi (tar,y (9 (t21)))

12<l2x <co

< i |pi (t1) y (1 — 1) — pi (t2) y (2 — 7))

i=1

- ilps (twe) ¥ (e — 7)) — pi (tax) ¥ (b2 — 7))
=1

+

[T =) £ (i (9 @) du = [ (w—ta) £ (y (g (W) du

t1 t2
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+ | Y (uw-—t) feltey (g(tw) — D (tar —t2) fr (t2r, y (9 (t2x)))

t1<t1x<o0 ta<tgx<oo

£ S ) |y =) = g li=~n)] + 3 Imla) = o @]9 0 =)

i=1 i=1

[ w—ta) f v (o @) du+ ["(a=t) £ (wy (g @)

<]

B

m

+ D pi (tar) |y (tax — 7)) — y (tie — 7)) +Z Ipi (tar) — pi (ta)| ¥ (tix — ™)

=1 i=1
+ 1 D (te—tw) f ey (o) + D (tax —tik) fa(t,y (9 (t)))
1<t <tz te<tp<oco

i=1

[): (pi(t2) + exp (—=ha(t1 —7))) L+/ (u, exp (—hag (u))) du] %

X |t2 . t1|

+ [i (ps (tx) + exp (ha (e — 7)) L + D fu (tr, exp (—hag (tk)))] X

=1 t1<tx<oo
X |tk — tax|

g{ Y pi t2)+Zexp (—ha tl—'r,))l + (a - gpi (tz))} L |ty -ty

Li=1 i=1

+{ Zp, tox) + Zexp tlk—'r,)] + (a - gpi (tz,,))} X

%L Itgk == tlkl

= [iexp (=hs (t1 — 7)) + al Llta—t| + [iexp (=he (tix—7)) + @

i=1 i=1

XL |t2k == tlkl

L |t —tue|  |ta — 1t
2 t [tax — t1k|

L

< Llta—t).

]x
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Fortg < t; <t < T and Vk: tg < tyy < top < T, we have

[(Jy) (t2) = (Jy) (4) [=] (Jy) (t2) + (Jy) (tax) = (J) (t1) = (Jv) (tw)]

= |exp (=K (y) (t2)) + exp (=K () (tax))

—exp (=K (y) (t1)) —exp (=K (v) (tw))|

< lexp (=K (y) (t2)) — exp (=K (y) (t1))] + |exp (=K (y) (t2x))

— exp (=K (y) (tw))|

-t to — 1
L |ta u:lx |ta — t1]

L
g = e
=9 12 —ta| + 2 |22k — x|

=L |ty —ty].

Fortgy < tj T <ty and YV k: tg < tixy < T < tg, we obtain

[(Jy) (t2) = (Jy) () < [(Jy) (t2) — (Jy) ()] + | (Jy) (tzx) = (Jy) (tws)l

< V) (&) — ()T + [(Jy) (T) - (Jy) (1)
+ [(Jy) (tx) — (Jy) (T)|

L
+|(Jy) (T) — (Jy) (tw)] < 3 |ta — T
L |t2 _tll e
2 |tor — |
L |t; —t1|
2 |tar — tax

—

T -t +

—T'+ |7 — ¢y

L L
=g l—tl + 5 lta—til=L|ta—t,].

We have proved that inequality (187) holds for all ¢, < ¢, < ¢, and

Vk:tg < tie <ty Therefore, JQ C Q. Hence, J is piece-wise continuous.

Since J2 C Q, JQ is uniformly bounded.
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Set y € Q. It immediately implies that
| (Jy) ()] < bo,

where by > 0 and

| (Jy) (t2) — (Jy) (t1)| < L [t2a — t]
fortg > t; > to and k: tg > tgo. Without loss of generality, we set
bg = exp (—hzt), t, tk 2 to.

Hence, for any arbitrarily pre-assigned small positive numbers, there exists a

sufficiently large T" > to such that whenever exp (—hst) < 3,

| (Jy) (t2) — (Jy) (t1)| < exp (—hata) + exp (—hat)) <¢ (188)

for U T’, Iy &> §y => T and k: tor 2 tix 2 ¢ iigh
On the other hand, if we set A = § and assume that |t — ;| < A, then for all

to <ty tg <Tandk: ty < tip < ty < T, it becomes clear that

|(Jy) (t2) — (Jy) ()] <¢ (189)

Thus, from inequalities (188) and (189), we can affirm that JQ is
quasi-equicontinuous.  Therefore, JQ is relatively compact. By virtue of
Schauder-Tychonoff fixed point theorem, the mapping J has a fixed point y* € J
such that y* = Jy*. Then y* is a positive solution of equation (175) and
y* € A®%9  This completes the proof of Theorem 4.6.

Theorem 4.7. Assume that 3&& map (8)+ t,}grl;ln Yripk=p€[0,1). Then

equation (175) has a non-oscillatory solution y € A®%9 (b, a # 0) if and only
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if
j o (3= i e o B
j=1
+ Z tr Efjk (tk, b1, ..., b1) < 00 (190)
to<tp<oco j=1
for by # 0.
Proof

i) Necessity: Without loss of generality, let y (t) € A®*? be a finally positive
solution of equation (175). From Theorem 4.5, we know that b > 0 and a > 0.
Using notations in equations (182) and (183), we obtain from equations (175) and
(176),

" (t) = —f(t,y(g())
Az’ (tr) = fr (tr, ¥ (9 (tk))) -

Integrating it from s to oo for s > ¢y, we have

Z6) = [ fuy@@)d+ ¥ filtny (o ®). (191)

s<tp<oo

Again, integrating equation(191) from T to t, where T is sufficiently large, we

obtain

o) = 2 (T) + /‘(u—:r)f(u,y(g ()) du

+[7E-T) 1 (wy (o ) du

+ > (t=T) fi (b, y (9 (%))

T<tp<t

+ <ZZ T) fi (tx, y (9 (tr)))- (192)

Since lim y(g;n(u)) = b > 0 and Jim ylgim(e)) = b > 0, j
U—00 )
1,2 -+, mn h=12 ..., ¢ there exists a T > to such that y (g;» (u)) > &
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for u > T and y(g;n (k) = g for k:tx > T. Hence from equation (192) we

have
fa-n2s (g 5)|w
+ 2 (t—=T) ijk (tk: E iv g) <z(t)—z (T)
T<tp<t

which implies that condition (190) holds.

ii) Sufficiency: Set b; > 0 and A > 0 so that A < (1 — p) b;. From condition
(190) there exists a sufficiently large T so that for ¢, tx > T we have t —7; >
to, th—Ti> to, 1=1,2 -, m and gjn(t) = t,, gjn(te) = to,j =
L 2~y =18 & anid

i=1

A = 1 o 2
() + pu) + Ef:r u £ (b, - b)du
- =

1 n
+3 z tkz.fjk (tk! blv '":bl) S b (193)

T<ty<oo j=1

Let Q be the set of all piece-wise continuous functions y (t) € [tp, 00) such that

0<y(t) <by, t, tx >ty Define a mapping J in Q as follows:

A+ Yimipi )yt —m)+ T pay (b — )
+ Jru f (u,y (g (u))) du
+ 57t f (u,y (g (w)) du
(Jy) () = < +Srcn<etefe by (g (8)  (194)

+ Etgtktcootfk (te, v (g (tr)))
LT

| U9) (T), @<t t<T.

Set

w(t) =0, t 2>t
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¥ Ve(t) = (Tye-1) (t), t>2, £=1,2, ---. (195)

It immediately follows that yo (t) < y1 (t) = A < by, t > t;. By induction, we

obtain

AS?JJ@)S Ye+1 (t)s bl! t 2 to, £=17 2? an g

Thus, ’lim Ye(t) < y(t) existsand A < y (t) < by, t € [tg, 00). By Lebesgue’s
—00
monotone convergence theorem, we obtain from equation (195) the result

'8

A+ 0 () y (¢t —n) + Zil paey (8 — 7)
+Jruf (uy (g (u)du
+I7tf (wy(9(w)) du

y(t) =< + Xr<te<e tefi (tes y (9 (t1)))

+ X<ty <oo tfi (L ¥ (9 (1)),
e

v(T), ta<tti<T

-

Hence, y(t) is a positive solution of equation (175). Since 0 < A < y(t) < by, from
Theorem 4.5, y € AL 9, This completes the proof of Theorem 4.7.

Using reasoning analogous to that given in the proof of Theorem 4.7 above,

we can verify the following results.

Theorem 4.8. Assume that tlirg () + t}l_[go Yiipik=pe€|0,1). Then
equation (175) has a non-oscillatory solution y € A9 (d # 0) if and only if

/-oo
e tD

n

> fi(u,digis (W), ..., d1gje(w))

i=1

du

2 fie (o drgsi (tk) 5 -.., d1gje (k)

j=1

¥

to<tx<oo

< o0, (196)
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1.8 5 77 (R
%= 7 (tkb"%(tk—l) h)tk/ﬁ-

For large t and tg, g(t) ~ M =8 and g~ M t;%. It is obvious that inequalities
(197) and (198) are satisfied. From Theorem 4.9, equation (200) has a solution
y € A0 1In fact, y () = V1t

is such a solution of equation (200).

Remark 4.1. The above arguments can be applied to the equation

[ - sram Oy -
= Yiafitty(gn (), - y(g:(?)),
! | t>ty, t¢S A
Aly(tx) — Tty piny (tx — 7))
= i1 fik (b y (951 (8)) 5 -+ 5 ¥ (e ()
{ te > to, V ti € S.

For instance, under the assumptions of Theorem 4.5, we have
A= A(O, 0,0) UA(b.a. 0) UA(oo.oo,a) U A(oo. o0, oo)‘

Therefore Theorems 4.7 and 4.8 hold for equation (201). Furthermore, equation

(201) has a non-oscillatory solution y () € A% %) jf

j‘m
to

dt

z": fi(t,digin (), ..., digje(t))
=

S fie (tor dugsn (86), s digie ()

=1

+ X

to<trp<oo

< 00 (202)

for some d; # 0.
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At this point we now present another result for the second order linear equation

) — pyt—7)"+ qt)y(9(t) =0, t>to, t¢S %08
Aly(te) — py(te— T)]’ + qy(g(te)) = 0, tx >to, Vir €S,
where the condition p € [0, 1) is not required.

Theorem 4.10. Assume that

i) p,7>0,q> 0, g€ PC ([tg,00), Ry), g € C ([to,0), R), g(t+7) <t

t >ty and tl_i)rglog (1) = oo

i) there exists a constant a > 0 such that for sufficiently large t,

lemor 4 1% (s—t—7) q(s) exp [a (t — g (s))]ds
+3 Tiprstpcon (B —t = 7) grexp [ (t — g (t))] < 1.

(204)

Then equation (203) has a positive solution y(t) that converges to zero as t tends

to infinity.

Proof: If the equality in equation (204) holds finally, then we can verify that
y(t) = e * is the expected solution. Otherwise, we assume that there exists

T >tosuchthatt+72>0, g(t+7) 2t fort > T, and

p=zee b o [” =T =7 g (5) exp o (T - g (s))]ds
Ly G-T-Daepl@T-gsw)<1  (205)
p’I‘+‘rStk<oo

and inequality (204) holds for ¢t > T.
Let By, denote the Banach space of all piece-wise continuous bounded functions

defined on [tg, o) endowed with a sup norm. Let 2 be the subset of B, defined
by

Q= {z€By: 0<z(t) <1 for t>t}.



Define a map J : 2 — B, as follows:

(Jz) (t) = (12) () + (22) (B),

where

(1z) (t) = sz (t+7), t2T

(/1iz) (T)+ exp[e (T—t)] -1, 10 <t<T

and
[ 1) (s—t—17) gls)expla(t— 9 ()] (9 (s)) d
+1 Ceprctpcoo (B =t = T) @
(J22) () = | exp o (t — g (tx))] z (9 (1)) ,
t>T
L (']2x) (T): tO .<_t < T,
where

_In(2-p
(T —to)

We can show that the map J satisfies all the assumptions of Krasnoselskii's

fixed point Theorem, and so J has a fixed point z in Q. Clearly, z(t) > 0 for
t > to. Consequently, it is easy to verify that

y(t) =z (t) e

is a solution of equation (203). This completes the proof of Theorem 4.10.

Corollary 4.4. Assume that 0 < p < 1, 7 > 0 and there exist constants

g¥, 0 > 7such that 0 < ¢ (t) £ g%, g (t) >t — o finally. If the “majorant”

117
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that is, inequality (204) holds. Then, by Theorem 4.9, equation (203) has a

positive solution.

4.4 Unstable type equations
4.4.1 Equations with constant coefficient p

Consider the second order linear neutral impulsive differential equation of the form

@) pyt-7] =a@) y(g @), t>ty, t¢S

, (208)
Aly (te) = py (e —7)] = @y (9 (), te =to, YL ES,

where p € R, g 2 0, ¢ € PC([to,), Ry); g € C([to,0),R); lim g(t) =

t—oco

oo, T3>0,
In general, equation (208) always has an unbounded non-oscillatory solution.
Therefore our task now is to find conditions for which all bounded solutions of

equation (208) are oscillatory.
Theorem 4.11. Assume that
i) 0<p<1l, 7>0 are constants;
it) g (t) < 1 and g is non-decreasing fort > to;

iii) the inequality

Jim sup [/g:n(s—g(t))q(s)dw Y (te-g®)a]>1  (09)

g(t)<tp<oo
holds.

Then every bounded solution y(t)of equation (208) is oscillatory.
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Proof: Assume by contradiction that y(t) is a finally positive bounded solution

of equation (208). Define

2(t)=y(t)—py(t—7). (210)

We have 2" (t) > O0fort > T > ¢ty, A2Z(t) >0fork:t > T > tp. If
2 (t),Az(ty) >0fort >T'>Tand k:t, > T’ > T, then lim 2 (t) = oo, which
contradicts the boundedness of y(t). Therefore, 2’ (t), Az (tx) <0fort > T and
k:ts 2 T.

Here, we observe that there exists two possibilities for z(t) :
i) 2(t)>0 for t>T;
i) 2(E)<0 for t2T">T,

In case (i), we integrate equation (208) from s to ¢ and obtain

ZW0-26)= [0y W) dut Y a9 @), (211)

s<tp <t

Again, integrating equation (211) in s from g(t) to ¢, we obtain

ZOE-9W)-zO+z200) = [ ” [t ) duds
+ Y Z ay (9 (tx))

g(t)<tp <t s<tp<t

N fg::) (s—g@®)a@G)y(g@)ds + 3, (t—9(t) ay(9(te))

g(t)<te<t

- /’.:s) (s—g(t)) q(s) z(g(s)) ds+ 2 (te —g(t)) gez (g (t))

g(t)<tp<t

z(g(t)) [.[9()3_ s)ds+ > (tk—g(t) g ]

g(t)<txt

Hence for t > T,

JORECIO) ([ (-9 a@ds+ ¥ (t-g() qk-l) <o,

) g(t)<te<t
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which contradicts the positivity of z(t) and condition (209).

In case (ii), we have

y @) < py -7 < Py E—2m)< < gy (t—nT)

tl_%xo y(t)=0. Consequently, }l.%‘o z(t)=0.

which implies that
4.11.

fort>2Te+nT
This is a contradiction and therefore completes the proof of Theorem

Remark 4.2. Theorem 4.11 i8 also true for p = 0.

Theorem 4.12. Assume that

i) p<0, qk>0andq(t)>0,forallk€Z and t > to;

i) g(t)=t—10: where ois a constant, 7 > ¥

iii) There exists & > 0 such that

{ a(t) __Ek___}._.a (212)

W sap i
q(t—7) q(te—1T)

t,lp—00

and

lim sup [_[ (5—(t—(e— 7)) q(s) ds

t—o0 "(0‘—-1‘)

+ ¥ (B—-0G- (o — T)))} >1-ap. (213)

t—(o-7)<t<t

T .
hen every bounded solution of equation (208) is oscillatory.

Proof: icti
Let us assume, by contradiction, that y(t) is a bounded, finally positive
soluti i ,

ution of equation (208) and that z(t) is defined by equation (210). As shown
before, 2" (t |
| 2 (t), AZ (t) >0, 2/ (t), Az (tx) < 0 and 2 (t) > 0 finally, where 2(t)
is defined by equation (210).
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From condition (212) and inequality (213), there exists a constant M > 1 such

that

t,tx—ro0

lim sup [fti(a_r) (s=({t—=(e—-1)) q(s)ds
+ Y (tk—(@t=(c—=7))| >1- Map, (214)

t—(o—7)<tp <t

q(t) i
qt—7)" q(te —7)

< Ma, tt 21, (215)

where ¢ is a sufficiently large number. We rewrite equation (208) in the form

2 (t)—-pq—("{(_%z” (t—71)=gq(t)z(t—-0), t¢S

AZ (k) —p gty A2 (tk—7) = 2 (e —0), Vi € S. .
Substituting inequalities (215) into equation (216), we obtain
Z'(t)—Map"(t—1)2 q(t) z(t—0), t>t, t¢S (217)
A (te) — MapA2' (ty—7) 2 qrz(ts —0), te>t, V€S,
Set
w(t)=z()— Mapz(t—71). (218)
Then
W'(t)2 qt) 2(t-0)>0, t>t), t¢S
(219)

A/ (tk) > qrz (te —0)>0, th2t, YVt €S.

By the boundedness of the function y(t), it is seen that w(t) > 0, w'(t), Aw (t) <

0 for t, tx > t3 > ;. Since z(t) is decreasing,

w(t) = z(t) — Mapz(t — 7) < (1 = Map)z(t —7), t>t,. (220)
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Combining inequalities (219) and (220), we obtain

w" (t) > mq(t)w(t—(a—r)), t¢g S

(221)
Al (t) > mqkw (te —(c—7)), Vtr € S.
Integrating inequality (221) from s to t for t > s > ¢, we have
(W= s) 2 e [ w=(o=7)d
w ws_l_Mapsquwuo'ru
1
+1 . ‘?qkw (tx — (0 = 7). (222)

We integrate inequality (222) in s from ¢ — (¢ — 7) to ¢ and obtain

W) o—-T1)—wlt)+w(t—(c—1))

L= jVM?J [/;t-(c-s) fstq (v) w (u— (0 —17)) duds

+ 2, Y qw (te—(0—7))

t—(o—7)<tp <t s<t<t

v

1 ¢
. Map /f.'_(a_.,) (u=(t-(c-7)) g W) w(u-(0—-7))du
+1 — :fl\/.fap t_(az (t=(t=(0—17)) qw(ts = (0 —17))

—7)<tp<t

e (i—_(;I;pT)) l:v/:(o-'r) (U= (¢t~ (0 —7))g(u)du

+ > (t—@—-(e-7) ‘IkJ y it 2t

t—(e—-7)<tp <t

Thus,

0 + 0=~ i | [ 0 € @ aC)

—(a-7)

t—(a—7)<tp <t

= (tk—(t—(a—f)))q;c]—l}sa
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This contradicts condition (214) and therefore completes the proof of Theorem

4.12.

Theorem 4.13. Assume that
i) p=1, >0 and 7> 0;
ii) g (t) <t and g is non-decreasing for t > ty;

iii) either

o0
] tq(t)dt+ Y trge=00 (223)
to to<tr<oo
or
. o0
Jim (¢ [T (s) ds+te P EL (224)

Then every bounded solution of equation (208) is oscillatory.

Proof: Let us assume, by contradiction, that y(t) is a bounded finally positive
solution of equation (208) and z(t) is defined by equation (210). There are two
possibilities for z(¢) here:
a) 2"(t),AZ (t) > 0, 2/(t),Az(tx) <0, z(t) <O0fort, t,>t > to;
b) 2" (), At (tx) >0, 2/ (t),Az(tx) <0, 2(t)>0fort,t; >t > to.

In case (a), there exists a finite number @ > 0 such that

tli’xt& z(t) = —a.

Thus, there exists t; > t; such that —a < z(t) < —§, t > i, that is,
a
—a<y(t) —-'y(t—-'r) < —E, t > ts.

Hencey (t — 7) > §, t > to. Then there exists t3 > ¢, such that y (g (¢)) > 2 t>
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t3. From equation (208), we have

2"(t)>2q(t), t2ts, t¢S

v (225)
A2 (tk) > Sqr, tx 213, VI E€S.
In case (b), we have
y(@)>yt-71), t>t.
Then there exists L > 0 such that y(t) > L, t > t;. Hence
2'(t)2Lq(t), t>ts t¢S (226)

A2 (t) > Ly, t >t3, tx€S.

Therefore, in both cases, we are led to the same inequality (226). Integrating

inequality (226) from ¢t to T for T > ¢, t; > t3, we have

z’(T)—z’(t)zL[fth(s)ds+ 3 qu, 32t ti<T,

T<ix<T

which implies that

/tooq(s) ds + Z Qk < 00,

0 lo<tp<oo

and so

-Z@t) 2L [ftmq(SH B Qk}- (227)

t<tp<oo

Integrating inequality (227) from ¢ to T for T > ¢, we obtain

f:/smq(u) duds + ) qk]

t<tp<oo

¢ A T
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= 2(T)+1L [ftT(u-T) q(w)du + (T —1) ]qu(u) du

+ > =T g+ > Qk]. tity 2 ta,

t<ty T T<tp<oo

which leads to a contradiction to the boundedness of z(t) in either of the cases in
equation (223) or (224). This completes the proof of Theorem 4.13.

Example 4.3. Consider the equation

) —yt—2n)] = Zy(t—n)

; (228)
[Ay (tx) — y (tx — 2m)] = 2y (te — 7).

It is easy to see that all the assumptions of Theorem 4.13 are satisfied. Therefore,
every bounded solution of equation (228) is oscillatory.
Equation (228) may have unbounded oscillatory solutions. For example,

equation (228) has a solution y(t) = tsint.

Theorem 4.14. Assume that p > 1. Then equation (208) has a bounded positive

solution if and only if

/tootq(t) i+ Y <o (229)

to<tp<oo

Proof

i) Necessity: Let y(t) be a bounded positive solution of equation (208) and 2(t)

is defined by equation (210). Then equation (208) becomes

2'(t)=q(t)y(g(t), t¢S
AZ' (te) = qey(9(te)), Vix€S.

At this point, there exists two possibilities for z(¢) :
a) 2'(t),A2' (k) 2 0; 2/(t),Az(t) <0; 2(t) <0, t,tx >t >ty

b) 2 (t), A2 () 2 0; 2'(t),Az(tx) <0; 2(t) >0, t,tx > tito.

¥ T N
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As in the proof of Theorem 4.13, in either case we are led to the inequality

Z'"(t)>Lq(t), t>ty, t¢S
A2 (t) > Lgx, t 2t2, Vi €S,

(230)

where L > 0 is a constant and t; is a sufficiently large number. Integrating

inequality (230) twice, we obtain

2(t) - 2(T) > L[ffq(u)duds+ i qk]

1<t <T s<t<T

= L

'/tT(u—t)Q(U) dut+ ) (tx—t) Qk],

1<ty <T

for T > t,t; > t. Letting T — oo, it is obvious that inequality (229) is satisfied.
ii) Sufficiency: The sufficiency part of Theorem 4.14 is derived from the following

more general result.

Theorem 4.15. Assume that p > 1, g > 0 and q € PC ([Tp, o), R) such that

[Tsla@)lds+ Y telad <o (231)
0

to<tp<oo

Then equation (208) has a bounded positive solution.

Proof: Let T > t, be sufficiently large so that t +7 > t5, g(t+7) > t, for
t>T, and

[osla@lds+ ¥ wlal<P2 aneT (232)

1
t+r<ti<oo 4

Consider the Banach space B, of all piece-wise continuous bounded functions

defined on [tg, co)with the sup norm. Set
- . B
0={veB,: E<y@) <m, t>1).

Clearly, € is a bounded closed convex subset of B,,. Define a mapping J : Q = B,
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as follows

p—1+lyt+7) - L% (s—t—7) q(s)y(g(s))ds
—3 Titrctycoo B =t —7) 4y (g (t)), t>7 (233)
(Jy) (T), t<t<T

For any y € Q and from inequality (232) we obtain

D@ < p+1 [~ (s=t-)la ()l ly (s ()] ds

2 e-t-1lal ) < 2,

p t+7T<t<oo
for t,#; > T, and
D@ 2 p=5-= [" (s=t=7)la(s)ly (g ()] ds
Y = ¥ 2" pJer q y\g
1
= X (—t=nlallye @) 2 %,
Piyr<ticcn

for t,t;, > T. Therefore, TQ C 0.

We shall show that J is a contraction mapping on Q. In fact, for any v, 3 € Q,
1
[(Jy1) (1) = (J2) ()] < 5 lyr (t+7) —y2 (t+7)|

—% /t.: (s—=t=7)lg(s)l |1 (9(5)) — y2(g(s))| ds

2T =t s 0 () - 1 (0 )]
P iyr<ticoo

Sillyx—yzllﬂ—ljlly:—yzll[/tz(s—t—'r)IQ(S)ldH > (te—t—7)|q

l+7<t<oco

< |l — v

1 =1 1 3
=h g 0 et G 3 _
p( + 1 ) 4(1+p)‘“y1 wl, tt>T,
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which implies that

el = g I (=il
= suwp [(Tw) () = (Tw) ()] < . (1 & g) —

Since %1 (1 + %) < 1, it follows that J is a contraction mapping. Hence there exists

a fixed point y € 2. Then

yE+7)—y@)] =q@t+n)yt+7), t>T, t¢S
Alyts+7) -y ()] =gt +7)y(ta+7)), 2T, Vi €S,

That is, y(t) is a bounded positive solution of equation (208). This completes the

proof of Theorem 4.15.

Remark 4.3. Using a reasoning analogous to that given in the proof above, we

can show that Theorem 4.15 is also true for p € (0,1).
The following result is about the existence of asymptotically decaying positive

solution of equation (208).

Theorem 4.16. Assume that 0 < p < 1 and that there exists a constant a > 0

such that

pe” + [T (s=t)a(s) exp [a (t— g (s))]ds

+ Y (tk—t)qeexp o (t—g(t))) <1 (234)

t<tp<oco

finally. Then equation (208) has a positive solution y(t) satisfying y(t) —

0 as t — oo.

Proof: Notice that if the equality in condition (234) holds finally, then equation

(208) has a positive solution

y{d)=e"%
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In the rest of the proof, we may assume that there exists a number T" > t; such

that
‘_\.
t—7>ty, g(t) >ty for t>T
and
B=rpe + [ (s-T)q(s) exp [a(T - g(s)]ds
+ Y (t—T)geexpa(T—g(t))] < 1 (235)
T<tp<co
and condition (234) holds for ¢t > T.
Let B, denote the Banach space of all piece-wise continuous bounded functions
defined on [tp, 00) and endowed with the sup norm. Let Q be the subset of B,
defined by
" Q={reB,:0<z(t)<1, t>t}.

Define a map J : Q2 — B, as follows:

e T ) (Y — (L) () 3 () (4)
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where € = In ((;‘::fg) and

f

I (s—t)q(s)expla(t — g (s))]z (g (s)) ds
+ Xicti<oo (tk — t) @i
(oz) (t) = x expla(t—g(t)]z(g(ty),  (237)
t>T
(Jox) (T), to<t<T.

\

Notice that the integral in (237) is defined whenever z € Q. Obviously, the set

2 is closed, bounded and convex in B,.

We shall show that for every pair y,z € Q
Jiy+ Jox € Q. (238)

In fact, for any y, z € Q, we have

(1) () + (J22) () = pey (¢ = 1)+ [~ (s =1) g (5)
xexpla(t - 9(s)) 2 (g(s)) ds

+ D (tt) qeexpa(t— g (t))] z (g (k)

t<ty<oco

<+ [7 (s~ 1) q(s) expla (t - g (s))]ds

+ ) (-t aeexpla (t—g(t)] <1,

t<tjoo0

t>T

and
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(V19) @) + (22) (1) = (1) (T) + (Joz) (T) +exp [e (T - )] - 1
= f+expe (T—-1t)] -1

SB+exple (T—t) -1

=1,

to<t<T

Obviously, (J1y) (t)+(J2z) (t) > 0 for ¢ > to. Thus, condition (238) is true. From
inequality (235), we know that pe®™ < 1, which implies that J; is a contraction
mapping.

We shall now show that J; is completely continuous. In fact, from inequality

(234), there exists a positive constant M such that

[ a@ewlat-g@)lds+ 3 aexpla t-g ()] <M,

t<ty<oo

for t > T. Thus, we have

G0 = |[Ta 96 20 (5))ds

+a [T (s=t)a(s) expla(t— 9 ()] 2 (g (s)) ds
+ D arexpla(t—g(t)] = (9 (t))

1<t <00

+a 0 (t—t) qeexple(t — g (th))] z (g (t))

t<tp<oo

<|[Ta@explat-g(s)] = (g(s)) s

+ D aeexp o (t—g(t))] z (9 (t))

t<tp<oo

+a|["(-ta)epla t-g(s))]2 (9 (s) ds
+ > (gx—1t) qrexpa (t—g(tk))]-'r(g(tk))]

t<lx<oo

<M+a, t>T
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and

%(sz) ®)=0, to<t<T.
This shows the quasi-equicontinuity of the family J; Q. On the other hand, it
is immediately obvious that J; is piece-wise continuous and the family of J, Q is
uniformly bounded. Therefore, J; is completely compact.

By Krasnoselskii’s fixed point theorem, J has a fixed point z € .
That is,

;

pe*z(t—7)+ [° (s —t) q(s)
expla (t—g(s))] y(g(s))ds
o il + Ltcticoo (B — 1) i (239)
exp [e (¢t — g (t))] y (9 (tx)),
¥ g

z(T)+exple (T—t)]-1, to<t<T.

Since z () > exp[e (T —t)] =1 > 0 for ty < t < T, it follows that z(t) > 0 for
t > to. Set

y(@t)=z (t)e ™.
Then equation (239) becomes

v =py(t-7) + [ (s=)a(s) y(g(s))ds

+ Y (-t av((ts), t>T. (240)

i<ty <oo

Thus, y(t) is a positive solution of equation (208) and y (t) — 0 as t — co. This
completes the proof of Theorem 4.16.
Remark 4.4. The conclusion of Theorem 4.16 still holds for the case p=0 if

g(t) < t.
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Corollary 4.5. Assume that 0 < p < 1, and there exist constants ¢* > 0 and

o > 0 such that
0<q(t)<gx, g(t)>t—o. (241)

If the “majorant” equation

) —pyt -7 =qry(t—o), t>t, t¢S

. (242)
Alyt) —pyte—7)] =qty(tc —0), t > to, Yt €S

has a bounded positive solution, then equation (208) also has a positive solution

y(t) that converges to zero as ¢ tends to infinity.

Proof: The corresponding characteristic equation of equation (144) has the form

n2

* ny *
F()) = A2 (1 — et (1 4 %,\) ) —ge (1 + %,\) =0 (243)

or

n2

* nz *
F(A) =X (—1 + pe~™" (1 + %/\) ) +qte™ (1 + &/\) = (.
q*
Let a = —A > 0, then
qt n qt n2
=14 pe* (1 — q—fa) +g'e™ (1 - a%a) = [,

Considering the case where n; = ny = 0, we obtain

pe®” + (—3—56“" =1. (244)

Equation (242) has a bounded positive solution if and only if its characteristic
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equation (243) has a real root a € (0,00) . This immediately means that equation
(244) holds. Combining conditions (241) and equation (244), we realize that for

1 sufficiently large ¢,

pe +ft°° (s—t)g(s)expla (t—o)lds+ 3 (tx —t) qrexp[a (t —o)]

t<ty<oo

1
$ pea'r g ?q*eaa =

By Theorem 4.16, equation (208) has a positive solution y(¢) which converges to
zero as t — 0o. This completes the proof of Corollary 4.5.
Example 4.4. Consider the equation

) - Ly(t-2)] = (-1 yt-2), t¢s

; (245)
Aly(te) — 2yt - 9 =dyt-2),V tres.

In our notation, p= 5., g¢*=g, 7=2 and ¢ = 2. The “majorant” equation

is

[y (@) - 2y (t—2)] =avt-2, t¢s (o)

Aly(t) -2y (-2)] =Ly(te—2), Vires

and the characteristic equation (243) becomes

A2 (1 - %e”” (1+ A)’") + S-I—Ee'z" 1+A)™=0

or

1
X’ (—1 +ooe (14 A)“‘) + ée'” 1+ )™ =0. (247)

> Setting n; = ny and a = —)\, equation (244) becomes

1 1
5;62‘" =3 e =1, (248)

! R
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It is obvious that a = —}. Consequently, A = } is a real root of equation (247),
and hence, equation (246) has a bounded positive solution. By Corollary 4.5,

equation (245) has a positive solution y(t) that converges to zero as t — oco.
4.4.2 Equations with variable coefficient p

We now consider the second order neutral impulsive differential equation

) -pOyt-7] =q@)yt—o0), t>ty, t¢S

‘ (249)
Aly(s) —py(te —7)] =@yt —0), t=ty, Vir €S,

where 7, o € (0,00); qr € R; p,q € PC ([tg, ), R).
Theorem 4.17. Assume that

)O0<p(t) <1, t2>to

i) 0<h1 < q(t) < hy, t2>to;
iti) for any A > 0,

Jim inf {p (t—o) ﬁf’r—)e” + 324 (t) e’“’} > 1 @50)

s . 25 X 1 Ao
t;}l—lpoo inf {p (tx — o) e+ e } -7

Then every bounded solution of equation (249) is oscillatory.

Proof: Let y(t) be a bounded, finally positive solution of equation (249). Assume
further that y(t —7), y(t—0) >0 for t>t; > t,. Set

z (t) = y(t) — p(t)y(t — 7). (251)

It is not difficult to show that 2" (t), Az’ (t) > 0; 2/ (t),Az(t) < 0; z(t) >0

for t > t;, where ¢, is large enough and

lim z (t) = Jlim 2 (t) = 0.

t—o0 —00
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Then from condition (ii)

() > hy(t—o), t>t, t¢8

(252)
AZ'(fk)ZhI‘y(tk—U), e >t;, VL €S
and
2> hwy(t—o0), t>t, t¢S
(t) 2 ( ) 1 95 (253)
Az’(tk) zhgy(tk—a), te >t, Vi €S
Define a set A as follows:
2" () > Nz (t
A=2A>0: ®) (®) (254)

A (tx) > A2z (t)

finally. It is clearly seen that v/h; € A, that is, A is nonempty. We shall show

that A is bounded above. In fact, condition (252) implies that

2’"t)>hz(t—0), t>ti+0o, t¢S
Oz me-0), t2tito, tg -
Az'(tk)zhlz(tk—a), tr2>2ti+0o, Vi€ S.

Integrating inequality(255) from ¢ to ¢+ &, we obtain

z’(t-f—%)—z’(t)?_hl [/ﬁt+gzz(s—a)ds+ Y, z(tk—o)

1<t <t+%h

a a a o g
o [z(t‘é‘)“(‘fk‘a)] >§’“z(t‘§)’ b2t to,

and then

z(t)_z(H%) >h1% []tf+a/4z(s—%)ds+ 3 z(tk—%)‘

1<t <t+%%

o (3) F-5) - Dlom () ()
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This implies that

z(t)>az(t—%), t>t +o, (256)

2
a=h1(%).

Applying condition (256) four times, we discover that

z(t)>az(t—o0), t>1t +20. (257)
In view of the boundness of y(t), it is not difficult to see that

lim infy (t) = 0.

Choose a sequence {s,} such that s, > ¢, +20, n=1,2, ---, nlglc}o B =00,

and
Y(sn—0)=min {y(s):t, <s<s,—0}, n=1,2, ---.

Integrating inequality (252) twice, we have

2(t—o)>h [[t_a[y(u—a)duds+ 2. 3 y(tk——cr)},

t—o<tp<t s<ty <t
ttr 2t +o

and

z2(sp—0) > Iy [fs:;/j"y(u—a)duds-i- 3 3 y(tk-a)}

Sn—0 <t <sn s<tx <sn
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2
2%]11 Y(sn—0)+y (sk—0)], n=1,2, ---.
2
Z%hly(sﬂ_a)! n=11 21 T [
that is,

y(sn—a)<ﬁz(sn—a), 'ﬂ:—].., 21 R

where

_ 2
B h10'2.

B
Then from inequalities (253) and (257), we obtain
2" (sn) S hay (8n—0) < Bhoz (sp—0) < a*Bhyz (s5), n=1,2, -

which implies that \/a=%F ks, € A, that is, A is bounded above.
Set Ay = sup A. Then )y € (0, vaip 52). For any a € (0, 1) we discover that

for sufficiently large ¢,

2" (t) > (aho)® 2(t), t¢S

(258)
Az (t) > (aX)® 2(t), Vi €S.

Set
Z(t) =2'(t) + ahoz (t).
Then
Z({t)—aXz(t)=2"(t)—(aX)? 2(t) >0

finally. It implies that Z (t) e=*%" is non-decreasing. Since z (t) = 0, 2’ (t) = 0 as
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t — 00, s0 Z(t) = 0 as t — 00. Thus, Z (t) < 0, that is,
2 (8) +adoz (t) <0
finally. Set w (t) = z (t) €%, Then

W' (t) = [2'(t) +aroz(t)] et <0
Aw (tr) = [Az (tk) + a Aoz (t)] et < 0.

We can rewrite equation (249) in the form

(0 =p(t=0) 5 1= +0() 2t ~0) 25

Az (te) =p(tx —0) s A2 (te — 7) + @2 (8 — 0).

Then by condition (258), we have

2" () > (@ Xo)’p(t —0) q—(%)- z(t—=7)+q(t) z2(t— o)

= (@M)*p(t — o) ﬁ‘{’—) w(t =)0 4 g (4) w (t - o) = (¢ — o)

> [(a 7)ot o) —1D_arer 4 e°*°°] 2(t),

q(t—7)

A (1) 2 (@Xa) pte = 0) oty 2 (0 = 1) + 12 (e = 0)

= (a »\o)zp(th . cr) _q"_Tw (tk " T) e—a)\o(t;;—'r) + quw (tk - 0') e-—a,\o(t;,—cr)

q(te —7)

> [(aXo)’p(tx — o)

dk aloT aloo
—e +qlt)e z (),
q (tk - T) Q( ) ] ( k)

which implies that

q(t— T)

inf {(@ %)’ P(t - 0) e 4 q(t) exdor} < A2

. 2 algT a
158 (@20 (b — 0) ellye™ + reor) > 3,
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Letting o — 1, we have

mf {Aop(t —0) E(%QT—)e*“f +q(t) e‘\*’”} < A2

— & __oAoT Ao 2
ting {’\UP —0) q-n e T ke a} =X

which contradicts condition (250). This completes the proof of Theorem 4.17.

Remark 4.5. Noting that eV > 1, eV > %yz, for y > 0, condition (250) can be

replaced by condition

22
Jim inf {p (t—o) % + Io2q (t)} > 1

E
e k
tll_x}nm inf {p (tp — o) 20 —7) i i qk} - 2
Remark 4.6. In the case where p(t) = p, ¢(t) = g are constants, condition (250)

is also a necessary condition for the bounded oscillation of equation (249).

Theorem 4.18. Assume that p(t) <0, ¢(¢) >0, ¢ >,

q(t-7)

lim sup {—p (t—o) —359—} =a € (0, o0) (260)
til_l;l{ln sup {—p (t, — o) q(—tfﬂb)—} =a € (0, 00)

and

t—00

lim sup [_/:(U_T) (s=t+(c—171)) q(s)ds

+ ) (tk—t+(o-7)q| >1—a. (261)

t—(o-7)<tp <t

Then every bounded solution of equation (249) is oscillatory.

Proof: Let y(t) be a bounded, finally positive solution of equation (249) with
y(t—7) >0, for ¢ > ¢,. Then 2" (t), Az (tx) 20, 2/(t),Az(t) <0, z2(t)>
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0, t>t,. From condition (261), there exists a constant & > 1 such that

lim sup [/tt (s=t+(o—7)) q(s)ds

t—o0 —(o—7)

+ ) (k—t+(o-T)a|>1-ha (262)
t—(o-7)<tp <t

and there is a t3 > t; such that

-pt—7) F <ha, t2t, t¢S (263)
—p(tk—r)q—(-t—;‘fﬁ_T)Shcx, te 21y, Vi €S.

From equation (259), we have

(&) —ha (t—0)>q(t) 2(t—0), t>ty t¢8S
/_\z’(tk)—haAz’(tk-o')2qkz(tk—a), te 2t Vir€S.

We set
w(t)=z@)—haz(t-1).

Then

w'(t)>q(t)z(t—0), t>t, t¢S

(264)
Aw' (tr) 2 qrz(ty — o), te >ty Y €S,

and it is immediately obvious that w (t) > 0, '(t), Aw(tx) <0, ¢, tx > to.

By the monotone property of 2(t), we have
w(t)=z2()—haz(t-7)<(1-ha) z(t—71), t>t,
or

z(t)>1

1
TRewt+T), t2t
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Substituting this into inequality (264), we obtain

W't)2 St w(t—(0-7)), t>ts+0, t¢S

(265)
A (tr) 2 P=aw (te— (0 —7)), ti2ta+a, Vi €S.

Integrating inequality (265) from s to t for t > s, we have

O -'(6) 2 7 [ s (o -7) du

Integrating the resulting inequality again in s from ¢t — (¢ — 7) to t, we have

Wt)yo—-7)—wlt)tw(t—(c—1))

e _1ha [/ti(,_f) (u—t(e-7))qW)w(u—(o-7))du

t—(o-7)<tp<t

+ Z (ti—t+(oc—7))qw (tx — (o = 1'))]
[

+ Y (k—t+(o-7) Qk] y btx 2 1.

t—(o—7)<te<t

Thus,

wt)+w(t—(oc-1)) (—1 g _lha [fti(a_r) (u—t+(oc—-7)) q(u)du

+ Y (k—t+(o-7) qu <0

t—(o—7)<tp <t
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which implies that

[ @=tre-D@a+ T (@-t+e-na

t—(o-7)<tx<t
<l-ha, t2t,.

We reach a contradiction and thus, complete the proof of Theorem 4.18.

4.5 Forced oscillation

Consider the second order neutral impulsive differential equation with a forcing

term
(WO +py -+t -0)=Q(),
< , t2to, 1¢S5 (266)
Aly(te) +py @t —7)] + fi (e y (te — 0)) = Q (i),
{ tr > ty, VIg€S.

We introduce the following conditions:

H4.5.1: p, >0 and ¢ >0;

H4.5.2: f:fk E C([tQ,OO) X R,R)r y'f(t’ y)’ y- fk (tkay) > 01 Yy # 0;
H4.5.3: there exists a function u (t) € C? ([ty, 00) , R) such that

Q(t) =v"(2)
Q (tk) = A (t)

and u changes sign on [T, co) for any T > t,.

Set

u, () = min {a (t2— T), 22(;) } )

uf (t) = max {u, (t), 0}, wu; (t)=max {-u,(t), 0}.
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Lemma 4.8. Assume z € PC ([tg,),R), B € PC ([to,o0),R4+) and z(t) +
pr(t—7) > B() >0, t>ty, where p, 7 > 0. Then for each t* > tp + 7,
there exists a set A = {t:t* <t <t*'+2r, z(t —7) > B, (t)} with the measure

mes (A) > 7, where

. [B-71) B()
ﬂ.(t):mm{ 5 5 }

Proof: For any fixed t* > ty + 7, we define a set

B={t:t€[t*,t*+'r], m(t)>@}

If B is empty (B =®), then pz(t—7) > g—gﬂ, for t € [tx,t x4 7], that is, A =
[t*,t = + 7]. Now we consider the case that B = ®, then mes (B) =a € (0, 7).
Let B denote the closure of B. In view of the piece-wise continuity of z, we have
z(t) > ﬂzﬂ, t € B. Defineaset B4+71 = {t,t-—‘re B}. Then, z(t —7) > ﬂ‘;—fl
fort € (B + T).

Set

A= {[txt*+7]\B} U (1_3+ 1').

Then mes (A) =7 and z(t—7) > f.(r) on A. This completes the proof of

Lemma 4.8.

Theorem 4.19. Assume that conditions H4.5.1 — H{.5.3 hold. Further assume

that f and fi are non-decreasing in z and

Je f(tud (t+7—0)) dt+ Xpey, fi (e, —ud (te +7 — 0)) = 00,

(267)
Je ft,—u; (t+7—=0)) dt+ Tpa, f(te,—u; t+7—-0)) =—-00

for every closed set E whose intersection with every segment of the form
[t—7, t+7], t > to+ 7, has a measure not smaller then T. Then every solution

of equation (266) is oscillatory.
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Proof: Without loss of generality, let us assume by contradiction, that y(t) is a

finally positive solution of equation (266) for t > t5. Set

z(t) =y (t) +py(t—r7).

Then (z (t) + u(t))" <0 for t>to+r. It is easy to show that (z(t) —u @) >0

finally, which implies that

]: fhyt—o)dt+ 3 fultey(tx —0)) < oo. (268)

lo<tp<oo

On the other hand, it is easy to show that 2 (¢) — u (¢) > 0 finally. Then we have
2(t)=yO) +py(t—-7)2u*(t), t2to+T.

By Lemma 4.8, for every t* > 1ty + 27, there exists a set A =
{t:t*<t<t*+27, y(t—7)>ut(t)} with mes (A) > 7. Let us consider the
set A— (1 —o)={t:t+ (r — o) € A}. It is obvious that mes (A — (1 —0)) > 7T
and y(t—o) > uf(t+(r—0)), t€ (A—(r—0)). From condition (268), we

have

00> [ fty(t—0)) dt+ 3 filtey(te - )

E<t

Z.Lf(t),uf(t-P(T—U)) dt+ Y fi(twuf (te+ (1 - 0)))

E<ty

which contradicts assumption (267). This completes the proof of Theorem 4.19.
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The following result is for equations of the more general form

(WO +p@y- +FEr6®).¥ @) =R,
4 , L (269)
Aly(te) +pxy (te = 7)) + fi (b, v (9 (tr)) , Ay (o (te))) = Q (tx) .
{ Vice S
Theorem 4.20. Assume that
i) p € PC ([tg, o0),R4) and pp =0, tx >to;
ii) g,0 € C ([to, ), R) and Q € C ([to, ), R), t > to;.
iii) g is non-decreasing and !li}ltgo g(t) = o0,
w) f €C ([to, 0)zR%, R) and f(t,u,v)u>0, u##0;
v) for any T > to;
[ Jim inf [J£-Q (5) ds + Syt Qa] = —00,
lim sup [f£.Q (5) ds + Sret,< Q] = 0,
(270)

4 }Eg inf [f']t" Jr Q (u) duds + LT<ty<t LT<ty<s Qk] = —00,
Jim sup [/ f7 Q (w) duds

+ Lorto<t 2T<ti<s Qk] = 00.

Then every solution of equation (269) is oscillatory.

Proof: Without loss of generality, let us assume by contradiction that y(t) is a
finally positive solution of equation (269). Set z (t) =y (t) +p(t)y(t — 7). Then
z(t) >0, t>T > t,. From equation (269), we discover that 2" (t) < Q (¢).
Thus,

2 (t)— 7 (T) < f; Q@) ds+ ¥ Qi (271)

T<ty<t
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Theorem 4.21. Assume that
i)p>0, 0>7>0, >0, o, B€(0,1], q(t) 20, t = to;

i) either

t—oo

Jim sup [/:(w_f) [u—(oc—71)] g(u)du

+ Y (tk—=(e—=7)a| >0,

t—(o—7)<tp<t

B<a (274)

or

lim sup [/ri(a_r) [u—(t—(c—7)))g(u)du

t—co

+ Y k=@ —=(c—=7)la|>p

t—(o—T)<tp <t
B=a, (275)

wherep € (0, 1) for a=1, pe (0, o0) for a€ (0, 1);
iii) every solution of the second order impulsive differential equation

t) 4+ Mg (t (-—;—’-) 2 (t) =

(276)
Az (tk)-l-)\qk( ") 2 (te) =0

is oscillatory, where 0 < A < 1 is a constant. Then every solution of equation

(273) is oscillatory.

Proof: Without loss of generality, let us assume by contradiction that y(t) is a

finally positive solution of equation (273) and define

2(t)=y@)—py*(t—1). (277)
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From equation (273), we know that z”(t) < 0. If 2/(t) < O finally, then

Jim z(t) & = oo. Thus, lim y (t) = oo and there exists a sequence {&,} such

that Jim &, = oo and y (&) = Jmax y(t) = o0

as n — 0o. Hence,

2(&n) =Y (&) —PY* (& — 7) 2y (&) — pY* (&)

=y(&) [1-py* " (&)] 2 00, n— oo,

is a contradiction. Therefore, 2’ () > 0. If 2 (¢) < 0, then z (t) > —py® (t — 7).
Then

y(t—71)> (—f@)% . (278)

p

Substituting condition (278) into equation (273), we have

2" (t) —q(t) (M)ﬂ’“ <0, t¢Ss

P
B
A (ty — qu) (==} < 0, v, € 5.

p

(279)

As in the proof of Theorem 3.10, inequality (279) cannot have a finally negative
solution under the given assumptions. This contradiction shows that z (t) > 0.
By equation (133) of the proof of Theorem 3.13, for each h € (0, 1), there is a
tp > ty such that

t—o
t

2(t—0o)>h z(t), for 2>t (280)

Substituting inequality (280) into equation (273), we have

2 () + 0 (52) 0P () <0, t¢5

p (281)
AZ (te) + 1P (%) qu2P (t) <0, Vi €S

which implies that equation (276) has a non-oscillatory solution, contradicting the
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assumptions of condition (iii). This completes the proof of Theorem 4.21.

Now we consider the unstable type of equation (273). For the sake of

convenience, we write Q (t) = —¢q (t) > 0, t > t,.
Theorem 4.22. Assume that
i)p,7,0>0, Q.>0,andfe(0,1], Q(t) >0, t>tp;

it) the inequality

fimsup [[ (5= (t-0) Q(s)ds
+ Y (t—(t-0) Q| >1 (282

t—o<tp<t

holds.

Then every bounded solution of equation (273) is oscillatory.

Proof: Let us assume, by contradiction, that y(t) is a finally positive solution of
equation (273). Then, 2" (t) > 0. By the boundedness of z, we have 2’ (t) < 0

finally. If 2(t) > 0 finally, integrating equation (273) twice, we have

S W)y —z(t)+z(t—0) = /_an(u (u — o) duds
+ > > Qv (tr— o

t—o<ty<t s<tip<t

- /ti, [u=-(t-0)QW) ¥’ (u=0)dut+ 3 [tx—(t—0)]Q’ (tk—0)

t—o<tp<t

t—o<tp<t

> 2% (t-o) [/t;[u—(t—o)]Q(u)du+ > [te—(t—0)]Qx|. (283)

It is immediately seen that t]._i.g.lo z (t) = 0. Hence there exists a T > ¢, such that
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z(t—o0) <1, for t > T. Thus, statement (283) leads to

z(t)+z(t — o) Ii[t;[u—(t—a)]Q(u)du+ > [tk—-(t-0)]Qe—1] <0

t—o <ty <t

which contradicts condition (282).
If 2 (t) < 0, then 2 (t) £ —d < 0 for some d > 0. Hence —py*(t — 1) < —d, or

y(t—7)> % > 0. From equation (273), we get

a\”
( k) > (;) Qr, Yt €S
We note from condition (282) that
[Ttewa+ ¥ tQi= (285)

T<tp<oo

Hence inequality (284) implies that tlirg z (t) = oo, which is a contradiction. This

completes the proof of Theorem 4.22.
Theorem 4.23. Assume that
i)p‘T>01 0201 0211 ﬁ>0: kaol Q(t)zoﬁ tztﬂ;

i) There exists a constant A > 0 such that

apexp {Aat+At(l-a)}<L<1 (286)

and

pexp{AaT+At(l—¢)} + ff(s—t)Q(t)exp{/\(t—ﬂ(s—a))}’ds
+ Z tk—t Qr %

1<ty <oo

x exp {A(t - B(tx — o)} <1 (287)

hold finally. Then equation (273) has a positive solution y(t) which converges to
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We introduce the following conditions:

H4.7.1: 7 € C ([to, o0), R), 7 is a non-decreasing function in R, 7 (t) >t for
t € R; and tglggo T (t) = 4o00;

H4.7.2: v € PC* ([tg, o0),Ry) and 7 (t) >0, r (t:) >0, for t,tx € Ry;
H4.7.3: g € PC ([tp, o0),R4) and ¢ >0, k€ N;

H4.7.4: [5° 7% = oo.

Theorem 4.24. Assume that

ftmq(t) dt+ ¥ g=o0. (289)

to<typ<oo

Then every solution of equation (288) is oscillatory.

Proof: Let us assume, by contradiction, that y(t) is a finally positive solution of

equation (288). It is easy to show that r (t)3/ () > 0 for ¢t > T > ¢,. Then

[Ca®ye@d+ ¥ aulrt) <o (200)

T<ty<o0

which contradicts equation (289). This completes the proof of Theorem 4.24.

In what follows, we want to derive some oscillation criteria for equation (288)

when

/mq(t) dt + Z gr < 00. (291)

to to<tp<oo

Lemma 4.8. Let y (t) > 0, t > t,, be a solution of equation (288). Set

_r®)y' ()
w(t) = =T (292)
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Integrating equation (295) fromt to T for T >t >1t;,, we have

tk)+] %

f.<t <T tk)

oo ([ 500 T, 58)

8<tE <7(8)

+ D qrexp ( /T(a)f((::))du—i— I w(t")) =0. (296)

t<te<T s<trar(sy T (tk)

Because r(t)y'(t) >0, so w(t) > 0. We shall show that tl—lglo w (t) = 0. In fact,
if }3& r(t)y' (t) = ¢ > 0, then there exists a t; > t; such that for t > ¢,

c
] t 1
y(t _[ (t2) +f2 tg<t<1-2 (tk)]—M)o — 00

and hence, lim w(t)=0. If Jim 7 (t)y' (t) =0, then Jim w (t) = 0 also. Letting
T — oo, in equation (296), we obtain condition (294). This completes the proof
of Lemma 4.8.

Lemma 4.9. Equation (288) has a non-oscillatory solution if and only if there

exists a positive differential function ¢ (¢) such that

ey, () 0 w(s) w (tk)
¢ (t)+ 0 < —q(t)exp (/, Wdﬁtgg(a, T(t:)), t >ty (297)

Proof: The necessity follows from Lemma 4.8. Now we assume that inequality
(297) holds. Then, ¢'(t) < 0 and hence Lim ¢(t) = —oo, a contradiction.
Therefore, tl*l"lg ¢ (t) = 0. Integrating inequality (297) from ¢ to co, we obtain
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—

¢ (t)
7(s) d’(u)du+ z -';‘-G'i-)-

2 t) L1 LTS
jw‘ﬁ_@»ds—\— ¥ ¢rét:) J q@er |\, T
o (tx)

¢ () 1<tk <0
f(s) o (u) 6 W) 45+ 2 (m) <o)
* qx &XP ug%\

r( u\ m,,am
t>t2

t(tk'(m

which implies that

a0 # )
jt ¥ (3) o t<§<°‘° r (t) -
and
" 9 6 (1) 0
[t q(s)exp ( L T (u) = _.,qg.;r(s) (t "))

6 () o (te)
¥ 3, WP U: T(U)du+ s<uz<:f(’) )

<t <o

fine a mapping J by

For all functions z(t) satisfying 0<z(t)<o(t), t21t2 de

oo 2 2 00
(Jz) (t) = /t :I; ((:)) ds + tsgmf_ ((tt:)) + [t q(s) x
7(8)
X exp (fa J—:%:—;du+ Z x}_—gj) ds

s<ty<7(s)

+ E g €Xp (jf(a):vg;du-i- Z -x—g%), t 2 ts.
] T T\l -

t<
<itgp<oo s<ti<7(s)

If is easy to see that 0 < z;(t) < z5(t), t > tp, implies (Jzy) (t) <

(Jzg) (t), t 2= ta.

Define yo(t) = 0 and y,(t) =
yﬂ(t) < ¢(t)! n=1, 2’ SRS and “li_I)Eoyﬂ (t) = w(t) S ¢(t)° By the Leb%gue

(Jyﬂ-l) (t)’ n=1, 2, - . Then Yn-1 (t) <
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Dominated Convergence theorem, we have

=) t
w(t)=ft %?dw > T((t:))+f q(s) x

t<tp <00

() w (u) w (t)
X exp ([q G du + sgt§r(s) = (tk)) ds

T(s (t)
+ ) qeexp ([s()t:é:;dﬂ"‘ 2. c:(t,’:))’ e

t<tp<o0 s<ti<7(8)

Set
u w(tk)
y(t) = exp ( wgu; +t2§dr(tk)) ke
Then
_r(t)y ()
(t)= y (1)
and

(r@y(t)) +a)y(r() =0, t=ty, tES
Ar(t)y (b)) + ay(r(te)) =0, te > ts, Vi €S,

That is, y(t) is a non-oscillatory solution of equation (288). This completes the

proof of Lemma 4.9.

Theorem 4.25. If equation (288) has a non-oscillatory solution, then the second

order linear impulsive differential equation

(r@®)y' @) +qt)y(t) =0, t¢S

(299)
Alr(te)y'(te)) + ary(te) =0, Yt €S

is non-oscillatory. Conversely, if equation (299) is oscillatory, then every solution

of equation (288) is oscillatory.
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Proof: Assume that equation (288) has a non-oscillatory solution. By Lemma

4.9, there exists a positive differential function ¢ (¢) such that

¢’(t)+¢2(t) < —q(t)exp ([m ACF Y. M), t > ty, (300)

r(t) r(u) t<tp<r(t) | (tx)

which implies that

< —q(t). (301)

Taking advantage of Lemma 4.9 for the case in which k (t) = ¢, equation (299) is
non-oscillatory.
Consequently, the second part of the theorem is immediately obtained. This

completes the proof of Theorem 4.25.



CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

Although this research project focuses on the oscillations of neutral impulsive
differential equations, we never lost sight of the fundamental problem of the theory
of oscillations in our discussion. We recall that these problems include, but are not
limited to, proving the existence of, and, where possible, the actual determination
of oscillatory motions that are solutions of a given impulsive differential equation,
and the study of the behaviour of the other solutions in relation to the given
oscillations. To effectively handle this, we made a distinction between the theory
of linear oscillations and that of nonlinear oscillations/non-oscillation.

In the theory of nonlinear oscillations, we considered the general nonlinear

neutral delay impulsive differential equation of the form:

[y(t) —py(t = 7)]" +a() f(u(t — o(t)) =0, t ¢S

(302)
Aly(te) = py(te = 7)) + @ fi(y(te — o(ts)) =0, Vi € S

under the following assumptions:

H5.1.1: p, 7 and g are positive numbers, V k € Z;

H5.1.2: q, 0 € C(R4,R,), f1_1’1{.10 (t—o(t) =00, a(t)> 7;

H5.1.3: f € C(R.R), f isincreasing and f(—y) = —f (¥);

H5.1.4: f(y-z) 2> f(y) f (z) when y -2 > 0, f(00) = o0;

H5.1.5: fi(y-2) 2 fi (y) fe(z) wheny -2 >0, fi(oo) =00,V k€ Z,
H5.1.6: lim [£2, L&] =00 or lim [£42, 4] 1.

=0 L

We also considered the generalized form of the second order nonlinear neutral
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impulsive differential equation

’

[y () - SR @)y =)
+X0 fit y (g (), -+ 5 y (g3)))
=0, t>1s € Ry, t¢5
Aly (te) — S0 puy (te — )]
+ 300 Fik (b y (9t (&) 5 -+ 5 v (g5t (8))))
—0,ty>tg€ Ry, V1 €S

(303)

\

subject to the following conditions:
H5.1.7: T = 0, Dik = 0, D; € PCI ([to, 00) ’ R+) 3 g = 1, 2, ved o and there
exists § € (0, 1] such that

m n
Yopi(t)+ > p;< 1-6, t, > to € Ry;
i=l j=1

H5.1.8: gjs € C([to,OO), R), tl—iglo g,-,(t) = 00, J = 1, &, =
| PR N .
H5.1.9: f; € PC ([tg,oo) x R¢, R), z1fi (6, x1, -+, 2e) > 0; 1 fi (e, T1 -+, T1)

>0 for iz >0,8=1, 2, -+, £ 3=1, 2 -+, n. Moreover,

|fj (t’yh Tty yt)l 2 |f] (t,(l:;, Sy It)l
Ifjk (tk'lyl R yf)l 2 |f?k (tk,l'l, ELN 4 I!)l

whenever
lm‘l[S Iyll a'nd yix'i>01 2=1, 2! Rl e: J=1v 2s $3 ¥y iy

H5.1.10: Set

2@ =y() -~ S ml)y E—7).

i=1

As a major achievement, we were able to establish conditions for the oscillation
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of all solutions of equation (302). By way of these conditions, the oscillation
problem for neutral impulsive differential equation(302) was reduced to the same
problem for the corresponding delay impulsive differential equations and, as the
case was, to the corresponding impulsive ordinary differential equation. For
the second order nonlinear neutral differential equation (303), we were able to
introduce the classification of its non-oscillatory solutions and to establish various
existence results of non-oscillatory solutions of different types.

In conclusion, we have observed that every solution of equation (302) oscillates
if and only if the solutions of the corresponding delay impulsive differential
equations are oscillatory.

Finally we discussed and developed certain theorems that helped us to:

i) Arrive at the conclusion that the solutions of nonlinear impulsive differential

equations are either all oscillatory or all non-oscillatory;

ii) Establish some existence results for each kind of non-oscillatory solution of

equation (303);

iii) Find the relation between oscillation/non-oscillation and other qualitative

properties such as boundedness and convergence of solutions to zero;

iv) Obtain conditions for the oscillation of all solutions of nonlinear equations

with a forcing term of the form

i

@) +pyt-7) +ftyt—0)=Q(),
t>ty, t€S
; ; (304)
Aly(te) +py (s — 7)) + fr (tr,y (B — 0)) = Q (1),

te2>to, YiR€S.

subject to the following conditions:

H5.111: 9, 7>0 and o> 0;

H5.1.12: f,kaC([tg,OO)XR,R), y-f(t, y)! y'fk(tk,y)>0s y%o;
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at the conclusions that every oscillation criterion for the second order impulsive
differential equation (167) became an oscillation criterion for the second order
neutral impulsive differential equation (306), and also that,

for the linear impulsive differential equation (306), solutions are either all
oscillatory or all non-oscillatory.

As a mark of achievement, we were able to

i) Establish the criteria for the existence of oscillation or non-oscillation of all

solutions.
ii) Find the relation between oscillation and boundedness of all solutions.

iii) Obtain conditions such that an impulsive differential equation has an

oscillatory or non-oscillatory solution with some asymptotic property.
iv) Establish conditions for oscillation of all bounded solutions of unstable type

second order linear neutral impulsive differential equation of the form

@) - pyt—-7)" =a¢@)y(g(), t>ts, t¢S —
Aly () — py te—7) = @y (9 (tr)), te >to, Y, €S,

where p € R, gx 2 0, ¢ € PC([to,0) , R4), g € C([to,0), R); lim g(t) =

0o, T > 0 for the cases p constant and p variable.

v) Establish conditions for existence of bounded positive solutions of equation

(307).

vi) Establish conditions for the existence of asymptotically decaying positive

solutions of linear equation (307).

vii) Obtain conditions for oscillation of all solutions of impulsive differential

equations with advanced argument of the form

(r@t)y () +q@)y(r(t) =0, t¢S
A(r(te) v (te)) + ay (7 (t)) =0, Vi €S,
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where A(r (te)y (tx)) = 7 (t;:)y’ (t;c*) — 7 (tx) ¥ (tx) subject to the following
conditions:

H5.1.14: 7 € C ([tp, o0), R), 7 is a non-decreasing function in R, 7 (t) > t for
t€ Ry and tl_i)l}go T (t) = +o0.

H5.1.15: r € PC* ([tp, 00),Ry) and r(¢) >0, (t;") >0, for t,tx € Ry.
H5.1.16: g € PC ([to, o0),R+) and ¢ > 0, k€ N.

H5.1.17: [§° % = oo.

5.2 Suggestions for future work

Oscillation theory, though very old, is one of the most dynamic areas that has
attracted investigations on the qualitative properties of differential equations. It
appears that its source is inexhaustible and more often than not, continues to
attract considerable interest by researchers. Simultaneously, interesting results
have been obtained and this can be observed in the study of oscillatory properties
of differential equations with deviating arguments.

In the last decade, an intensive investigation into the oscillatory properties of
various classes of impulsive differential equations has earnestly commenced. The
oscillation theory for the solution of neutral impulsive differential equations is one
of the direct consequences of this great effort. However, there still remains a lot

in this direction for future consideration. These include the following:

i) the study of the oscillatory nature of solutions of equation (173) when the

coefficient g(t) oscillates;

ii) extension of some of the results in chapter 4 to equations where the coefficient

p(t) is in ranges different from those described therein;

iii) the extension of results in section 4.2 to equations with positive and negative

p’s and/or equations with positive and negative ¢’s;
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iv) consideration of the neutral impulsive differential equation

@ + poy(t-7)] +q(t) y(t—0)=0, t¢S
Aly(tx) + poy(te—7)] + @y (te —0) =0, V tx € S,

where 7 € (0,00), o € [0,00), g € PC([to,0),R+), qx >0 and

/rm g(s)ds + > qu = +00.

9 to <ty

The verification of whether or not every non-oscillatory solution of this

equation tends to zero as t — +o00 constitutes an interesting problem;

v) consideration of the delay neutral delay impulsive differential equation

() + py(t-7) +a)y(t—-o)=0, t¢S
Aly(te) + poy(t—7)] + @y (tx—0) =0, V ty € S,

where p € R\{0}, 7 € (0,00), ¢ € [0,00), ¢q € PC([0,0),R:), aqx >0

together with the given restrictions:

a) —1 < p < 0. The condition

/:0 q(t)dt+ Y qp=+o0

to<tx

should not be assumed;

b) p>0 and ¢ <.

The study of each of the above cases and also, finding the sufficient conditions for
the oscillation of all solutions under the indicated restrictions on the function g(t)
and the delays 7 and o provide yet another interesting investigation problem.
The developments in the field of differential equations over the last thirty years,
particularly in the area of impulsive differential equations, have helped to further

strengthen the understanding of the potentials of the mathematical sciences in
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general. There are still vast areas in the new body of knowledge yet untapped. It
is believed that keeping abreast with the developments in the new area is the only
way to prevent ourselves from being thrown out overboard. This work is aimed at
assisting intending researchers in coping with these new developments and what
is more, providing a new sense of direction to the weary ones. We sincerely hope

that these goals have been achieved.



170

Bainov, D. D. and Simeonov, P. S. (1998). Oscillation theory of impulsive differential
equations. International Publications, Orlando.

Barrett, J. H. (1969). Oscillation theory of ordinary linear differential equations.
Advances in Mathematics, 3, 415— 509.

Bebernes, J., Gaines, R., and Schmitt, K. (1974). Existence of periodic solutions for
third and fourth order ordinary differential equations via coincidence degree.
Ann. Soc. Sei. Bruxelles Ser. I, 88, 25— 36.

Bellman, R. and Cooke, K. (1963). Differential-difference equations. New York.
Academic Press.

Bradley, J. S. (1970). Oscillation theorems for a second order delay equation. Journal
of differential Equations, 8, 397-403.

Brands, J. J. A. M. (1978). Oscillation theorems for second order functional
differential equations. J. Math. Anal. Appl., 63, 54— 64.

Burkowski, F. (1971). Oscillation theorems for a_second order nonlinear functional
differential equation. J. Math. Anal. Appl., 33, 258— 262.

Burton, T. A. and Haddock, J. R. (1976). On solution tending to zero for the equation
x(O)+ a()x(t—1(r)) = 0. Arch. Math. (Basel), 27, 48— 51.

Butler, G. J. (1979). Oscillation criteria for second order nonlinear ordinary
differential equations. Colloquia Mathematica Sociatatie Janos Bolyai 30,
Qualitative theory of differential equations, Ed. Szeged, 93— 109.

Chen, L. (1977). Some oscillation theorem for differential equation with functional
arguments. J. Math. Anal. Appl., 58, 83— 87.

Chen, L. (1978). Some nonoscillation theorem for the higher order nonlinear
functional differential equations. Ann. Mat. Pura. Appl., 4(117), 41— 53.

Chen, Y. and Feng, W. (1997). Oscillation of second order nonlinear ordinary
differential equations with impulses. Journal of Mathematical Analysis and
Applications, 210, 150- 169.

Deo, S. G. and Pandit, S. G. (1982). Differential systems involving impulses (lecture
notes in mathematics), series 954. Springer-Verlag, Berlin.

Dishliev, A. B. and Bainov, D. D. (1990). Dependence upon initial conditions and
parameter of impulsive differential equations with variable structure.
International Journal of Theoretical Physics, 29(6), 655— 675.

Domshlak, Y. I. (1982). Comparison theorems of sturm type for first and second
order differential equations with sign variable derivations of the argument (in
russian). Ukrainskii Matematicheskii Zhurnal, 34, 158 163.

Dosly, O. and Rehak, P. (2005). Half-linear differential equations. Elsevier
Publishers, London, North Holland.



171

Driver, R. D. (1965). Existence and continuous dependence of solutions on neutral
functional differential equations. Archs. Ration. Mech. Anal., 19, 149- 166.

Driver, R. D. (1984). A mixed neutral system. Nonlinear Analysis: TMA, 8, 155—-158.

Erbe, L. H. and Zhang, B. G. (1989). Oscillation of second order neutral differential
equations. Bull. Austral. Math. Soc., 39(1), 71— 80.

Farrel, K. (1990). Bounded oscillation of neutral differential equations. Radovi
Matematicki, 6, 21— 40.

Fite, W. B. (1921). Properties of the solutions of certain functional differential
equations. Trans. Amer. Math. Soc., 223, 311-319.

Foster, K. E. and Grimmer, R. C. (19792. Nomscillatorly solutions of higher order
differential equations. J. Marh. Anal . Appl., 71, 1- 17.

G., L. (1971). Oscillation and asymptotic behavior of solutions of differential
equations with retarded argument. Journal of Diff. Equations, 10, 281—290.

Garner, B. J. (197}?}. Oscillatory criteria for a general second order functional
equation. SIAM J. Appl. Math., 29, 690— 698.

Gollwitzer, H. E. (1969). On nonlinear oscillation for a second order delay equation.
J. Math. Anal. Appl., 26, 385 389.

Gopakamy, K., Lalli, B. S., and Zhang, B. G. (1992). Oscillation of odd order neutral
differential equations. Czechoslovak Mathematical Journal, 42, 313—323.

Gopalsamy, K. and Zhang, B. G. (1990). Oscillation and non-oscillation in first order
neutral differential equations. Jowrnal of Mathematical Analysis and
applications, 151, 42— 57.

Grace, S. R. and Lalli, B. S, (1987). Oscillations of nonlinear second order neutral
dely differential equations. Radovi Mat., 3, 77— 84.

Grace, S. R. and Lalli, B. S. (1989). Oscillation and asymptotic behavior of certain
second order neutral differential equations. Radovi Mat., 5, 121-126.

Graef, J. R. (1983). Non oscillation of higher order functional differential equations.
J. Math. Anal. Appl., 92, 524— 532.

Graef, J. R., Grammatikopoulos, M. K., and Spikes, P. W. (1980). Asymptotic and
oscillatory behavior of superlinear differential equations with deviating
arguments. J. Math. Anal. Appl., 75, 134— 148.

Graef, J. R., Grammatikopoulos, M. K., and Spikes, P. W. (1988). Asymptotic
properties of solutions of nonlinear neutral delay differential equations of the
second order. Radovi Mat.,4, 133— 149.




172

Graef, J. R., Grammatikopoulos, M. K., and Spikes, P. W. (1991a). Asymptotic and
oscillatory behaviour of solutions of first order nonlinear neutral delay

differential equations. Journal of Mathematical Analysis and Applications, 155,
562—- 571.

Graef, J. R., Grammatikopoulos, M. K., and Spikes, P. W. (1991b). On the asymptotic
behaviour of solutions of the second order nonlinear neutral delay differential
equations. Journal of Mathematical Analysis and Applications, 156, 23— 39.

Graef, J. R., Grammatikopoulos, M. K., and Spikes, P. W. (1993). Asymptotic
behaviour of non-oscillatory solutions of neutral delay differential equations of
arbitrary order. Nonlinear Analysis, 21, 23— 42.

Graef, J. R., Katamura, Y., Kusano, T., and Spikes, P. W. (1979). On the non-
oscillation of perturbed functional differential equations. Pacific J. Math., 83,
365-373.

Grammatikopoulos, M. K. (1977). Oscillation and asymptotic results for strongly
nonlinear retarded differential equations. In Sixth Balkan Congress, 201.
Summaries. Varna.

Grammatikopoulos, M. K., Grove, E. A., and Ladas, G. (1986). Oscillation and
asymptotic behavior of neutral differential equations with deviating arguments.
Applicable Analysis, 22, 1- 19.

Grammatikopoulos, M. K., Ladas, G., and Meimaridou, A. (1985). Oscillations of
second order neutral delay differential equations. Radovi Mat., 1,267-274.

Grammatikopoulos, M. K., Ladas, G., and Meimaridou, A. (1987). Oscillation and
asymptotic behavior of second order neutral differential equations. Annali di
Matern. Pura ed Applicata., 148, 29— 40.

Grammatikopoulos, M. K., Ladas, G., and Meimaridou, A. (1988a). Oscillation and
asymptotic behavior of higher order neutral equations with variable
coefficients. Chin. Ann. of Math., 9(3), 322— 338.

Grammatikopoulos, M. K. and Marusiak, P. (1995). Oscillatory properties of
solutions of second order nonlinear neutral differential inequalities with
oscillating coefficients. Archivum Mathematicum,31(1), 29— 36.

Grammatikopoulos, M. K., Sficas, Y. G., and Staikos, V. A. (1979). Oscillatory
properties of strongly superlinear differential equations with deviating
arguments. J. Math. Anal. Appl., 67, 171- 187.

Grammatikopoulos, M. K., Sficas, Y. G., and Stavroulakis, I. P. (1988b). Necessary
and sufficient conditions for oscillations of neutral equations with several
coefficients. Journal of Differential Equations, 76, 294—311.

Grove, E. A., Kulenovic, M. R., and Ladas, G. (1987). Sufficient conditions for

oscillation and nonoscillation of neutral equations. Journal of Differential
Equations, 68, 373—382.



173

Grove, E. A., Ladas, G., and Schinas, J. (1988a). Sufficient conditions for the
oscillation of delay and neutral delay equations. Canadian Mathematical
Bulletin, 31, 459— 466.

Grove, E. A, Ladas, G., and Schultz, S. W. (1988b). Oscillations and asymptotic
behaviour of first order neutral delay differential equations. Applicable
Analysis, 27, 67— 68.

Gurgula, S. 1. (1982). Investigation of the stability of solutions of impulse systems by
lyapunov’s second method. Ukrainian Math., 1, 100- 103.

Gustafson, G. B. (1974). Bounded oscillations of linear and nonlinear delay
differential equations of even order. J. Math. Anal. Appl., 46, 175- 189.

Gyori, 1. (1989). Oscillations of retarded differential equations of the neutral and the
mixed type. Journal of Mathematical Analysis and Applications, 141, 1-20.

Gyori, I. and Ladas, G. (1991). Oscillation theory of delay differential equations with
applications. Claredon Press, Oxford.

Hale, J. K. (1977). Theory of functional differential equations. Springer — Verlag,
New York.

Hartman, P. (1964). Ordinary differential equations. John Wiley and Sons Inc., New
York and London.

Hino, Y. (1974). On oscillation of the solution of second order functional differential
equations. Funkcial. Ekvac.,17,94-105.

Isaac, 1. O. (2008). Oscilliation theory of neutral impulsive differential equations.
PhD thesis, Postgraduate School, University of Calabar, Calabar, Nigeria.

Isaac, I. O. and Lipcsey, Z. (2007). Linearized oscillations in autonomous delay

impulsive differential equations. International Journal of Contemporary
Mathematics and Statistics, 2(4), 95— 109.

Isaac, I. O. and Lipcsey, Z. (2009a). Linearized oscillations in nonlinear neutral delay
impulsive diffeential equations. Journal of Modern Mathematics and Statistics
— Medwell Journals — Pakistan, 3(1), 1-7.

Isaac, I. O. and Lipcsey, Z. (2009b). Oscillation in neutral impulsive logistic
differential equations. Journal of Modern Mathematics and Statistics, 3, 8 — 16.

Isaac, I. O. and Lipcsey, Z. (2009¢c). Oscillations in non-autonomous neutral
impulsive differential equations with several delays. Jowrnal of Modern
Mathematics and Statistics, 3, 73— 717.



174

Isaac, I. O. and Lipesey, Z. (2009d). Oscillations in systems of neutral impulsive
differential equations. Journal of Modern Mathematics and Statistics — Medwell
Journals, Pakistan,3(1), 17 -21.

Isaac, I. O. and Lipcsey, Z. (2010a). Oscillations in linear neutral delay impulsive
differential equations with constant coefficients. Communication in Applied
Analysis, 14(2), 123 — 136.

Isaac, I. O. and Lipcsey, Z. (2010b). Oscillations in neutral impulsive differential
equations with variable coefficients. Dynamic Systems and Applications, 19, 45
-62.

Isaac, I. O., Lipesey, Z., and Ibok, U. J. (2011a). Non-oscillatory and oscillatory
creteria for a first order nonlinear impulsive differential equations. Journal of
Mathematics Research, Canada, 3(2), 52 — 65.

Isaac, 1. O., Lipcsey, Z., and Ibok, U. J. (2011b). Oscillatory conditions on both
directions for a nonlinear impulsive differential equation with deviating
arguments. Journal of Mathematics Research, Canada, 3(3), 49 -51.

Isaac, 1. O., Lipesey, Z., and Ibok, U. J. (2014). Linearized oscillations in autonomous
delay impulsive differential equations. British Journal of Mathematics &
Computer Science, 4(21), 3068- 3076.

Ivanov, A. F. and Shevelo, V. N. (1981). Oscillation and asymptotic behavior of
solutions of first order functional differential equations. Ukrain. Mat. Zh., 33,
745-751.

Jackson, L. K. (1968). Subfunctions and second-order ordinary differential
inequalities. Advances in Mathematics,2, 307—- 363.

Kartsatos, A. G. and Manougian, M. N. (1976). Further results on oscillation of
functional differential equations. J. Math. Anal. Appl., 53, 28— 37.

Kelley, W. G. (1975). Some existence theorems for nth-order boundary value
problems. Journal of Differential Equations, 18, 158— 1609.

Klaasen, G. A. (1971). Differential inequalities and existence theorems for second and
third order boundary value problems. Journal of Differential Equations, 10,
529-537.

Krishna, S. V., Vasundlara, D. J.,, and Satyavani, K. (1991). Boundedness and
dichotomies for impulse equations. Journal of Mathematical Analysis and
Applications, 158, 352—- 375.

Krisztin, T. and Wu, J. (1996). Asymptotic behaviour of solutions of scalar neutral
functional differential equations. Differential equations and Dynamic systems,
4,351-366.

Kulenovic, M. R. S., Ladas, G., and Meimaridou, A. (1987a). Necessary and
sufficient condition for oscillations of neutral differential equations. Journal of
the Australian Mathematical Society — Series B, 28(3), 362— 375.



175

Kulernovic, M. R. S., Ladas, G., and Meimaridou, A. (1987b). On oscillation of
nonlinear delay differential equations. Quart. Appl. Math., 45, 155- 164.
Kulev, G. K. and Bainov, D. D. (1989). On the asymptotic stability of system with
impulses by the direct method of lyapunov. J. Math. Anal. Appl., 140, 324—

340.

Kulev, G. K. and Bainov, D. D. (1991). Lipschitz stability of impulsive systems of
differential equations. International Journal of Theoretical Physics, 30, 737-
756.

Kung, G. C. T. (1971). Oscillation and nonoscillation of differential equations with a
time-lag. SIAM J. Appl. Math., 21, 207-213.

Kusano, T. and Naito, M. (1976). On the oscillation of fourth-order nonlinear
differential equations with deviating argument. In Qualitative research on
stability of solutions of functional differential equations, 207- 213. Proc.
Sympos. Res. Inst. Math. Sci. Kyoto. Univ . Kyoto.

Kusano, T. and Onose, H. (1974). Oscillations of functional differential equations
with retarded argument. Journal of Differential Equations, 15, 269- 277.

Kusano, T. and Onose, H. (1977). Asymptotic decay of oscillatory solutions of
second order differential equations with forcing term. Proc. Amer. Math. Soc.,
66, 251-257.

Kusauo, T. and Onose, H. (1973). Nonlinear oscillation of a sublinear delay equation
of arbitrary order. Proc. Amer. Math. Soc., 40, 219- 224.

Ladas, G., Ladde, G., and Papadakis, J. S. (1972). Oscillation of functional
differential equations generated by delays. Journal of Differential Equations,
12, 385-395.

Ladas, G. and Lakshmikantham, V. (1974). Oscillations caused by retarded actions.
Applicable Analysis, 4,9- 15.

Ladas, G. and Partheniadis, E. C. (1989). Necessary and sufficient conditions for

oscillations of second order neutral equations. J. Math. Anal. Appl., 138, 214—
231.

Ladas, G., Partheniadis, E. C., and Sficas, Y. G. (1988). Oscillations of second order
neutral equations. Canadian Journal of Mathematics, 40, 1301- 1314,

Ladas, G. and Schultz S. W. (1989). On oscillation on neutral equations with mixed
arguments. Hiroshima Mathematical Journal, 19, 409-429.

Ladas, G., Schultz, S. W., and Wang, Z. (1992). Oscillations of unbounded solutions
of neutral equations with mixed arguments. World Scientific Series in Appi.
Anal., 1,403- 1412,




176

Ladas, G. and Sficas, Y. G. (1986). Oscillations of neutral delay differential
equations. Canad. Math. Bull., 29(4), 438—445.

Ladde, G. S. (1972). Oscillations of nonlinear functional differential equations
generated by the retarded argument. Delay and Functional Differential
Equations and Their Applications, 1, 355- 365.

Ladde, G. S. (1973). Oscillations of nonlinear functional differential equations
generated by retarded actions. I Rend. Circolo. Matematico (Italia) T., 22, 67—
76.

Ladde, G. S., Lakshmikantham, V., and Zhang, B. G. (1987). Oscillation theory of
differential equations with deviating arguments. Marcel Dekker, New York.

Lakshmikantham, V., Bainov, D. D., and Simeonov, P. S. (1989). Theory of impulsive
differential equations. World Scientific, Publishing Company Limited
Singapore.

Lakshmikantham, V. and Liu, X. (1989). On quasistability for impulsive differential
systems. Nonlinear Analysis, 13(7), 819— 828.

Leighton, W. (1981). A4 first course in ordinary differential equations (5th edition).
Wadsworth, Belmont, CA.

Levitan, B. M. (1947). Some questions of the theory of almost periodic functions.
by BRI VA ot vy e R o "

Li J. H. and Liu W. L. (1996). Oscillation criteria for second order neutral
differential equations. Canadian Journal of Mathematics, 18, 871— 886.

Li W. T. (1997). Classification and existence of non-oscillatory solutions of second
order nonlinear neutral differential equations. Ann. Polon Math., 85(3), 283—
302.

Lillo, J. C. (1969). Oscillatory solutions of y'(x) = m(x)(x — n(x))). Journal of
Differential Equations, 6, 1-35.

Lim, E. (1976). Asymptotic behavior of solutions of functional differential equation
x'(t)= ax(Ut)+ bx(t), A > 1. J. Math. Anal. Appl., 55, 794— 806.

Liossatos, G. E. (1970). Some oscillation theorems for second order nonlinear

differential equations with functional argument. Bull. Soc. Math. Grece., 11,
61- 65.

Lovelady, D. L. (1975). Asymptotic analysis of a second order nonlinear functional
erential equations. Funkcialaj, Ekvacioj., 18, 15— 22.

Macki, J. M. and Wong, J. S. W. (1968). Oscillation of solutions of second order
nonlinear differential equations. Pacific J Math.,24,111-118.

Minorsky, N. (1962). Nonlinear oscillations. D. Van Norstand Co., Inc., Princeton.



177

Myshkis, A. D., Bainov, D. D., and Zahariev, A. 1. (1984). Oscillatory and asymptotic
properties of a class of operator-differential inequalities. Proc. Roy. Soc.
Edinburgh, 96, 5— 13.

Nagumo, M. (1937).  Uber die differential gleichung y” = flx, y, ¥"). Proc. Phys.-
Math. Sot. Japan, 19(3), 861— 866.

Norkin, S. B. (1972). Differential equations of the second order with retarded
argument, volume 31. Translations of Mathematical Monographs, AMS,
Providence, R. L.

Norkin, S. B. (1977). Oscillation of the solutions of differential equations with
deviating argument. Differential Equations with Deviating Argument, Naukova
Dumka, Kiev.

Ntouyas, S. K. and Sficas, Y. G. (1983). On the asymptotic behavior of neutral
functional differential equations. Arch. Mat., 41, 352— 362.

Odaric, O. N. and Sevelo, V. N. (1971). Some problems in the theory of oscillation of
second order differential equations with deviating arguments. Ukranian Math.
J., 23, 508-516.

Onose, H. (1982). Oscillation property of functional differential equations with
complicated arguments. Math. Seminar Notes, 10, 715- 720.

Peng, M. and Ge, W. (2000). Oscillation criteria for second order nonlinear
differential equations with impulses. Computers and Mathematics with
Applications, 30, 217- 225.

Philos, C. G. (1984). Some comparison criteria in oscillation theory. J. Austral. Math.
Soc. Ser., 36(1), 176— 186.

Philos, C. G. (1989). Oscillation theorems for linear differential equations of the
second order. Archiv der Mathematik, 53, 483— 492.

Samoilenko, A. M. and Perestyuk, N. A. (1977). Stability of the solutions of
differential equations with impulse effect. Differential Equations, 11, 1981-
1992.

Samoilenko, A. M. and Perestyuk, N. A. (1995). Impulsive differential equations.
World Scientific Publishing Company Ltd, Singapore.

Schrader, K. W. (1969). Existence theorems for second order boundary value
problems. Journal of Differential Equations, 5, 572— 584.

Sevelo, V. N. and Odaric, O. N. (1968). The nonoscillations of solutions of nonlinear
second order differential equations with retarded argument. Trudy Sem. Mut.
Fix. Melinein. Koleban, 1, 268— 279.

Sficas, Y. G. and Stavroulakis, I. P. (1987). Necessary and sufficient conditions for

oscillations of neutral differential equations. Journal of Mathematical Analysis
and Applications, 123, 494— 507.



178

Shere, K. D. (1973). Nonoscillation of second order linear differential equations with

retarded argument. Journal of Mathematical Analysis and Applications, 41, 93—
299.

Sibgatullin, G. K. (1980). A comparison theorem for nonoscillating solutions of
differential equations of order n > 2 with lag. Partial Differential Equations,
Ryazan. Gos. Ped. Inst. Ryaza.n, 87 —93.

S B. (1977). Vanishin nonoscillatnm of lienard retarded equations.
o Hi r(gshxma Math. J., %( ope e

Singh, B. (1980). Necessary and sufficient condition for eventual decay of oscillation
in general functional equations with delays. Hiroshima Math. J., 10, 1-9.

Slemrod, M. and Infante, E. F. (1972). Asymptotic stability criteria for linear system
of difference-differential equations of neutral type and their discrete analogues.
J. Math. Anal. Appl., 38, 399-415.

Snow, W. (1965). Existence, uniqueness and stability for nonlinear differential-
difference equations in the neutral case. N. Y.U. Courant Inst. Math . Sci. Rep.
IMM NYU, 328.

Staikos, V. A. (1970). Oscillatory pro of a certain delay-differential equations.
Bull. SOL. Ma)th Grece, 1p1 psmy J "

Staikos, V. A. and Petsoulas, A. G. (1970). Some oscillation criteria for second order
nonlinear delay-differential equations. J. Math. Anal. Appl., 30, 695-701.

Sturm, C. (1836). Sur es equations differentielles lineaires du second ordre. J.
Math Pures et ppl 1, 106 186.

Swanson, C. A. 1968 arison and oscillation theory of linear differential
quat:ons Qork anrfJ London, Acad. Press. v of iffe

Travis, C. (1972) Oscillation theorems for second—order differential equations
with functional arguments. Proc. Amer. Math. Soc., 31, 199—-202.

True, E. D. (1975). A comparison theorem for certain functional differential
equations. Proc. Amer. Math. Soc., 47, 127- 132.

Waltman, P. (1968). A note on an oscillation criterion for an equation with a
functional argument. Canad. Math. Bull., 11, 593—- 595.

Willet, D. W. (1969I)uaCla351ﬁcatnn of second order linear differential equations with
respect to oscillation. Advances in Math., 3, 594— 623.

Wong, J. S. W. (1968). On second order nonlinear oscillation. Funkcial. Ekvac., 11,
207-234.

Wong, J. S. W. (1975). On the generalized emden-fowler equation. SI4AM Rev., 17,
339-360.




] | m {ZO o Hmw Journ ¢

rdcr peutra dﬂ’feren
Applications: 252 342~ 353
3, (1983) Oscdlatory propertes of solutions of second order damped nonlinear
Acta, Ma themancal Appllcatae Sinica., 0 51— 256.
fferential

nd order nO nlinear d

l - “ J!! M T ancJme I .
& d

——







179

Wong, J. S. W. (2000). Necessary and sufficient conditions for oscillation of second
order neutral differential equations. Journal of Mathematical Analysis and

Applications, 252, 342— 353.

Yan, J. (1983). Oscillatory properties of solutions of second order damped nonlinear
differential equations. Acta, Mathematical Applicatae Sinica., 6, 251— 256.

Yeh, C. (1980). An oscillation criterion for second order nonlinear differential
equations with finctional arguments. J. Math. Anal and Appl., 76, 72— 76.

Yoshizawa, T. (1970). Oscillatory property of second order differential equations.
Tohoku It(/fath. ?f., 22, 6191;)[6§4.p N .
Zabreiko, P. P., Bainov, D. D., and Kostadinov, S. 1. (1988). Characteristic exponents

of impulsive differential equations in a banach space. International Journal of
Theoretical Physics, 27, 721- 743.

Zahar{ev, A. L. and Bainov, D. D. (1980). Oscillating properties of the solutions of a
class of neutral type functional differential equations. Bull. Austral. Math.Soc.,
22,365-372.

Zahariev, A. I and Bainov, D. D. (1986). On some oscillation criteria for a class of
neutral type functional differential equations. J. Austral. Math. Soc . Ser., 28(2),
229-239. i

Zahariev, A. 1. and Bainov, D. D. (1988). Integral averaging and oscillation of the

solutions of neutral type functional differential equations. Tamkang J. Math.,
19, 61— 67.

Zhang, B. (1980). On the oscillation of the solutions for second order functional
- differential equations,. J. of Shandong College of Oceanology, 1, 1- 10.

Zhang, B. (1981). Oscillation and nonoscillation for second order functional
differential equations. Chinese Annals of Math., 2(1), 178- 201.

Zhang, B. G, Ding, Y. D., Feng, R. L., Wy, D., and Wang, O. S.(1982). Some new
results about oscillation of solutions of functional differential equations. J. of
Shandong College of Oceanology, 12, 85— 97.

Zhang, Y., Zhao, A., and Yan, J. (1997). Oscillation criteria for impulsive delay
differential equations. J. Math. Anal. Appl., 205, 461 — 470.




