

DEVELOPMENT OF AN ENHANCED DATA ANNOTATION AND

FILTERINGTECHNIQUE FOR IOT SENSORS

BY

EMMANUEL JERRY DAUDA

P16PSCS8070

A DISSERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES

AHMADU BELLO UNIVERSITY, ZARIA

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF

MASTER OF SCIENCE (M.Sc.) DEGREE IN COMPUTER SCIENCE

DEPARTMENT OF COMPUTER SCIENCE,

AHMADU BELLO UNIVERSITY,

ZARIA

DECEMBER, 2019

ii

DECLARATION

I declare that this dissertation titled “DEVELOPMENT OF AN ENHANCED DATA

ANNOTATION AND FILTERING TECHNIQUE FOR IOT SENSORS” has been carried out

by me under the supervision of Prof. A. A. Obiniyi and Dr. A. F. D. Kana. This dissertation has

not been presented for another degree at any university. The information contained in the

literature has been duly acknowledged in the text and a list of references provided.

…………………………… .…………………………… ………………………………

Emmanuel Jerry Dauda Signature Date

iii

CERTIFICATION

This dissertation titled “DEVELOPMENT OF AN ENHANCED DATA ANNOTATION AND

FILTERING TECHNIQUE FOR IOT SENSORS” by Emmanuel Jerry Dauda meets the

regulations governing the award of the degree of M.Sc. Computer Science of Ahmadu Bello

University (ABU), Zaria, and it is approved for its contribution to knowledge and literary

presentation.

Prof. A. A. Obiniyi

………………………………............. ……………………............……………………

Chairman, Supervisory Committee Signature Date

Dr. A. F. D. Kana

………………………………............. ……………………............……………………

Member, Supervisory Committee Signature Date

………………………………............. ……………………............……………………

Member, Supervisory Committee Signature Date

(External Examiner)

Prof. S.B Junaidu

………………………………............. ……………………............……………………

H. O. D. Computer Science Signature Date

Prof. A.Zubair

………………………………............. ……………………............……………………

Dean, Post Graduate School Signature Date

iv

DEDICATION

This dissertation is dedicated to the Almighty God for His divine direction, guidance and

provision throughout the period of this dissertation.

v

ACKNOWLEDGEMENT

First of all, I would like to acknowledge the uncommon grace of God upon this work. At first, it

was as though all hope was lost. But God intervened and everything was back on track again.

Also, I would like to acknowledge the immeasurable effort of my supervisors,Prof. A. A. Obiniyi

and Dr. A. F. D. Kana. Their tireless contributions, support, advice and encouragement made this

research a success.

My sincere appreciation also goes to my friends D. M. Chai, Musa Yusuf, O. M. Ayo and all the

Department of Computer Science Postgraduate Students for their assistance, support and

contribution towards the completion of this work.

Furthermore, my profound gratitude goes to The Head of Department (HOD), Department of

Computer Science, Prof S. B. Junaidu for his relentless effort towards ensuring I and other

students don’t relent in pursuit of success. Similarly, the entire staff and management of ICICT

ABU Zaria are highly appreciated for giving me a solid foundation in the world of computing.

Finally, my utmost gratitude to my entire family, immediate and extended. Starting with my

ever-supportive wife, MrsOpeyemi Emmanuel, my Dad, Pa. Kolawole Emmanuel (JP), my

Mum, Mrs Juliana Emmanuel (JP), siblings and family friends for parental guidance, prayers,

provisions and all-round support.

God bless you all.

vi

ABSTRACT

Internet of Things (IoT) applications depend on data that are meaningful to the machine to

efficiently function. Amongst other sources, data are generated by different types of sensors such

as proximity sensor, pressure sensor, temperature sensor and ultrasonic sensor. The diversity of

these sensors reflects on the data they generate. As a result, IoT applications encounter

challenges understanding and processing these data. The most recent solution to this problem is

data filtering and annotation on gateways. This has also resulted into a bottleneck processing

thereby causing delay and inconsistencies in processed data. Consequently, an enhanced data

preparation and annotation technique is proposed. This approach uses a distributed programming

model for sensory data processing. The proposed approach seeks to develop a Hadoop

MapReduce algorithm which efficiently filters and annotates sensory data in a distributed

manner. To evaluate the feasibility of the proposed approach, data generated by sensors are

stored on Hadoop Distributed File System (HDFS) and are processed by a MapReduce job.

Semantic Web technologies such as Extensible Markup Language (XML) and Resource

Description Framework (RDF) were used for the data annotation. Two categories of experiments

were conducted and comparison between the proposed system and the existing system were done

based on data size and processing time. This dissertation concludes that the proposed system has

61.65% processing time and 13.41% data size enhancement respectively over the existing system

VII

TABLE OF CONTENTS

DECLARATION... ii

CERTIFICATION ... iii

DEDICATION.. iv

ACKNOWLEDGEMENT .. v

ABSTRACT .. vi

TABLE OF CONTENTS ... vii

LIST OF FIGURES ... ix

LIST OF TABLES .. x

CHAPTER ONE ... 1

INTRODUCTION ... 1

1.1 Background to the Study .. 1

1.2 Motivation .. 3

1.3 Problem Statement .. 3

1.4 Aim and Objectives ... 5

1.5 Research Methodology ... 5

1.6 Organization of Dissertation .. 7

CHAPTER TWO .. 8

LITERATURE REVIEW .. 8

2.1 Introduction ... 8

2.2 Internet of Things (IoT) .. 8

2.2.1 Characteristics of Internet of Things ... 9

2.2.2 Internet of Things Architecture .. 10

2.3 Semantic Web .. 14

2.3.1 Semantic Web Technologies ... 14

2.3.2 Role of XML and RDF .. 16

2.3.3 Domain Ontology .. 16

2.4 Apache Hadoop ... 17

2.4.1 MapReduce .. 18

2.4.2 Hadoop Distributed File System (HDFS) .. 20

2.5 Related Works ... 20

2.6 Literature Gap and Contribution of this Dissertation... 27

viii

2.7 Data Source.. 27

CHAPTER THREE .. 30

DESIGN OF AN ENHANCED DATA FILTERING AND ANNOTATION TECHNIQUE FOR IOT

SENSORS .. 30

3.1Introduction .. 30

3.2 Data Preparation and Preprocessing Method .. 31

3.2.1 Data Extraction ... 32

3.2.2 Data Cleaning ... 33

3.2.3 Data Transformation .. 33

3.3 Distributed Data Storage and Parallel Data Processing .. 34

3.3.1 Distributed Data Storage on HDFS ... 34

3.3.2 Parallel Data Processing using MapReduce Model .. 37

3.4 System Architecture .. 40

CHAPTER FOUR ... 41

IMPLEMENTATION, RESULT AND ANALYSIS .. 41

4.1 Introduction ... 41

4.2 Block Information ... 42

4.3 Experimental Results for Data Processing on Existing and Proposed System 46

4.4 Comparative Analysis of Existing System and Proposed System ... 52

CHAPTER FIVE .. 56

SUMMARY, CONCLUSION AND FUTURE WORK ... 56

5.1 Summary .. 56

5.2 Conclusion ... 56

5.3 Future Work .. 57

REFERENCES .. 58

APPENDIX A .. 61

APPENDIX B .. 66

APPENDIX C .. 69

ix

LIST OF FIGURES

Figure 2.1: IoT Architecture (Keyur and Sunil, 2016) .. 11

Figure 2.2: IoT Gateway Architecture (Al-Osta et al., 2017) .. 24

Figure 2.3: Data Preparation Module (Al-Osta et al., 2017) ... 25

Figure 2.4: Data Annotation Module (Al-Osta et al., 2017) .. 26

Figure 2.5: Smart Green Infrastructure Monitoring Sensors sample data (Data.gov, 2018) 29

Figure 2.6: Smart Green Infrastructure Monitoring Sensors sample data - CSV (Data.gov, 2018)

... 30

Figure 3.1: Data Preparation and Preprocessing Tasks ... 32

Figure 3.2: Distributed Data Storage Architecture .. 36

Figure 3.3: Distributed Storage of 1.42GB GSIMS Data .. 37

Figure 3.4: Parallel Data Processing Architecture ... 38

Figure 3.5: System Architecture .. 40

Figure 4.1: 1.42GBBlocks Information ... 41

Figure 4.2: Time taken for processing datasets on existing System .. 47

Figure 4.3: Processed file size on existing System .. 48

Figure 4.4: Time taken for processing datasets on Proposed System .. 49

Figure 4.5: File size generated by Proposed System ... 50

Figure 4.6: Processed and Invalid document size .. 51

Figure 4.7: Processing Time on Existing and Proposed System ... 53

Figure 4.8: File size generated on Existing and Proposed System .. 54

x

LIST OF TABLES

Table 3.1: Attributes Description ... 32

Table 3.2: Cleaned Attributes... 33

Table 4.1: Block information for 1.42GB dataset storage ... 42

Table 4.2: Block information for 2.14GB dataset storage ... 43

Table 4.3: Block information for 3.02GB dataset storage ... 44

Table 4.4: Block information for 5.07GB dataset storage ... 45

Table 4.5: Time taken for processing datasets on existing System ... 47

Table 4.6: Processed file size on existing System ... 48

Table 4.7: Time taken for processing datasets on Proposed System ... 49

Table 4.8: Processed File Size on the Proposed System .. 50

Table 4.9: Invalid sensor data size ... 51

Table 4.10: Time taken for processing datasets on Existing and Proposed System 52

Table 4.11: Processed File Size on Existing and Proposed System... 54

1

CHAPTER ONE

INTRODUCTION

1.1 Background to the Study

Internet of Things (IoT)has been visualized to redefine Information and Communication

Technology (ICT). This restructuring is popularized by the never before seenexponential

increase of Internet connected devices in our modern world. Recent analysis by Cisco shows that

by 2030, 500 billion devices are expected to be connected to the Internet (Cisco, 2016). These

devices have sensors that retrieve data, interact with the environment, and send information over

a network. Connection of all these devices is referred to as Internet of Things (IoT). Data

generated by these intelligent devices are used to aggregate, analyze and deliver insight which

helps drive more informed decisions and actions.

The data generated are often sent to the cloud for storage and processing (Borgia, 2014). The

processed data can be used for predictive analysis to predict possible occurrences in the real

world and could also be beneficial to applications.

As revealed by Google, five (5) exabytes of data were generated from the dawn of civilization

till 2013. Now the world generates five (5) exabytes of data every two days (Data-Flair, 2018).

These huge amounts of data generated are transferred through a medium to the Internet cloud

platforms. These platforms have the processing abilities to further process and analyze the

collected data to ensure their usefulness for IoT applications that can potentially enhance several

areas of human daily life such as weather forecasting, traffic monitoring, and health care (Khan

et al., 2015).

2

Researchers have proposed and built severalsystems to eliminate the transfer of redundant data

and to also filter data for storage in the cloud. Recently, IoT Gateways were introduced to

minimizethe hugeamount of unwanted data sent to the cloud. The IoT Gateways serve as point

where data generated by IoT devices and sensors are collected and gathered.Also, data filtering

and annotation occur using the semantic web-based approach before being sent to the cloud for

further usage by end-user applications. A recent approach of employing IoT gateway devices as

hub for data processing has been widely adopted (Al-Osta et al., 2017). This is to reduce the task

of transferring data to the cloud through IoT networks, and to minimize processing cost at the

cloud level.

Al-Osta et al.(2017) described the gateway as composed of three main modules. These modules

are: The Data Preparation Module, the Data Annotation Module and the Cloud Interface.

Data preparation consist of three modules, which are data aggregation, data filtering and data

structuring (Al-Osta et al., 2017). Data aggregation module receives data from sensor nodes and

stores them in a temporary file for analyzing. The data filtering module reduces the amount of

data to be processed at the annotation stage, thereby saving resources needed. This module

alsoincludes a rule engine which contains a set of predefined rules for removing duplicated and

unnecessary data. The data structuring module receives filtered sensor data from the filtering sub

module, and utilizes a technique to convert the data into an Extensible Markup Language (XML)

file for data annotation. Data annotation converts the resulting data in XML format to Resource

Description Framework (RDF) format which is sent to the cloud for storage.

With the aid of Semantic Web Technologies (SWTs), data and other information on the web and

their relationships are described as resources. Because of this, resources on the web are easily

interpreted, understood and integrated by machines. Recently, SWTs have been extended to the

3

IoT domain to promote interoperability and to enhance the quality of data(Barnaghi et al., 2012).

This is achieved by modeling IoT data based on common terminologies that can be interpreted

by different software agents. This process is referred to as semantic annotation, which implies

the involvement of several SWTs such as Web Ontology Language (OWL), Resource

Description Framework Schema (RDFS), and RDF to build conceptual models (i.e. Ontology) to

describe application domain concepts and the relationships that exist between them (Aggarwal et

al., 2013).

1.2 Motivation

IoT application developers depend on data stored on the cloud which are interpretable by

machines so as todevelop interoperable, effective and efficient applications using a lower

computing resource. Also, IoT applications need to be able to synchronize regardless of the

source where their data was generated. In order to ensure data stored on the cloud are

consumable by machine and to ensure the burden of data preparation and annotation at the

gateway is alleviated, data processing is needed at the storage level. This research would also

advance the knowledge of using Hadoop framework for distributed data storage on HDFS, the

Hadoop storage layer and parallel processing on MapReduce, the computation layer.

1.3 Problem Statement

IoT system components are of different varieties. This heterogeneity characteristic of IoT

systems is reflected on the data they produce, which in turn affects the task of IoT application to

interpret data and effectively utilize them. This also makes data integration difficult, which leads

to the lack of interoperability among different IoT systems. Thus, limiting the development of

applications that can benefit from data generated from diverse domains. In addition to the

heterogeneity aspect of IoT data, these data are continuously streaming. Consequently, huge

4

amounts of data are regularly generated and sent to gateway platforms for further processing and

filtering. According to Zachariah et al. (2015), IoT gateway problem exists in part because

today’s gateways fuse network connectivity, in-network processing, and user interface functions,

which limit their capabilities to manipulate such amount of data being generated from different

sources and at high velocity. Also, the process consumes a considerable amount of resources,

where in some cases bottleneck-like processing at the gateway occurs due to the increasing

amount of data which results to high latency and low throughput.

Data filtering at either the sensor node or the gateway node inadvertently discards sensitive data

which could be very useful for IoT applications. In addition, preprocessing data at the gateway

overloads the route between the sensors and gateway, leaving the route between the cloud and

IoT gateways idle. These have led to network traffic overloading and latency issues that might

influence time-sensitive services. On a similar note, as proposed by Al-Osta et al.(2017) the

filtering mechanism and annotation algorithms applied at the gateway level based on a rule

engine could result into a delayed data-transfer from the Gateway. Applying semantic annotation

algorithms on large amount of data at the gateway device level will result in extensively

consuming its resources because of the technologies involved.

Finally, despite data filtering, another problem with data processing at the gateway is, sometimes

the gateway ends up sending data that are not complete to the cloud for storage. For instance, if a

sensor is expected to send its measuredValue and timestamp and only the measuredValue is

available while the timestamp is empty, the gateway still sends the empty data for annotation.

Therefore, this work seeks to address these challenges, by enhancing and performing the

annotation at the storage layer.

5

1.4 Aim and Objectives

The aim of this work is to develop an enhanced data annotation and filtering technique for data

generated by IoT Sensors.

The specific objectives of the research are to:

a. Design an enhanced data preparation and annotation technique.

b. Simulate the implementation of the technique using Apache Hadoop.

c. Evaluate the implementation in objective (b) based on Data Size and Processing Time

and compare with Al-Ostaet al. (2017).

1.5 Research Methodology

Designing an enhanced data preparation and annotation technique involves the following steps:

i. Download Smart Infrastructure Monitoring Sensor dataset from data.gov

ii. Preprocess the dataset such that unwanted attributes are removed

iii. Design a distributed data storage architecture

iv. Design a parallel data processing architecture

v. Develop a MapReduce algorithm for data structuring and annotation

vi. Design the proposed system architecture.

Similarly, to simulate the implementation of the algorithm and distributed data storage, these

steps can be followed:

i. Install the following software components serially:

a. Ubuntu 16.04 Long Term Support (LTS) Operating System

b. Java Development Kit

c. Eclipse Oxygen Integrated Development Environment

6

d. Apache Hadoop: MapReduce and HDFS Framework

ii. Store preprocessed datasets on HDFS

iii. Implement the MapReduce algorithm on Hadoop framework

iv. Conduct four (4) different experiments using preprocessed datasets.

v. Store resulting data of each experiment on HDFS for use by IoT application.

Finally, to evaluate the proposed system and compare it with the existing system, the following

steps are followed:

i. Retrieve the time taken for executing dataset of respective experiments

ii. Retrieve the size of processed datasets in each experiment.

iii. Compare processing time and data size of proposed system with Al-Ostaet al.,

(2017).

1.6 Contribution of this Dissertation

The following contributions are made in this research:

i. This work develops a MapReduce algorithm for data annotation on a distributed cluster

of commodity hardware which reduces data processing time.

ii. An enhanced rule engine is also developed in this system. This efficiently filter records

before they are processed.

iii. The proposed approach keeps a log of incomplete data instead of discarding them. These

data could be used for further decision making, thus enhancing the overall data

annotation proposed by Al-Osta et al. (2017).

7

1.7 Organization of Dissertation

The rest of the work is organized as follows:

Chapter Two: In this chapter, several literatures were reviewed which includes the introduction

to Internet of Things (IoT), Characteristics of IoT and the general structure of IoT architecture.

This chapter also has a review of Semantic web which includes Semantic web technologies such

as XML, RDF, RDFS and OWL. Roles of XML and RDF and the need for Domain Ontology

were also explained. Furthermore, this chapter also includes a review of Apache Hadoop,

MapReduce and Hadoop Distributed File System (HDFS). The chapter ends with summary of

other related works and their limitations. Detail review of the base research of this work and its

limitations are enumerated. Finally, the source and collection of Data are discussed.

Chapter Three: The chapter discussedresearch methodology which starts with Data Preparation

and Preprocessing (Extraction, Cleaning and Transformation of Data), Distributed Data Storage

and Parallel Data Processing and System Architecture.

Chapter Four:In this chapter the experimental results and analysis were presented; it comprises

result of the distributed storage of dataset before being processed. The chapter also contain result

of dataset processing with proposed system and with existing system, comparing the results

based on file size and processing time. Finally, the distributed storage of the processed data is

also discussed.

Chapter Five: The summary, conclusion and future work of this research are presented in this

chapter. Contribution to knowledge and limitation of the work are also stated.

8

CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

Data preparation and annotation addresses the complexity of data integration by high-level IoT

applications and it also eliminates lack of interoperability between IoT applications. Removing

unnecessary data enhances network traffic between sensor nodes and gateway nodes. Storing

ready-made data on the cloud reduces the computing resources needed for its processing and

analyzing and its machine understandable nature empowers software developers to create more

applications that will make possible impact on human daily activity.

2.2 Internet of Things (IoT)

The Internet of Things (IoT) refers to the use of smartly connected devices and systems in

machines and other physical objects to leverage data collected by embedded sensors and

actuators. IoT is expected to spread rapidly over the coming years and this convergence will

trigger a new dimension of services that will improve the quality of life of consumers and the

productivity of businesses (GSMA, 2014).According to Ovidiu and Peter (2014), the Internet of

Things refers to the overall concept of things, most specifically everyday objects that can be

found, contacted, identified and interpreted via a data sensing system and/or controllable via the

Internet, either wireless LAN, wide area networks or other means.Everyday objects include not

only the electronic devices we are exposed to and higher-technology products such as vehicles

and equipment, but also things we don't usually think of as technological at all such as meat,

clothes, table, pet, tree and water. The Internet of Things (IoT) is a global information

9

technology network that facilitates digital technologies by interconnecting (physical and virtual)

things based on current and emerging interoperable ICT (Keyur and Sunil, 2016).

2.2.1 Characteristics of Internet of Things

The fundamental characteristics of the IoT as stated by Ovidiuand Peter(2014) are as follows:

a. Interconnectivity: With regard to the IoT, anything can be interconnected with the

global information and communication infrastructure.

b. Things-related services: The IoT is capable of providing thing-related services within

the constraints of things, such as privacy protection and semantic consistency

between physical things and their associated virtual things. In order to provide thing-

related services within the constraints of things, both the technologies in physical

world and information world will change.

c. Heterogeneity: The devices in the IoT are heterogeneous since they are based on

different hardware platforms and networks. They can interact with other devices or

service platforms through different networks.

d. Dynamic changes: The state of devices change dynamically, e.g., sleeping and

waking up, connected and/or disconnected as well as the context of devices including

location and speed. Moreover, the number of devices can change dynamically.

e. Enormous scale: The number of devices that need to be managed and that

communicate with each other will be at least an order of magnitude larger than the

devices connected to the current Internet. Even more critical will be the management

of the data generated and their interpretation for application purposes. This relates to

semantics of data, as well as efficient data handling.

10

f. Safety: This includes the safety of personal data and the safety of physical well-being.

Securing the endpoints, the networks, and the data moving across all of it means

creating a security paradigm that will scale.

g. Connectivity: Connectivity enables network accessibility and compatibility.

Accessibility is getting on a network while compatibility provides the common ability

to consume and produce data.

2.2.2 Internet of Things Architecture

IoT architecture consists of different layers of technologies supporting IoT. It serves to illustrate

how various technologies relate to each other and to communicate the scalability, modularity and

configuration of IoT deployments in different scenarios.

The functionality of each layer in Keyur and Sunil(2016) are as explained in the following

sections:

11

Figure 2.1: IoT Architecture (Keyur and Sunil, 2016)

12

a. Smart device / Sensor layer:

As shown in Figure 2.1, the lowest layer consists of smart objects embedded with sensors.

The sensors make it possible to interconnect the physical and digital realms and capture and

process information in real time. For different purposes, there are different types of sensors.

The sensors are capable of measuring temperature, air quality, velocity, humidity, pressure,

flow, movement, and electricity.They may also have a degree of memory in some cases,

which allows them to record a number of measurements. A sensor can calculate and translate

the physical property into a signal that an instrument can recognize. Sensors are classified

according to their specific function, such as climate sensors, body sensors, sensors for home

appliances and telematics sensors for cars. Most sensors require access to sensor gateways.

This may take the form of a Local Area Network (LAN) such as Ethernet or Wi-Fi or

Personal Area Network (PAN) such as ZigBee, Bluetooth or Ultra-Wideband (UWB). For

sensors that do not need access to sensor aggregators, Wide Area Network (WAN) can

provide their connectivity to backend servers and applications. Sensors that use low power

and low connectivity data rate typically form wireless sensor networks (WSNs). WSNs are

gaining popularity as they can accommodate much more sensor nodes while maintaining a

sufficient battery life and covering wide areas.

b. Gateways and Networks

These tiny sensors produce a large volume of data, which requires a reliable and high-

performance wired and wireless network infrastructure as a means of transport. Present

networks were used to serve machine-to-machine (M2M) networks and their applications,

often connected to very different protocols. With the demand required to support a broader

range of IoT infrastructure and devices such as high-speed transactional services, context-

13

aware applications, numerous networks with different technologies and communication

protocols are needed to work in a large and diverse environment with one another. Such

networks may be in the form of private, public and hybrid systems and are designed to

support latency, bandwidth and security connectivity requirements.

c. Management Service Layer

The management service makes it possible to process information through monitoring,

security controls, application analysis and device management. The business and system rule

engines are one of the important features of the management service layer. IoT puts together

entities and devices that communicate and collaborate to provide information in the form of

incidents and situational data such as product temperature, current location or traffic

data.Some of these incidents require sorting and routing to post-processing systems such as

collecting regular sensory data, while others require response to urgent circumstances such as

responding to crises on the health conditions of patients. The rule engines support decision

logic formulation and activate interactive and computerized processes to allow a much more

functional IoT system.

d. Application Layer

The IoT application encompasses “smart” environments/spaces in areas such as:

Transportation, Building, City, Lifestyle, Retail, Agriculture, Factory, Supply chain,

Emergency, Healthcare, User interaction, Culture and tourism, Environment and Energy.

However, as described in Figure 2.1, the proposed technique in this research would be on the

Service Support and Application Support Layer.

14

2.3 Semantic Web

The web was designed for individuals and organizations irrespective of their geographical

locations to access information and transmit data from one location to another. In other words,

humans have the ability to understand and control web contents unlike the computer machine.

Due to this divergence the semantic web technology was invented to assist develop a web that

can be processed by humans and computer systems.

Semantic web is an extension of the current web as it’scomposed of enhanced features that

enable users from different works of life, irrespective of their geographical locations to achieve

timely results on the web. The key idea of the Semantic Web is to always technically associate or

link data with a meaningful context (Arnulf, 2012). In most cases this data is often called Meta

data whereby it is use as a link to access a web page that would describe in detail its meaning.

For instance, the word “Science” can be said to be a Meta data that links to web page containing

the general information about science (Edje, 2016).

According to Laura and Pamela(2013), Semantic web is a set of data that computer software can

process automatically rather than a collection of documents for people to consume. The Semantic

Web is motivated by the initiative of the present Web which has been in the background since its

inception

2.3.1 Semantic Web Technologies

Semantic Web technology is defined as a method of linking data between systems or entities that

allows for rich, self-describing interrelations of data available across the globe on the web (Edje,

2016). This means that the web is a combination of the existing hypertext markup language

(HTML) contents and contents from computer generated programming software. Due to

15

Semantic Web’s capabilities in annotating data, several semantic web technologies have been

recently adopted to promote data integration and interoperability in the IoT field.

a. Resource Description Framework (RDF) is a standard language for representing

information about Web resources as XML format. It provides a unified framework for

exchanging information between applications without loss of meaning. Data in RDF are

stored in the form of triples, each triple is consisted of subject, property and object. All of

the elements of the triple are resources with the exception of the last element, object that

can be also a literal. Literal in the RDF sense is a constant string value such as string or

number. Literals can be either plain literals without type or typed literals typed using

XML Data types (Deepa, 2016). In typical IoT application consist of set of devices

generating set of data, devices are semantically represented by the subject; while the

property represents the measured quantity, and the object represents the measured value.

b. Resource Description Framework Schema (RDFS) is an extension of RDF vocabulary,

which enables more detailed description taxonomies of classes and properties. In another

word, RDFs can be perceived as an expressive meta-model used to describe the

vocabulary used in an RDF document.

c. Web Ontology Language (OWL) represents more expressive way to model data on the

semantic web. It was essentially developed to overcome some RDF and RDFs limitations

such as the lack of a clear way for domain or range constraints description, and the lack

of the ability of representing closure, inverse or transitive properties (Aggarwal, 2013).

RDF, RDFs, and OWL can be perceived as meta-meta models that encompass set of

vocabularies used to define new domain specific schemas and ontologies.

16

2.3.2 Role of XML and RDF

XML and RDF are the current standards for establishing semantic interoperability on the Web,

but XML addresses only document structure. RDF better facilitates interoperation because it

providesdata model that can be extended to address sophisticated ontology representation

techniques.

2.3.3 Domain Ontology

Ontologies as defined by Dillon et al.(2012) are formal, explicit specifications of a shared

semantic conceptualization that are machine-understandable. Ontologies promote sharing of

unified understanding of domain-specific structured information among software agents. Thus,

enabling systems to consume data based on predefined concepts and relations in the ontology.

To facilitate interoperability and data exchange between IoT resources, recent activities to design

ontologies to be used for several purposes including the description of sensor and sensor

networks, IoT resources and services, smart Things. SSN semantic sensor network ontology is

the most adopted by IoT projects. It was developed by W3C to describe three major concepts:

systems, processes, and observations. The ontology can describe sensors, their accuracy and

capabilities, observations and methods used for sensing.

Ontologies are considered one of the supports of the Semantic Web. Ontologies provide

Semantic Web agents with background knowledge about domain concepts and their

relationships. Ontologies can also be instantiated to create individuals that describe Semantic

Web resources or real-world entities. For example, individuals of an ontology for Real estate

agents could represent specific site destinations or activities. In such a scenario, a Semantic Web

repository would provide instance data about these individuals, and agents can use their

17

ontological knowledge useful for applications in which knowledge plays a key role, but they can

also trigger a major change in current Web contents (Antoniou, 2004).

2.4Apache Hadoop

Hadoop is an open source project from the Apache Software Foundation, it provides a

framework for distribution and parallel execution of applications and programs on cluster of

servers (Data-Flair, 2018). Hadoop was inspired by Google’s MapReduce programming model

as well as the model’s file system, the Google File System.

Apart from Hadoop, there are several MapReduce-like implementations for distributed systems

such as Dryad from Microsoft, HPCC from LexisNexis and Disco from Nokia (Isardet al., 2007).

However, Hadoop is the most well-known and popular open source implementation of

MapReduce. Hadoop is written in Java. Hadoop can be setup on single machine, that is a single

node cluster but the real strength of Hadoop comes with a cluster of machines which is vertically

and horizontally scalable.

Hadoop is made up of two major components which include the Hadoop Distributed File System

(HDFS) and the Map-Reduce. The duo forms the storage layer and the processing or

computation layer respectively.

18

Hadoop uses master/slave architecture and obeys the same overall procedure, for executing

programs (Saeed and Saeed, 2014), which mean the master nodes oversee the affairs of the slave

nodes. The master node stores metadata of data stored on the slave nodes and also keeps

information about the health of the slaves. By default, Hadoop stores input and output files on its

distributed file system, HDFS while its computation is done using the MapReduce programming

model. Its worth-knowing that both parallel computation and distributed storage of data are

carried out on the slave nodes with the approval of the master node.

2.4.1 MapReduce

MapReduce is a programming model that enables the processing of big data in parallel on a set

of commodity hardware (Saeed and Saeed, 2014). Before the MapReduce model was introduced,

large scale data processing was very difficult as the process required management of hundreds or

thousands of processors. Parallelization and distribution of data alongside Input/Output

scheduling were major challenges of processing large dataset. Apparently, this led to lack of fault

tolerance in parallel computing (Data-Flair, 2018). Hence, the need for a model that provides the

aforementioned features.

The MapReduce programming model was invented by Google and can be implemented in

multiple programming languages such as Java, C, C++, Ruby, Groovy, Perl and Python. The

model divides work into small parts, each of which can be done in parallel on group of

computers called servers. MapReduce is highly scalable and can be used across many computers.

Many small machines can be used to process jobs that normally could not be processed by a

large machine (Data-Flair, 2018).

MapReduce defines computation as two functions: map and reduce. The input is a set of

Key/Value Pairs (KVPs), and the output is a list of KVPs. The map function takes an input pair

19

and returns a set of intermediate KVPs called Intermediate Outputs (IOs). The reduce function

takes an intermediate key and intermediate values associated to that key as its input, and returns

a set of final KVPs as the output (Saeed and Saeed, 2014). Execution of a MapReduce program

involves two phases. In the first phase called the Mapper Phase (MP) each input pair is given to a

map function and a set of output pairs is produced. Afterwards in the second phase called the

Reducer Phase (RP), all of the intermediate values that have the same key are aggregated into a

list, and each intermediate key and its associated intermediate value list is given to a reduce

function. The execution of a MapReduce program obeys the same two-phase procedure. Usually,

distributed MapReduce is implemented using master/slave architecture (Dean and Ghemawat,

2010). In some cases, a job might require only the MP without the RP, such jobs are called Map

Only Jobs. This is because in-between map and reduces phases there is key, sort and shuffle

phase. According to Data-Flair (2018), Sort and Shuffle takes care of ordering the keys in

ascending order as well as grouping values according to their keys. This process is very costly

and should be skipped if Reduce Phase is not necessary, because avoiding Reduce Phase would

also eliminate the phase of Sort and Shuffle. This also avoids network congestion as in shuffling.

In a MapReduce job, the output of mapper is written to local disk before sending to reducer but

in Map Only job, this output is directly written to HDFS. This further save time and reduces cost

as well (Data-Flair, 2018).

The master machine is responsible for the assignment of tasks and controlling the slave

machines. The input is stored over a shared storage like distributed file system, and is split into

chunks. First, a copy of map and reduce functions’ code is sent to all workers, that is the slave

nodes. Then, master assigns map and reduce tasks to workers. Each worker assigned a map task,

reads the corresponding input split and passes all of its pairs to map function and writes the

20

results of the map function into intermediate files. After the map phase is completed, the reducer

nodes read intermediate files and pass the intermediate pairs to reduce function and finally the

pairs resulted by reduce tasks are written to final output files.

2.4.1.1 Map Reduce Terminologies

a. Job: a job is a complete program which needs the execution of a Mapper and/or Reducer.

A job consists of the input data, MapReduce program and configuration information.

b. Task: This is an execution of a Mapper or a Reducer on a slice of data. Master node

divides job into task and schedules it on the slaves.

2.4.2 Hadoop Distributed File System (HDFS)

HDFS is a file system designed for storing very large files running on cluster of non-expensive,

low-end hardware used for daily purpose. It is designed on the principle of storage of a smaller

number of large files. However, it provides fault tolerant storage layer for Hadoop and its other

components (Data-Flair, 2018). HDFS stores data reliably even in case of hardware failure and it

provides high-throughput access to application data.

HDFS has two types of nodes which works in master-slave fashion, which include the HDFS

master node and the HDFS slave node.

2.5 Related Works

Gopinath and Sagayaraj (2011) proposed an approach to extract the methods of a project and

store the metadata about the methods in the OWL. OWL stores the structure of the methods in it.

Then the code will be stored in the distributed environment so that the software company located

in various geographical areas can access. To reuse the code, a tool can be created that can extract

the metadata such as function, definition, type, arguments, brief description, author, and so on

21

from the source code and store them in OWL. This source code can be stored in the HDFS

repository. For a new project, the development can search for components in the OWL and

retrieve them at ease.

However, this work focuses on extracting information about metadata only. Processing the

observed or measured data is not performed, this limits the proposed approach.

Nasullahet al.(2011) presented a MapReduce based distributed Support Vector Machine (SVM)

algorithm for automatic image annotation. MapReduce Sequent Minimal Optimization

(MRSMO) is an SVM algorithm for automatic image annotation, using Google’s MapReduce, a

distributed computing framework that facilitates data intensive processing. MRSMO is built on

the Sequent Minimal Optimization (SMO) algorithm and implemented using the Hadoop

implementation of MapReduce. The framework facilitates a number of important functions such

as partitioning the input data, scheduling the program’s execution across a cluster of participating

nodes, handling node failures, and managing the required network communications. In the

approach Nasullahet al. (2011) partition the training data according to the dataset size as well as

the number of MapReduce mappers to be employed.

The approach lacks efficient load balancing technique for optimal resource utilization as

multiclass classification uses the one to many techniques instead of the one to one technique.

Christophe(2012)proposed a distributed framework composed of geographically distributed

nodes managing a pool of semantically described IoT resourcesto enable scalable search and

management for the IoT resources. Theframework relies on the location as key parameter when

searching the IoT resources, where nodes publish their location, and then a managing node based

on neighboring nodes creates federations. By doing this, the author aims at managing data

22

produced by nodes locally. Where each node can make reasoning over received data and the

produced knowledge stored locally.

The implementation of this approach in resource constraint environment will be difficult as it

requires a lot of resources for local processing and storage(Al-Ostaet al., 2017).

Gyrard (2013) developed a sensor measurement ontology (SenMESO) for data annotation.

SenMESO ontology is a combination of various domain ontologies covering the sensor data and

features of interest. The sensors send the measured sensor values in SenML format to the

gateways. The gateway nodes use a mechanism to process the sensed data to an XML file and

send it to the aggregation gateways which use the stored ontologies to annotate the sensor data

and thereby allow different applications to use it.

Sensor Web Enablement (SWE) are difficult to setup and definitely not suitable for resource-

constrained environments (Khan et al., 2015).

Kamburugamuveet al. (2014) developed a distributed data processing platform called IoTCloud.

The platform helps to connect devices to frameworks deployed in the cloud. The platform also

allows for deployment of custom frameworks for distributed data processing without concern for

how the data is processed. To demonstrate the effectiveness of the system, a robot navigation

framework and application were developed. However, the system lacks the implementation of

SWT for resource description.

Khan et al.(2015) proposed data annotation architecture for semantic applications in virtualized

Wireless Sensor Network (WSN) environments. A base ontology was developed by extending

the SSN ontology. Furthermore, a domain ontology was developed for a fire monitoring

semantic application that was prototyped. The fire monitoring semantic application receives

23

annotated data and uses the fire domain ontology, along with a reasoner, to infer knowledge. An

end-user can query over the annotated data to get the real-time information of the fire event, such

as its status and location. The application is developed and deployed in the cloud using Google

App Engine (GAE) and works in a heterogeneous virtualized WSN environment.

These steps are performed concurrently during the implementation of the application, which is

definitely not suitable for resource-constrained environments and likely to increase network

traffic especially in a wireless network.

Jutamard and Wiwat (2016) proposed a supporting tool to perform large RDF map data transfer

and query. The system was developed using the Hadoop Framework to reduce access time and

response time to queries. In Hadoop Distributed File System (HDFS) data nodes, the RDF /

XML and related data is translated into a huge set of N-triples and submitted to Hadoop space.

The RDF graph query in terms of SPARQL is evaluated and translated to a particular N-triple

format to use Jena Algebra to find the answer. The MapReduce algorithm was designed to

manipulate the RDF map in a specific manner.

Chen et al. (2019) proposed a model for learning semantic annotation of tabular data. The

research proposed a deep prediction model that could fully exploit the contextual semantics of a

table, including table position features learned from a Hybrid Neural Network (HNN), and

intercolumn semantics features learned from a knowledge base (KB) search and query response.

This work assumes that a table comprises of cells structured by columns and rows, without

metadata such as names of columns or row identities. The input is a table whose type is to be

predicted with a target column. The model showed good results on individual table sets, as well

as when it was moved from one table to another.

24

Al-Ostaet al.(2017) stated that IoT system components are majorly classified into three main

elements, which involve the Sensor node, Gateway and Cloud Platforms.

Figure 2.2: IoT Gateway Architecture (Al-Ostaet al., 2017)

As depicted in Figure 2.2 sensornodes being the lowest level is made up of limited resources

such as the sensors and the microcontrollers which collect data from surrounding environment

and send them to the Gateway. Unlike the Sensor node, devices at the Gateway use more

Data Preparation Module

Cloud Interface

Data Annotation Module

Raw sensory data
format

XML data
format

RDF data
format

Sensory Node
Level

Cloud
Level

Gateway
Level

25

computing resources at the node level because the Gateway interfaces with both the sensor node

and the cloud. The Gateway also serves as the collection point for sensor readings.

Figure 2.3: Data Preparation Module (Al-Ostaet al., 2017)

Al-Ostaet al.(2017) proposed a gateway consisting of three (3) modules as shown in Figure 2.2.

They are Data preparation, Data annotation, and Cloud interface. The data preparation module

analyzes and formulates raw data sent by sensor nodes by filtering out duplicate and redundant

data and converting the remaining data to XML format. The module is composed of three sub-

modules; the data aggregation sub-module upon receiving raw sensory data from sensor nodes,

stores them in a file temporarily for analysis. When a sensor is being read for the first time, its

SensorID, type and model are saved in a file called the sensor description file. In subsequent

readings, only the sensor ID, observation value and time stamp are recorded.

The data filtering sub-module on the other hand as depicted in Figure 2.3 uses a rule engine to

reduce the amount of data to be annotated. This rule engine is composed of a predefined rule

which filters the aggregated data. Two categories of rules were considered, amongst which are

the sensor type-based rule and the interval time-based rule. The sensor-type based rule uses the

26

SensorID to access the sensor description file in order to extract the sensor type which

determines the rules that will be used to perform the sensor’s filtering process. Interval time-

based rule checks at interval set by the user based on the sensor type prevents the annotation of

data outside a threshold. The data structuring sub-module by means of a conversion mechanism

generates an XML file which contains the filtered data packets.

Figure 2.4: Data Annotation Module (Al-Ostaet al., 2017)

The data annotation module usedaSemantic Sensor Network (SSN) ontology and Description

Ontology for Linguistic and Cognitive Engineering (DOLCE) Ultralite (DUL) ontology

togetherwith a Sensor domain ontology (SDO)developed by Al-Ostaet al.(2017) to convert the

data in XMLformat obtained from the Data Preparation module to RDF format as illustrated in

Figure 2.3. The RDF file is further transmitted to the Cloud Interface module for storage in the

cloud. The system is posed with the following limitations:

27

a. Devices at the gateway use more computing resources at the node level because the

gateway interfaces with both the sensor node and the cloud, hence this approach cannot

be implemented in a resource constraint environment.

b. This approach would lead to high latency due to bottleneck processing at the gateway.

c. The approach could lead to the removal of data that are seen as duplicate or redundant.

d. The system does not make provision for logging incomplete data that are sent to gateway,

perhaps by a faulty sensor.

2.6 Literature Gap

The reviewed systems, frameworks and approaches developed by researchers have quite a

number of limitations, such as concentrating on the interoperability between devices rather than

data. Another key issue in a resource constraint environment is the enablement of semantic web

technologies on the gateway which obviously will require quite a number of resources. Filtering

and annotating gigabytes and petabytes of data on a device such as the gateway can lead to

bottleneck processing and high latency with low throughput. This is because the gateway has to

process each data it received from the sensor node regardless of whether the data is complete or

not,thus increasing resource utilization, inconsistency and network traffic at the gateway.

2.7Data Source

Data.gov is an online repository of the United State(U.S.)’s open data. It is a warehouse to find

data, tools, and resources to conduct research, develop web and mobile applications and design

data visualizations. Data.gov is managed and hosted by the U.S. General ServicesAdministration,

Technology Transformation Service (Data.gov, 2018).

On the platform, there are datasets on variety of topics such as Agriculture, Climate, Consumer,

Ecosystems, Education, Energy, Finance, Health, Local government, Manufacturing, Maritime,

28

Ocean, Public safety, Science and Research. As of June 2017, the approximately 200,000

datasets reported as the total on Data.gov represents about 10 million data resources (Data.gov,

2017). While as of the time of conducting this research Data.gov has Three thousand and one, six

hundred and sixty-eight (301,668) datasets (Data.gov, 2018).

The Data.gov team typically works with a designated open data point of contact as a liaison for

each agency. Therefore, to publish data on Data.gov, Data publishersconsults with their agency

point of contact to include datasets on Data.gov.Every dataset displayed on the platform follows

the Project Open Data schema which is a set of required fields which includes Title, Description,

Tags, Last Update, Publisher and Contact Name.

This dataset is results from a 2017-2018 project of City-installed Smart Green Infrastructure

Monitoring Sensors (SGIMS), measuring water runoff from streets and sidewalks in the city of

Chicago. These data can be used to measure the impact of sustainable green infrastructure on

flooding. These sensors also captured weather data.

The file contains over 18Million sensor records which amounts to 1.5GigaByte (GB) of file size.

Each row corresponds to a sensor measurement at a specific time and location. Each row is a

different sensor, which can be determined from the "Measurement Title" column. The value for

each measurement is always numeric and available in the "Measurement Value" column. The

corresponding unit of measurement is in the "Units" column.Data may be missing at times due to

sensors not being available (Levy, 2018).

The raw data was exported to Microsoft Excel in comma separated values (CSV) format, the data

also contains various elements that are not required for this study as only five elements are

required for this research, these elements are sensor ID, sensor model, sensor type, measured

29

value and timestamp. In other to carry out the analysis intended for this research, the relevant

features representing earlier cited elements were extracted from the original dataset to produce

well-formed dataset suitable for the intending analysis. Figure 3.1 shows the format in which the

data are stored after being generate by sensors in CSV file format.

Figure 2.5: Smart Green Infrastructure Monitoring Sensors sample data (Data.gov, 2018)

30

Figure 2.6: Smart Green Infrastructure Monitoring Sensors sample data - CSV (Data.gov, 2018)

CHAPTER THREE

DESIGN OF AN ENHANCED DATA FILTERING AND ANNOTATION TECHNIQUE

FOR IOT SENSORS

3.1 Introduction

In this chapter the method designed for preprocessing datasets so as to remove unnecessary

attributes used in this research is discussed. In addition, a distributed data storage architecture

31

and MapReduce algorithm for data structuring and annotation of preprocessed data are also

developed. The chapter concludes with the design of proposed system architecture.

3.2Data Preparation and Preprocessing Method

Data preparation and preprocessing deals with preparing the raw dataset or cleaning it to obtain

the required data that will be suitable for analysis. The preprocessing tasks in this context include

removal of unwanted fields in the dataset. Data cleaning task was carried out to remove data that

are of no interest in the research. These include information about the sensors, location of the

sensor and measurement attributes that are not part of the attributes needed. The major task

involved in data preprocessing include Dataextraction, Datacleaning andDatatransformation.

Figure 3.2 shows the data preparation tasks used in this research.

SGIMS Dataset

Target Data

Cleansed Data

Transformed Data

Data Extraction

Data Cleaning

Data Transformation

Preprocessed Data

32

Figure 3.1: Data Preparation and Preprocessing Tasks

3.2.1Data Extraction

Smart Green Infrastructure Monitoring Sensors (SGIMS)dataset has huge amount of records

comprising of several attributes such as Measurement Title, Measurement Description,

Measurement Type, Measurement Medium, Measurement Time, Measurement Value, Units,

Units Abbreviation, Measurement Period Type, Data Stream ID, Resource ID, Measurement ID,

Record ID, Latitude, Longitude and Location. However, only Resource ID, Measurement Title,

Measurement Description, Measurement Value and Measurement Time were selected because

these were the same attributes used by Al-Ostaet al. (2017) whose work is being enhanced in this

research. These would ensure that both the existing work and the proposed system are tested with

the same dataset. It is worth noting that at some point, Measurement Description values for

sensors are missing in the dataset. This is as a result of the sensor’s unavailability sometimes, as

stated by Levy (2018). Table 3.1 and Figure 3.3 gives the descriptions of the selected attributes.

Table 3.1: Attributes Description

S/No Attributes Description

1 Resource ID Unique identity of the sensor

2 Measurement Title Information about sensor name, model and lab

3 Measurement Description Category or type of sensor being used

4 Measurement Value Sensor measured value

33

5 Measurement Time Date and time the measurement was captured

3.2.2Data Cleaning

Data cleaning has to do with data enhancement, where data is made more complete by adding

related information. In this case a number of missing valuesobtained as a result of unavailability

of sensors were left untouched. These would aid the proposed system’s ability to determine

faulty sensors. Furthermore, at this stage, data attribute names were renamed to ensure

uniformity with the model used in the existing system. Another reason is because these names

would be used for annotating the attribute values at a later stage. Finally, the attributes and

respective values were rearranged in a particular order. Although this does not have any impact

on the intending analysis, but for clarity. Table 3.2 shows the cleaned and ordered attributes.

Table 3.2: Cleaned Attributes

S/No Attribute Cleaned Attribute

1 Resource ID Sensor ID

2 Measurement title Sensor model

3 Measurement Description Sensor type

4 Measurement value Measured value

5 measurement time Timestamp

3.2.3Data Transformation

Data transformation is part of data preprocessing task which involve normalization and

aggregation, it is used to improve the quality of data. The data transformation technique used in

this dissertation is aggregation which is the procedure of bringing data closer to the requirements

of the algorithms, or to preprocess data so as to ease the algorithm’s task.

34

By default, the SGIMS data is comma delimited which means attribute values in a record are

comma separated. However, the algorithm used in the proposed system is applicable on tab

delimited records. As a result, the sample data had to be transformed from a comma delimited

values to tab delimited values. Sublime text, a multipurpose text editor was used to convert the

sample data from Comma separated to Tab delimited using regular expression.

3.3Distributed Data Storage and Parallel Data Processing

Data streams received from the gateway node are stored in a distributed fashion in the cloud

using Hadoop Distributed File System for reliability, availability, fault tolerance and efficient

processing. Cloud-based program for parallel filtering and annotation of data is deployed.

The huge amount of data collected by the sensors can be processed, analyzed, and stored using

the computational and data storage service of the cloud. In this architecture, the sensor data can

be efficiently stored and processed by different commodity hard-ware in a cluster. This

transforms data into a format that is interpretable by machines.

3.3.1 Distributed Data Storage on HDFS

HDFS is a file system designed for storing very large files running on cluster of non-expensive,

low-end hardware used for daily purpose. It is designed on the principle of storage of a smaller

number of large files. However, it provides fault tolerant storage layer for Hadoop and its other

components. HDFS stores data reliably even in case of hardware failure and it provides high-

throughput access to application data. HDFS has two types of nodes which works in master-slave

fashion, these include the HDFS master node and the HDFS slave node.

In this work, a single node cluster approach is adopted, this impliesthat the slave node daemons

and the master node daemons run on a single machine. As shown in Figure 3.2, immediately

35

large data streams are received by the master node for storage, the Hadoop framework

automatically split the large dataset into blocks. A block has maximum dataset size of 128

megabyte (MB). Each block is then stored on different slave nodes. By default, the Hadoop

framework creates 2 replicas of each block and store the blocks on different slaves. This allows

for data availability in case of hardware failure. The number of blocks is determine using the

following formula:

Where NB is the Number of Blocks and FS is the File Size.

NB = FS/128

Source

Large Data Stream

Master Node

36

Figure 3.2: Distributed Data Storage Architecture

To demonstrate the workability of this approach, a sensor dataset of size 1.42GB was sent for

storage on HDFS. The Hadoop framework split the dataset into 11 blocks of 128MB each, with

the 12
th

 block having size 49.55MB as shown in Figure 3.3.

Source

Smart Green Infrastructure

Monitoring Sensors

Dataset (1.42GB)

37

Figure 3.3: Distributed Storage of 1.42GB GSIMS Data

3.3.2Parallel Data Processing using MapReduce Model

In the Chapter 2 of this work, it was established that the MapReduce model is implemented using

master/slave architecture (Dean and Ghemawat, 2010). A job might require only the Map Phase

without the Reduce Phase because in reduce process basically what happens is an aggregation of

values or rather an operation on values that share the same key. Such jobs that do not require a

reduce process are called Map Only Jobs. The implementation of the proposed system in this

38

research requires only the Map Phase because no sorting or aggregation of annotated sensor

record is required.

The master machine is responsible for the assignment of tasks and controlling the slave

machines. At this point thedata streamchunks stored over the Hadoop distributed file system are

fetched by slave nodes in a Key-Value Pair (KVP) fashion for processing. First, a copy of map

functions’ algorithm or code is sent to all slave nodes as shown in Figure 3.4. Then, master node

assigns map tasks to workers. Each worker assigned a map task, reads the corresponding input

split and passes all of its pairs to map function and writes the results of the map function into

intermediate files.

Figure 3.4: Parallel Data Processing Architecture

Client

Slave Node B

Data filtering and

Annotation Algorithm

Map

Algorithm

Map

Algorithm

Map

Algorithm
Map

Algorithm

Master Node

Slave Node D

Slave Node A

Slave Node C

39

Algorithm 1 depicts the step by step procedure of the Hadoop map function where sensor data

filtering and annotation is performed.

Algorithm 1 illustrates the steps involved in parallel processing of sensor data. Lines 1-2 outline

the expected input and output in the pseudo code. It is assumed that each sensor has been

programmed to published its ID, model and type. Subsequently, sensors send their ID alongside

the value measured from their environment and the time the data was captured. While line 3

reads data record one at a time, line 4 tokenizes the record in-to tokens using tab character as

delimiter (assuming sensor Id, model, type, measured value and timestamp are tab delimited).

Line 5 counts the number of tokens obtained to validate the record for further step.

The expected number of tokens is 5. If number of tokens generated from a record equals five (5),

the record is processed and its output stored as shown in lines 7-10. Otherwise, the record is

taken to be invalid and logged for further decision making (lines 12-13).

Algorithm 1: Proposed Algorithm for Parallel Filtering and Annotation of Sensor Data

1. input: sensorRecord = data obtained from sensors (sensor id, model, type, measured value,

timestamp)

2. output: processedSensorRecord

3. FOR EACH sensorRecords as sensorRecord

4. tokens = tokenize sensorRecord by tab

5. count = count the number of tokens

6. IF (count is equal to 5)

7. structuredRecord = strucuture (sensorRecord)

8. annotatedRecord = annotate(structuredRecord)

9. processedSensorRecord = annotatedRecord

10. store processedSensorRecord

11. ELSE

12. log sensorRecord as invalid

13. store sensorRecord

14. END IF

15. END FOR EACH

40

3.4System Architecture

The representation of the system architecture of the entire model is given in the Figure

3.5.Firstly, preprocessed dataset and algorithm are passed to the master node. The master node

then splits the dataset into blocks which are distributedly stored in slave nodes. The master node

also sends a copy of the MapReduce algorithm to each of the slaves for parallel processing of

data blocks after which resulting processed records on each slave are stored on HDFS.

Components within dotted lines were adopted from the existing work and improved on.

Figure 3.5: System Architecture

Master Node

Dataset Algorithm

Slave Nodes
(HDFS &

MapReduce)

Data

Blocks

Copy of

Algorithm

Record Aggregation

Pass Rule
Engine?

Structure
Record

Store in
HDFS

Log Invalid
Record

AnnotateR
ecord

No Yes

41

CHAPTER FOUR

IMPLEMENTATION, RESULT AND ANALYSIS

4.1 Introduction

HDFS is a distributed storage system that provide high-throughput access to application data

such as the GSIMS data. Its ability to store data distributedly makes it amongst the most reliable

storage system for large data. As stated in chapter two of this work, before the experiment for

this research was conducted, the dataset being processed by proposed system had to be stored in

a distributed fashion. As soon as the data was received for storage, the namenode (master node)

created splits (blocks) based on the size of dataset provided and store each split on a datanode

(slave node). Number of blocks created for 1.42GB dataset is shown in Figure 4.1. Details of the

splits are shown in Table 4.1.

Figure 4.1: 1.42GB Blocks Information

42

4.2 Block Information

Table 4.1 shows the information of blocks created on storage of 1.42GB dataset. Each block has

a default maximum size of 128MB. Hence, the dataset was divided into 12 blocks.

Table 4.1: Block information for 1.42GB dataset storage

Block No Block ID Block Size (Bytes) Block Size (MB) Generation Stamp

Block 0 1073743748 134217728 128 2927

Block 1 1073743749 134217728 128 2928

Block 2 1073743750 134217728 128 2929

Block 3 1073743751 134217728 128 2930

Block 4 1073743752 134217728 128 2931

Block 5 1073743753 134217728 128 2932

Block 6 1073743754 134217728 128 2933

Block 7 1073743755 134217728 128 2934

Block 8 1073743756 134217728 128 2935

Block 9 1073743757 134217728 128 2936

Block 10 1073743758 134217728 128 2937

Block 11 1073743759 51957271 49.55 2938

Each split created comes with a Block No, Block ID, Block Size (Bytes) and Generation Stamp.

From Table 4.1 it can be observed that 11 blocks created had a Block Size of 128MB

respectively. However, the twelfth block has a Block Size of 49.55. This is because the sensor

record remaining after the eleventh block was created was not up to 128MB. Hence only a block

of 49.55MB was created. Table 4.2, 4.3 and 4.4 shows the Block Information for 2.14GB,

3.02GB and 5.07GB dataset respectively. According to Suhasini (2019), resulting blocks of

processed data can be queried using Apache Pig and Hive.

43

Table 4.2: Block information for 2.14GB dataset storage

Block No Block ID Block Size (Bytes) Block Size (MB) Generation Stamp

Block 0 1073743645 134217728 128 2824

Block 1 1073743646 134217728 128 2825

Block 2 1073743647 134217728 128 2826

Block 3 1073743648 134217728 128 2827

Block 4 1073743649 134217728 128 2828

Block 5 1073743650 134217728 128 2829

Block 6 1073743651 134217728 128 2830

Block 7 1073743652 134217728 128 2831

Block 8 1073743653 134217728 128 2832

Block 9 1073743654 134217728 128 2833

Block 10 1073743655 134217728 128 2834

Block 11 1073743656 134217728 128 2835

Block 12 1073743657 134217728 128 2836

Block 13 1073743658 134217728 128 2837

Block 14 1073743659 134217728 128 2838

Block 15 1073743660 134217728 128 2839

Block 16 1073743661 134217728 128 2840

Block 17 1073743662 10827042 10.33 2841

44

Table 4.3: Block information for 3.02GB dataset storage

Block No Block ID Block Size (Bytes) Block Size (MB) Generation Stamp

Block 0 1073743999 134217728 128 3178

Block 1 1073744000 134217728 128 3179

Block 2 1073744001 134217728 128 3180

Block 3 1073744002 134217728 128 3181

Block 4 1073744003 134217728 128 3182

Block 5 1073744004 134217728 128 3183

Block 6 1073744005 134217728 128 3184

Block 7 1073744006 134217728 128 3185

Block 8 1073744007 134217728 128 3186

Block 9 1073744008 134217728 128 3187

Block 10 1073744009 134217728 128 3188

Block 11 1073744010 134217728 128 3189

Block 12 1073744011 134217728 128 3190

Block 13 1073744012 134217728 128 3191

Block 14 1073744013 134217728 128 3192

Block 15 1073744014 134217728 128 3193

Block 16 1073744015 134217728 128 3194

Block 17 1073744016 134217728 128 3195

Block 18 1073744017 134217728 128 3196

Block 19 1073744018 134217728 128 3197

Block 20 1073744019 134217728 128 3198

Block 21 1073744020 134217728 128 3199

Block 22 1073744021 134217728 128 3200

Block 23 1073744022 134217728 128 3201

Block 24 1073744023 26523012 25.29 3202

45

Table 4.4: Block information for 5.07GB dataset storage

Block No Block ID Block Size (Bytes) Block Size (MB) Generation Stamp

Block 0 1073744581 134217728 128 3766

Block 1 1073744582 134217728 128 3767

Block 2 1073744583 134217728 128 3768

Block 3 1073744584 134217728 128 3769

Block 4 1073744585 134217728 128 3770

Block 5 1073744586 134217728 128 3771

Block 6 1073744587 134217728 128 3772

Block 7 1073744588 134217728 128 3773

Block 8 1073744589 134217728 128 3774

Block 9 1073744590 134217728 128 3775

Block 10 1073744591 134217728 128 3776

Block 11 1073744592 134217728 128 3777

Block 12 1073744593 134217728 128 3778

Block 13 1073744594 134217728 128 3779

Block 14 1073744595 134217728 128 3780

Block 15 1073744596 134217728 128 3781

Block 16 1073744597 134217728 128 3782

Block 17 1073744598 134217728 128 3783

Block 18 1073744599 134217728 128 3784

Block 19 1073744600 134217728 128 3785

Block 20 1073744601 134217728 128 3786

Block 21 1073744602 134217728 128 3787

Block 22 1073744603 134217728 128 3788

Block 23 1073744604 134217728 128 3789

Block 24 1073744605 134217728 128 3790

46

Block No Block ID Block Size (Bytes) Block Size (MB) Generation Stamp

Block 25 1073744606 134217728 128 3791

Block 26 1073744607 134217728 128 3792

Block 27 1073744608 134217728 128 3793

Block 28 1073744609 134217728 128 3794

Block 29 1073744610 134217728 128 3795

Block 30 1073744611 134217728 128 3796

Block 31 1073744612 134217728 128 3797

Block 32 1073744613 134217728 128 3798

Block 33 1073744614 134217728 128 3799

Block 34 1073744615 134217728 128 3800

Block 35 1073744616 134217728 128 3801

Block 36 1073744617 134217728 128 3802

Block 37 1073744618 134217728 128 3803

Block 38 1073744619 134217728 128 3804

Block 39 1073744620 134217728 128 3805

Block 40 1073744621 76045818 72.52 3806

4.3Experimental Results for Data Processing on Existing and Proposed System

This section describes the result obtained after several datasets were processed using the existing

system (without enhanced data processing) and on the proposed system (with enhanced data

processing). As stated in section 3.6, comparison between the two systems was also carried out

based on size of the resulting processed file and the time taken for processing the dataset on both

systems.

47

4.3.1 Evaluation and Analysis of Data Processing on Existing System

This section analysis observation made while processing four different datasets of size 1.42GB,

2.14GB, 3.02GB and 5.07GB on the existing systems. Recall that major metrics of interest are

Processing Time and RDF File Size. Following subsections (a) and (b) analyze and discuss the

results and observations made in detail.

a. Processing Time

Table 4.5: Time taken for processing datasets on existing System

Dataset Size (GB) Processing Time (minutes)

1.42 82.8

2.14 212.4

3.02 372

5.07 992.2

Figure 4.2: Time taken for processing datasets on existing System

82.8

212.4

372

992.2

0

200

400

600

800

1000

1200

1.42 2.14 3.02 5.07

P
ro

ce
ss

in
g

Ti
m

e
(m

in
u

te
s)

Dataset (GB)

Processing Time (minutes)

48

As shown in Table 4.5 and Figure 4.2, each dataset takes a respective amount of time to be

processed. The more the size of the dataset, the more processing time it requires. Collectively,

the four datasets being used sums up to 11.65GB. Processing this data on the existing system

took 1659.4 minutes which is also equivalent to 27.66 hours.

b. File Size

Table 4.6: Processed file size on existing System

Dataset Size (GB) Processed File Size (MB) Processed File Size (GB)

1.42 3589.6 3.59

2.14 5384.43 5.38

3.02 7627.94 7.63

5.07 12547.76 12.55

Figure 4.3:Processed file size on existing System

1.42
2.14

3.02

5.07

3.59

5.38

7.63

12.55

0

2

4

6

8

10

12

14

Experiment 1 Experiment 2 Experiment 3 Experiment 4

Fi
le

 S
iz

e
(G

B
)

Generated and Processed File Size

Dataset Size (GB) Processed File Size (GB)

49

Also, as shown in Table 4.6 and Figure 4.3, processing a dataset of 11.65GB on the existing

system generates an RDF document of about 29.15GB, which is almost 3 times the actual size of

the raw sensor data.

4.3.2 Evaluation and Analysis of Data Processing on Proposed System

a. Processing Time

Table 4.7: Time taken for processing datasets on Proposed System

Dataset Size (GB) Processing Time (minutes)

1.42 53.5

2.14 82.4

3.02 114.5

5.07 190.5

Figure 4.4: Time taken for processing datasets on Proposed System

53.5

82.4

114.5

190.5

0

50

100

150

200

250

1.42 2.14 3.02 5.07

P
ro

ce
ss

in
g

Ti
m

e
(m

in
u

te
s)

Dataset (GB)

Processing Time (minutes)

50

As shown in Table 4.5 and Figure 4.4, processing a dataset of 11.65GB on the existing system

takes only 58.4 minutes which is less than an hour.

b. File Size

Contrary to the procedure of generating RDF document in the system proposed by Al-Ostaet al.

(2017) which processes any sensor record regardless of whether it’s a valid record or not. The

proposed system in this work sidelines any incomplete record as described in section 3.3.2 of this

work. Table 4.8 and 4.9 highlights the size of RDF document generated and the size of

incomplete sensor data recorded respectively.

Table 4.8: Processed File Size on the Proposed System

Dataset Size (GB) Processed File Size (MB) Processed File Size (GB)

1.42 3099.73 3.09

2.14 4649.61 4.64

3.02 6586.94 6.58

5.07 11023 11.02

Figure 4.5: File size generated by Proposed System

1.42
2.14

3.02

5.07

3.09

4.64

6.58

11.02

0

2

4

6

8

10

12

Experiment 1 Experiment 2 Experiment 3 Experiment 4

Fi
le

 S
iz

e
(G

B
)

Generated and Processed File Size

Dataset Size (GB) Processed File Size (GB)

51

Also, as shown in Table 4.8 and Figure 4.5, processing a dataset of 11.65GB on the proposed

system generates an RDF document of about 25.33GB.

Table 4.9: Invalid sensor data size

Dataset Size (GB) Invalid Record Size

(MB)

Invalid Record Size

(GB)

1.42 489.87 0.48

2.14 734.82 0.73

3.02 1041 1.04

5.07 1524.76 1.52

Figure 4.6: Processed and Invalid document size

As shown in Table 4.9, each processed dataset has a number of incomplete sensor record, these

sensor records where extracted and stored in a separate file for further decision making. Result of

the experiment shows that processing a huge dataset of 11.65GB generates about 3.77GB invalid

record which would save the machine an extra time of processing and memory space. Figure 4.6

1.42
2.14

3.02

5.07

3.09

4.64

6.58

11.02

0.48 0.73 1.04
1.52

0

2

4

6

8

10

12

Experiment 1 Experiment 2 Experiment 3 Experiment 4

Fi
le

 S
iz

e
(G

B
)

Generated, Processed and Invalid File Size

Dataset Size (GB) Processed File Size (GB) Invalid Record Size (GB)

52

outlines the dataset size used in each experiment, the processed file size and the size of

incomplete sensor record.

4.4Comparative Analysis of Existing System and Proposed System

In this section, analysis of the Level of Enhancement (LoE) between the proposed system and

existing system is described. In order to determine the LoE, percentage increase for each

experiment was derived. These were used to determine average LoE for both Processing Time

and File Size comparison metrics.

4.4.1 Processing Time Comparative Analysis

Table 4.10: Time taken for processing datasets on Existing and Proposed System

Dataset Size (GB) Processing Time (minutes) Enhancement

Level (%)

Existing System Proposed System

1.42 82.8 53.5 35.4

2.14 212.4 82.4 61.2

3.02 372 114.5 69.2

5.07 992.2 190.5 80.8

Total: 11.65 Total: 1659.4 Total: 58.4 Average: 61.65%

53

Figure 4.7: Processing Time on Existing and Proposed System

Table 4.10 indicates that existing system took 82.8 minutes while processing the 1.42GB dataset,

whereas same amount of dataset was processed in 53.5 minutes on the proposed system thus

having a 35.4% processing time percentage increase over existing system. Similarly, while it

took the proposed system 82.4 minutes to process 2.14GB dataset, the existing system spent

about 4hours processing same dataset. As a result, the proposed system recorded 61.2% increase.

As shown in Table 4.10, subsequent experiments with 3.02GB and 5.07GB datasets revealed that

the proposed system had enhancement increase of 69.2% and 80.8% respectively over the system

developed by Al-Ostaet al.(2018). Ultimately, on an average the proposed system recorded

61.65% processing time enhancement over the existing system.

It is worth noting that the processing time of the proposed system is the sum of preprocessing

time of raw sensory data and total time the system takes to generate RDF files that are

consumable by IoT applications.

82.8

212.4

372

992.2

53.5
82.4

114.5

190.5

0

200

400

600

800

1000

1200

1.42 2.14 3.02 5.07

P
ro

ce
ss

in
g

Ti
m

e
(m

in
u

te
s)

Dataset (GB)

Existing System

Proposed System

54

4.4.2 File Size Comparative Analysis

Table 4.11: Processed File Size on Existing and Proposed System

Dataset Size (GB) Processed File Size (GB) Enhancement

Level (%)

Existing System Proposed System

1.42 3.59 3.09 13.93

2.14 5.38 4.64 13.76

3.02 7.63 6.58 13.76

5.07 12.55 11.02 12.19

Total:11.65 Total: 29.15 Total: 25.33 Average: 13.41%

Figure 4.8: File size generated on Existing and Proposed System

While the experiments were being conducted, the size of resulting RDF document generated

were observed and recorded as outlined in Table 4.11. This is to enable seamless evaluation of

proposed enhancement. It is worth noting that only the Generated RDF document file size is

3.59

5.38

7.63

12.55

3.09

4.64

6.58

11.02

0

2

4

6

8

10

12

14

1.42 2.14 3.02 5.07

P
ro

ce
ss

in
g

Ti
m

e
(m

in
u

te
s)

Dataset (GB)

Existing System

Proposed System

55

being considered, Invalid record are of no interest in this section. It’s assumed that invalid record

is used for better informed decision making and recommendations. Table 4.11 indicates that

existing system generated RDF document of size 3.59GB from processing 1.42GB dataset,

whereas same amount of dataset generated 3.09GB on the proposed system thus having a

13.93% percentage increase over existing system. Furthermore, while the proposed system

produced 4.64GB resulting document from processing 2.14GB dataset, the existing system

output 5.38GB worth of document processing same dataset. As a result, the proposed system

recorded 13.76% increase. As shown in Table 4.11, subsequent experiments with 3.02GB and

5.07GB datasets revealed that the proposed system had enhancement increase of 13.76% and

12.19% respectively over the system developed by Al-Ostaet al.(2018). In summary, the

proposed system had 13.41% enhancement over the existing system.

56

CHAPTER FIVE

SUMMARY, CONCLUSION AND FUTURE WORK

5.1Summary

Huge amount of data is being generated by sensors on daily basis and most often these data are

store in cloud for consumption by IoT applications and IoT developers. IoT applications

encounter challenges consuming these data because of its heterogeneity.Despite several solutions

developed, a few challenges such as high latency in data processing, storage and querying of

invalid data are still encountered. Hence, an enhanced storage-baseddata annotation technique

was developed in this dissertation. The proposed system involved the design of a MapReduce

algorithm which was implemented on Apache Hadoop for parallel processing and distributed

storage on HDFS.To evaluate the feasibility of the proposed approach, data generated by sensors

were stored on Hadoop Distributed File System (HDFS) and were processed by a MapReduce

job. Semantic Web technologies such as Extensible Markup Language (XML) and Resource

Description Framework (RDF) were employed for the data annotation. Two categories of

experimentations were conducted and comparison between the proposed system and that of Al-

Ostaet al. (2017) were carried out based on data size and processing time.

5.2Conclusion

The MapReduce based parallel processing algorithms developed in this dissertation uses a

filtering mechanism to filter out invalid sensor record, which could be used for decision making,

whereas valid sensor records were processed. Processed valid record are readily made available

for consumption by IoT application. This dissertation also compares the data size and processing

time of the proposed system and that of Al-Ostaet al. (2017) to determine the level of

enhancement of the proposed system. Four datasets of size 1.42GB, 2.14GB, 3.02GB and

57

5.07GB were used in experimenting the efficiency of the proposed system. Percentage increase,

that is, the enhancement level of the proposed system over the existing for each dataset were

calculated based on the results obtained from both systems and the average level of enhancement

was calculated. This dissertation concludes that the proposed system has 61.65% processing time

and 13.41% data size enhancement respectively over the existing system.

However, this work was not implemented and tested on multiple node cluster. Considering that

the strength of Hadoop is in a cluster of commodity master/slave nodes, implementing this

system on a single commodity node will reduce its performance. Also, this system does not

consider the security of the data being processed or generated by sensors.

5.3Future Work

This dissertation can be further improved through the following suggestions:

1. IoT applications could be developed to query the processed data.

2. Also, as future work, the system developed in this dissertation can be deployed and tested

on a multiple node cluster of several commodity hardware. This research focuses on

using a single node cluster.

3. Larger datasets such as Terabytes and Petabytes with the necessary features should be

used to conduct similar experiment in other to obtain more conclusive results.

4. Future research could also be channeled towards the security of the system as sensitive

data could be part of the data being processed.

5. Finally, invalid sensor records could be further processed to trigger an alarm or

notification once a number of invalid records is generated by a sensor.

58

REFERENCES

Aggarwal, C. C., Ashish, N. andSheth, A. (2013). The internet of things: A survey from the data-

 centric perspective.Managing and mining sensor data, Springer. DOI 10.1007/978-1-

 4614-6309-2_12: 383–428.

Al-Osta, M., Ahmed, B. andAbdelouahed, G. (2017). A lightweight semantic web-based

approach for data Annotation on IoT gateways.The 8th International Conference on

Emerging Ubiquitous Systems and Pervasive Networks (EUSPN 2017). Canada, pp. 186-193

Antoniou, G. andvanHarmelen, F. (2004).A Semantic Web Primer. MITPress, Cambridge, MA.

Arnulf, C. (2012). Introduction to Semantic Web Technology and Geodata. Retrieved From:

 http://arnulf.us/publications/Introduction_to_Semantic_Web_Technology_and_Geodata_

 v4.pdf on 23/5/2018

Barnaghi, P., Wang, W., Henson, C. and Taylor, K. (2012). Semantics for the internet of things:

 early progress and back to the future.International Journal on Semantic Web and

 Information Systems (IJSWIS) 8 (1): 1–21.

Borgia, E. (2014). The Internet of Things vision: Key features, applications and open issues.

 Computer Communications 54,pp. 1–31.

Christophe, B. (2012). Managing massive data of the internet of things through cooperative

 semantic nodes.International Journal of Semantic Computing 6 (04): 389–408.

Chen, J., Jimenez-Ruiz, E., Horrocks, I., and Sutton, C. (2019). Learning Semantic Annotations

 for Tabular Data. Proceedings of the Twenty-Eighth International Joint Conference on

 Artificial Intelligence (IJCAI-19). Pp. 2088 – 2094.

Chun, S., Seo, S., Oh, B. and Lee, K. H. (2015). Semantic description, discovery and integration

 for the internet of things.IEEE International Conference on Semantic Computing (ICSC),

 pp. 272–275.

Cisco (2016). Internet of Things at a Glance. Connected Means Informed. Retrieved From:

 https://www.cisco.com/internet-of-things on 11/10/2018

Data-Flair (2018). Deep Dive into MapReduce in Big Data Hadoop. MapReduce Basics.

DataFlair Web Services Limited, India, pp. 1-31.

Data.gov (2017). Smart Green Infrastructure Monitoring Sensors – Historical.

 data.cityofchicago.org. Retrieved From:

 https://catalog.data.gov/dataset/sustainable-green-infrastructure-monitoring-sensors

59

Dean, J. and Ghemawat, S. (2010). MapReduce: a flexible data processing tool.Communications

 of the ACM53 (1), pp. 72–77.

Deepa, R. andChezian, R. M. (2016). An Ontological Approach for the Semantic Web Search

and the Keyword Similarity Metrics. International Journal of Advanced Research in

Computer and Communication Engineering 5 (3): 678-682

Desai, P., Sheth, A. andAnantharam, P. (2015). Semantic gateway as a service architecture for

 IoT interoperability. IEEE International Conference on Mobile Services (MS), pp. 313–

 319.

Dillon, T., Chang, E., Singh, J. and Hussain, O. (2012). Semantics of cyber-physical systems.

 International Conference on Intelligent Information Processing, Springer, pp. 3–12.

Ding, Z., Yang, Q. and Wu, H. (2011). Massive heterogeneous sensor data management in the

 internet of things, in: Internet of Things (iThings/CPSCom). IEEE International

 Conference on and 4th International Conference on Cyber, Physical and Social

 Computing, pp. 100–108.

Edje, E. A. (2016). Overview of Semantic Web Technology: The Formulation of Semantic Web

 Agent System Model to Assist the Blind and Visually Impaired.International Journal

 of Science and Technology 6 (1): 1-31

Evans, D. (2015). The internet of things: How the next evolution of the internet is changing

 everything. Cisco.

Gopinath, G. and Sagayaraj, S. (2011). To Generate the Ontology from Java Source Code.

 (IJACSA) International Journal of Advanced Computer Science and Applications, 2 (2).

GSMA (2014). Understanding the Internet of Things (IoT). Retrieved From:

 https://www.gsma.com/iot/wp-content/uploads/2014/08/cl_iot_wp_07_14.pdf on

 12/3/2018

Gyrard, A. (2013). An architecture to aggregate heterogeneous and semantic sensed data.

 Extended Semantic Web Conference, Springer, pp. 697–701.

Hiba, A. and Shady, E. (2017). Effective searching of RDF knowledge graphs. Web Semantics:

 Science, Services and Agentson the World Wide Web 48: 66-84

Isard, M.,Budiu, M., Yu, Y., Birrell, A. and Fetterly, D. (2007).Dryad: distributed data-parallel

 programs from sequential building blocks. SIGOPS Operating System Review, 41(3):59–

 72.

Levy, J. (2018). Dataset. Retrieved From:https://catalog.data.gov/dataset?tags=iot

https://catalog.data.gov/dataset?tags=iot

60

Jutamard, K. andWiwat, V. (2016). A development of RDF data transfer and query on Hadoop

 Framework. 2016 IEEE/ACIS 15th International Conference on Computer and

 Information Science (ICIS). DOI: 10.1109/ICIS.2016.7550760

Kamburugamuve, S., Christiansen, L. and Fox, G. (2014). A Framework for Real-Time

Processing of Sensor Data in the Cloud.School of Informatics and Computing and

Community Grids Laboratory.Indiana University, Bloomington IN 47408 USA.

Keyur, K. P. and Sunil, M. P. (2016). Internet of Things-IOT: Definition, Characteristics,

 Architecture, Enabling Technologies, Application & Future Challenges. International

 Journal of Engineering Science and Computing6 (5): 6122-6131

Khan, I., Jafrin, R., Errounda, F. Z., Glitho, R., Crespi, N., Morrow, M. andPolakos, P. (2015). A

 data annotation architecture for semantic applications in virtualized wireless sensor

 networks. IFIP/IEEE International Symposium on Integrated Network Management (IM),

 pp. 27–35.

Kotis, K. andKatasonov, A. (2012). Semantic interoperability on the web of things: The semantic

 smart gateway framework.IEEE Sixth International Conference Complex, Intelligent and

 Software Intensive Systems (CISIS), pp. 630–635.

Laura, P. and Pamela, V. (2013).Semantic Web in Action. Retrieved From:

 http://www.globant.com/sites/default/files/pdf_white_ papers/semantic-web.pdf on 7/6/2018

Manyika, J. (2015). The Internet of Things: Mapping the value beyond the hype.

Nasullah, K. A., Maozhen, L., Yang, L. and Suhel, H. (2011). A MapReduce-based distributed

 SVM algorithm for automatic image annotation. Computers and Mathematics with

 Applications. Pergamon Press, Inc. Tarrytown, NY, USA.

Ovidiu, V. S. and Peter, F. (2014). Internet of Things: Converging Technologies for Smart

 Environments and Integrated Ecosystems.River publishers’ series in communications.

Saeed, S. and Saeed J. (2014). Beyond Batch Processing: Towards Real-Time and Streaming

Big.

 TarbiatModares University (TMU), Tehran, Iran. pp. 1-11.

Suhasini (2019). Big Data and the Internet of Things (IoT). Retrieved From:

 https://blogs.mastechinfotrellis.com/big-data-internet-things-iot

61

Zachariah, T., Klugman, N., Campbell, B., Adkins, J., Jackson, N. and Dutta, J. (2015). The

 Internet of Things Has a Gateway Problem. ACM 978-1-4503-3391-7/15/02. DOI

 http://dx.doi.org/10.1145/2699343.2699344

APPENDIX A

I. Parallel Data Processing Algorithm

II. Mapper Class Code Snippet

package com.df.wc;

//Java Imports

import java.io.BufferedReader;

import java.io.IOException;

import java.util.StringTokenizer;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.ParserConfigurationException;

import javax.xml.transform.OutputKeys;

import javax.xml.transform.Transformer;

import javax.xml.transform.TransformerConfigurationException;

import javax.xml.transform.TransformerException;

Algorithm for Parallel Filtering and Annotation of Sensor Data

16. input: sensorRecord = data obtained from sensors (sensor id, model, type, measured value,

timestamp)

17. output: processedSensorRecord

18. FOR EACH sensorRecords as sensorRecord

19. tokens = tokenize sensorRecord by tab

20. count = count the number of tokens

21. IF (count is equal to 5)

22. processedSensorRecord = process (structure and annotate) sensor

 Record

23. store processedSensorRecord

24. ELSE

25. log sensorRecord as invalid

26. store sensorRecord

27. END IF

28. END FOR EACH

62

import javax.xml.transform.TransformerFactory;

import javax.xml.transform.dom.DOMSource;

import javax.xml.transform.stream.StreamResult;

//Map reduce import

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.NullWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Mapper.Context;

import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs;

import org.apache.jena.rdf.model.Model;

import org.apache.jena.rdf.model.ModelFactory;

import org.apache.jena.rdf.model.Property;

import org.apache.jena.rdf.model.Resource;

import org.w3c.dom.DOMImplementation;

import org.w3c.dom.Document;

import org.w3c.dom.Element;

import org.w3c.dom.Node;

//input key, input value, output key, output value

public class DataAnnotationMapper extends Mapper <Object, Text, NullWritable, Text>

{

 private static String sensor_id = null;

 private static String sensor_type = null;

 private static String sensor_model = null;

 private static String sensor_value = null;

 private static String timestamp = null;

 // create Source and Namespace

 static String source = "http://jerryemmanuel.com/sdo";

 static String myNameSpace = source + "#" ;

 private Text invalid = new Text ("Invalid sensor data => ");

63

 String processedRecord = "";

 private MultipleOutputs<NullWritable, Text>mos = null;

 public void setup (Context context){

 mos = new MultipleOutputs (context);

 }

 public void cleanup (Context context) throws IOException, InterruptedException{

 mos.close();

 }

 public void map(Object key, Text value, Context context) throws IOException,

InterruptedException

 {

 String[] sensorRecord = value.toString().split("\t");

 String tempRecord = "\t<rdf:Descriptionrdf:about = '"+ myNameSpace +""+

sensorRecord[0] +"'>\n";

 String[] tags = {"sdo:type", "sdo:model", "sdo:value", "sdo:timestamp"};

 int count = 0;

 if(sensorRecord.length == 5){

 for(int i = 0; i<tags.length; i++){

 if(sensorRecord[i+1].equals("")){

 count++;

 mos.write("BadRecords", NullWritable.get(), new Text

("Invalid sensor data => "+value));

 break;

 }else{

 tempRecord = tempRecord +

performDataAnnotation(sensorRecord[i+1], tags[i]);

 }

 }

 tempRecord += "\t</rdf:Description>";

 if(count == 0){

 processedRecord = tempRecord;

 mos.write("ParsedRecords", NullWritable.get(), new

Text(processedRecord));

64

 }

 }else{

 mos.write("BadRecords", NullWritable.get(), new Text ("Invalid sensor

data => "+value));

 }

 }

 public String performDataAnnotation(String value, String tagName){

 String tsValue = "\t\t<"+tagName+">"+value+"</"+tagName+">\n";

 return tsValue;

 }

}

III. Driver Class Code Snippet

/**

 * Licensed to the Apache Software Foundation (ASF) under one

 * or more contributor license agreements. See the NOTICE file

 * distributed with this work for additional information

 * regarding copyright ownership. The ASF licenses this file

 * to you under the Apache License, Version 2.0 (the

 * "License"); you may not use this file except in compliance

 * with the License. You may obtain a copy of the License at

 *

 * http://www.apache.org/licenses/LICENSE-2.0

 *

 * Unless required by applicable law or agreed to in writing, software

 * distributed under the License is distributed on an "AS IS" BASIS,

 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

 * See the License for the specific language governing permissions and

 * limitations under the License.

 */

package com.df.wc;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

65

import org.apache.hadoop.io.NullWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

public class DataAnnotationDriver

{

 public static void main(String[] args) throws Exception

 {

 Path inputDir = new Path(args[0]);

 Path outputDir = new Path(args[1]);

 Configuration conf = new Configuration();

 Job job = new Job(conf);

 job.setJarByClass(WordCount.class);

 job.setJobName("Proposed System");

 job.setMapOutputKeyClass(NullWritable.class);

 job.setMapOutputValueClass(Text.class);

 job.setMapperClass(TokenizerMapper.class);

 FileInputFormat.setInputPaths(job, inputDir);

 FileOutputFormat.setOutputPath(job, outputDir);

 MultipleOutputs.addNamedOutput(job, "ParsedRecords", TextOutputFormat.class,

NullWritable.class, Text.class);

 MultipleOutputs.addNamedOutput(job, "BadRecords", TextOutputFormat.class,

NullWritable.class, Text.class);

 job.waitForCompletion(true);

 }

66

}

APPENDIX B

I. Distributed Dataset Storage using Ubuntu terminal

a. Starting HDFS daemons using start-dfs.sh command

b. Initiating MapReduce daemons using start-yarn.sh command

67

II. Processing 1.42GB dataset

68

69

APPENDIX C

I. Sample Block Information

70

II. Output of Processed 1.42GB Dataset

III. Sample Annotated Sensor Record

71

IV. Sample Invalid Sensor Record

