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Abstract  

In this research, the shape parameter of the Generalized Inverse Exponential Distribution (GIED) 

was estimated using maximum likelihood and Bayesian estimation techniques. The Bayes 

estimates were obtained under the squared error loss function and precautionary loss function 

under the assumption of two non-informative priors. An extensive Monte Carlo simulation study 

was carried out to compare the performances of the Bayes estimates with that of the maximum 

likelihood estimates at different sample sizes. It was found out that the maximum likelihood have 

the same estimate with the Jeffrey’s prior using the squared error loss function, and also 

performed better than the Bayes estimates under the  Jeffrey’s prior using the precautionary loss 

function and uniform prior using both loss function but performed lesser than the Extended 

Jeffrey’s prior under both loss functions. The Extended Jeffrey’s prior was observed to have 

estimated the shape parameter of the GIED better when compared with the maximum likelihood 

estimator and other Bayes estimate at all sample sizes using their mean squared error. Also the 

squared error loss function under the Extended Jeffrey’s prior has the best estimate when 

compared with other Bayes estimates using their posterior risk. Hence the Bayes estimate under 

the Extended Jeffrey’s using the squared error loss function has the best estimator for estimating 

the shape parameter of the GIED. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background of the Study 

In the past, many generalized univariate continuous distribution have been proposed. The 

generalization of these distributions is important in order to make its shape more flexible to 

capture the diversity present in the observed dataset. One of such generalizations is the 

Generalized Inverse exponential distribution (GIED) proposed by Abouammoh and Alshangiti 

(2009), in which the shape parameter was added to make the distribution more flexible. As a 

result, this parameter has to be estimated using the appropriate estimation technique. One of such 

techniques is the Bayesian method of estimation which combines the prior knowledge with new 

observations to come up with updated information. 

Researchers have estimated the parameter of different distributions using the Bayesian technique 

because of its advantage over other methods of estimation. Some of this research includes the 

work of Farhad et al., (2013) which studied the scale parameter of inverse weibull distribution. 

Also, Dey (2015) studied the inverted exponential distribution using this technique. 

Although the GIED has been studied using this technique under the assumption of the 

informative prior, but there are situations where we do not have information about the prior as 

such there will be need to study it under the non-informative prior. It is in the light of this that, 

this research intends to study the estimation of the shape parameter of the GIED under the non-

informative priors using two loss functions with the assumption that the scale parameter is 

known.   
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1.2 Generalized Inverse Exponential Distribution  

One of the simplest and most widely discussed distributions that is used for life testing is the one 

parameter exponential distribution. The distribution plays a vital role in the development of 

theories. One of the limitations of this distribution is that its applicability is restricted to a 

constant hazard rate. This is because there is hardly any system that has time independent hazard 

rate. As a result, a number of generalizations of the exponential distribution have been proposed 

in earlier literatures, for example the gamma distribution which is sum of independent 

exponential variates. 

One of the extension of the exponential distribution is the inverted exponential distribution 

proposed by Killer and Kamath (1982) which possess the inverted bathtub hazard rate and has 

cumulative distribution function (CDF) expressed as 

( )

( , ) xF x e





         (1.1) 

and probability density function (pdf)  as 

 
( )

2
( , ) e ; 0, 0xf x x

x




 


         (1.2) 

The generalized inverse exponential distribution has cumulative distribution function express as; 

( , , ) 1 1 xF x e



 
 

   
 

      (1.3) 

and probability density function (pdf),  

 

1

2
( , , ) 1 ; 0, 0, 0x xf x e e x

x

 


   


  

     
 

      (1.4)   
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where   is the scale parameter. 

            is the shape parameter. 

1.3 Statement of Problem 

Bayesian estimation involves choosing the appropriate prior for the parameters. Although 

there is no way one can say one prior is better than the other. It all depends on the prior 

chosen. If there is no information about the parameter of interest then it is more preferable to 

estimate the parameter using non-informative prior. Otherwise the informative prior will be 

better. As a result there is need for us to find the appropriate prior for estimating the shape 

parameter of the Generalized Inverse Exponential Distribution when there is little or no 

information about the prior. 

1.4 Aim and Objectives 

The aim of this research is to estimate the shape parameter of Generalized Inverse Exponential 

Distribution (GIED) using Bayesian approach. 

The aim is to be achieved through the following specific objectives  

1.  obtain the posterior distribution under the uniform, Jeffrey and Extended Jeffrey’s 

priors; 

2. determine the Bayes estimator and Bayes posterior risk of the shape parameter using 

the afore mentioned priors under square error loss function (SELF) and precautionary 

loss function (PLF); 

3. conduct simulation study in order to find the most appropriate combination of the loss 

functions and prior for the estimation of the shape parameter of the posterior 

distribution.  
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4. determine which prior estimate the shape parameter of the generalized inverse 

exponential distribution with a minimum risk. 

5. compare the maximum likelihood estimate and the Bayes estimate. 

1.5 Significance and Justification of the study 

The research will be of much importance in Statistics, since statistical decision theory deals 

with situation in which decision have to be made with some level of uncertainty. The 

Bayesian approach offers a method of formalizing a prior belief and combining them with 

available observation with the aim of allowing a rational deviation of optimal decision 

criteria. Important reason behind the choice of prior belief is that inferential problem can be 

naturally viewed as a special case of decision problem. As a result all the conceptual tools of 

Bayesian decision theories are incorporated into inference criteria. 

This study will help to determine which prior estimate the shape parameter of the generalized 

inverse exponential distribution with a minimum risk. 

1.6 Definition of Terms 

1.4.1 Likelihood function 

The likelihood of a parameter 𝜃 given x is define as the joint probability density function 

assumed for the observed outcomes given the parameter value. 

 

 

1.4.2 Prior distribution 

The prior distribution is the assumed distribution of the parameter before any data is observed. 

There are three different types of prior: 
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The informative is used when there is previous knowledge about the parameter to be estimated. 

This distribution favors certain value of the parameter. 

The non- informative prior is used when there is a general lack of knowledge about the 

parameter to be estimated. This prior does not favor any value of the parameter. 

 The conjugate prior has the same functional form with the posterior distribution. The rationale 

behind the use of this prior is that of easing computational difficulties and also can have a close 

form expression for the distribution.  

For this research the non- informative prior will be used in order to allow the data speak for itself 

and also to have the prior distribution contribute minimally, since it was stated by Arnold and 

Press (1983) that there is no way one can say one prior is better than the other. It all depends on 

the prior chosen. 

1.4.3 Posterior distribution 

Under the Bayesian approach, prior beliefs about parameter of interest are combine with the 

sample information to give an updated information about the parameter. 

The posterior distribution is define as the distribution of the parameter after taking into 

consideration the prior and the observed data. It summarizes available probabilistic information 

on the parameter in the form of prior distribution and sample information which are contained in 

the likelihood function. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Baseline Distribution 

A one-parameter Inverse Exponential Distribution introduced by Keller and Kamath (1982) has 

an inverted bathtub failure rate and it can compare competitively with exponential distribution. It 

is one of the distributions that is used in modelling lifetime data.  Recently, several 

generalization of inverse-exponential distribution were obtained. One of which is the 

Generalized Inverse Exponential distribution (GIED) introduced by Abouammoh and Alshangiti 

(2009). They have investigated its statistical properties and its reliability functions. This 

distribution can be used to represent different shapes of failure rates and hence different shapes 

of aging criteria.  

2.2 Bayesian Concept 

The Bayesian concept was introduced by Reverend Thomas Bayes in the 1970s. In this concept, 

we combine any new information that is available with the prior information we have, to form 

the basis for the statistical procedure. The Bayesian approach seeks to optimally merge 

information from two sources namely the; the knowledge that is known from theory or opinion 

formed at the beginning of the research obtained in the form of prior and information contained 

in the data in the form of likelihood function. This two combine together can be used to obtain 

the posterior distribution. The main difference between the Bayesian approach and the classical 

approach is that in Bayesian approach, the parameters are viewed as random variable, whereas 

the classical concept consider the parameters to be fixed but unknown. 
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Different researcher have used the Bayesian approach to estimate the shape  and (or) scale 

parameter of different distributions and compare with the classical approach. Some of this 

research includes; 

Feroze (2012) discussed the Bayesian analysis of the scale parameter of inverse Gaussian 

distribution using different  priors and loss function. He used both informative (exponential,  

gamma and chi-square) and non-informative (uniform and Jeffreys) priors with eight loss 

functions namely; squared error loss function (SELF), quadratic loss function (QLF), entropy 

loss function (ELF), weighted loss function (WLF), squared logarithmic loss function (SLLF), 

linear exponential (LINEX) loss function, precautionary  loss  function  (PLF)  and  weighted  

balanced  loss  function  (WBLF). It was deduced from the study that, the performance of the 

estimates under uniform prior  is better than those under Jeffreys prior for most of the cases. 

While in case of informative priors used, the performance of estimates using  exponential  prior  

is  the  best  in  terms  of  Bayes  risks.  Similarly,  in  comparison  of  informative  and  non 

informative priors, the informative priors give better results. Although, the estimates under 

informative priors converge to the estimates under non-informative priors as the values of hyper-

parameters approach zero. It is also  indicated that the estimates under ELF are associated with 

the minimum risks using each prior. 

Farhad et al., (2013) studied the classical and Bayesian approach of estimating the scale 

parameter of Inverse Weibull distribution when the shape parameter was known under the 

assumption of quasi, gamma and uniform priors using square error loss function, entropy loss 

function and precautionary loss function. It was observed that Bayes method of estimation for 

gamma prior is superior to the Maximum Likelihood Estimates (MLEs) method. Also in the case 

of the gamma prior, the Bayes estimator relative to the precautionary loss function have the 
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smallest mean square error when compared with the Bayes estimator relative to the square error 

loss function or the Bayes estimator under entropy loss function or the MLEs.  

Yahgmaei et al., (2013) proposed classical and Bayesian approaches for estimating the scale 

parameter in the inverse Weibull distribution when shape parameter is known. The Bayes 

estimators for the scale parameter of the Inverse Weibull distribution were derived, by 

considering Quasi, Gamma and uniform priors under squared error, entropy and precautionary 

loss function.The results shows that the Bayes method of estimation for gamma prior is superior 

to the MLE method. Also, in the case of gamma prior, the Bayes estimators related to 

precautionary loss function have the smallest MSE as compared with the Bayes estimators 

related to square error loss function or the Bayes estimators under entropy loss function or the 

MLEs. Furthermore, in the case of uniform prior, the Bayes estimators under square error loss 

function are doing better than the Bayes estimators under precautionary loss function. 

Azam and Ahmed (2014) estimated the scale parameter of Nakagami distribution using Bayesian 

approach. The study revealed that the scale parameter was estimated under three prior 

distributions, namely; Uniform, Inverse Exponential and Levy priors and three loss functions 

namely; Squared Error Loss Function, Quadratic Loss Function and Precautionary Loss 

Function. The result of their analysis showed that the Precautionary Loss Function produces the 

least posterior risk when uniform prior is used while Squared Error Loss Function is the best 

when inverse exponential and Levy Priors are used.  

Bhupendra and Reetu (2015) studied the maximum and Bayesian estimation of the inverse 

exponential distribution based on type-II censored sample under the assumption of conjugate 

prior using square, Generalize Entropy Loss Function (GELF) and LINEX loss functions. The 

maximum likelihood was compared with Bayesian estimates using Monte Carlo simulations. The 
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result showed that the Bayesian estimation based on Squared Error Loss Function (SELF), 

LINEX and GELF was more precise than that of the maximum likelihood estimation.  

 Dey (2015) studied the inverted exponential distribution as a life distribution from a Bayesian 

viewpoint. The Bayes estimators for the parameter of the distribution base on the SELF and 

LINEX loss function were derived. It observed that the LINEX was more appropriate than the 

SELF. 

Nasir et al., (2015) studied Bayesian estimation of the scale parameter of log logistic distribution 

using square error loss function, precautionary loss function, simple precautionary loss function 

and weighted loss function with two non-informative priors(uniform and Jeffery). The study 

shows that Bayes estimators approach to their true value and posterior risks decreases as sample 

size increases. From the study, Jeffery prior performed better than the uniform prior and also 

precautionary loss function perform better than the other loss functions. Therefore, Jeffery with 

precautionary loss function provides minimum posterior risks as compared to other loss 

functions and priors. 

 Wasif and Navid (2015) studied the posterior analysis of Nakagami distribution under the 

assumptions of uniform and inverse gamma prior using Weighted, Weighted Balance and 

precautionary loss functions. The Bayesian estimator of the scale parameter of Nakagami 

distribution was obtained. The result of the analysis showed that the performance of inverse 

gamma prior is better than the uniform prior and that weighted balance loss function are 

associated with least amount of posterior risk under each prior.  

Yahia et al (2015) developed the maximum likelihood and Bayesian estimation based on pooled 

sample of two independent type-II censored samples from the inverse exponential distribution. 
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The conjugate gamma prior was used with square error, LINEX and general entropy loss 

functions. A simulation study was carried out using Monte Carlo simulation to evaluate the 

performance of the maximum likelihood estimate and all the Bayesian estimates. It was observed 

that the Bayesian estimates returned smaller values of loss functions than those of maximum 

likelihood estimates.  

Aliyu and Abubakar (2016) studied the Bayesian estimation of the shape parameter of 

generalized Raleigh distribution under the assumption of extended Jeffrey’s prior with three loss 

functions; SELF, ELF and PLF, compared the performance of the MLEs and the Bayes estimator 

and found out that Bayes estimator under the entropy loss function is better than the Bayes 

estimators under the square error and precautionary loss functions and that of MLEs.  

Kaisar et al (2016) studied the classical and Bayesian approach of scale parameter of Nakagami 

distribution under the assumption of Jeffrey, Extended Jeffrey and Quasi priors using quadratic, 

Al-Bayyati and entropy loss functions. The estimate of the scale parameter using simulated data 

set was obtained.  

Sanjay et al., (2013) studied the maximum likelihood estimates (MLEs) of the parameters of 

generalized inverted exponential distribution in case of type-II censoring scheme with binomial 

removal under the assumption of gamma prior and two loss functions. The result of the analysis 

showed that the estimated risk of estimator decreases as effective sample size increases and 

Bayes estimates have the smallest estimated risk when compared with their corresponding 

maximum likelihood estimates. 

Therefore, with the available knowledge and insight of what others have done, this research 

intends to estimate the shape parameter of a generalized inverted exponential distribution using 
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Bayesian viewpoint under three non-informative priors and two loss functions and compare with 

the maximum likelihood estimate. 
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CHAPTER THREE 

RESEARCH METHODOLOGY 

  

Bayesian estimation procedure will be used to estimate the shape parameter of GIED assuming 

the non-informative priors under the squared error loss function which is classified as symmetric 

loss function and the precautionary loss function which is classified as asymmetric loss function.   

3.1 Likelihood Function 

Let 1 2( , ,..., )nx x x be random sample of size n, then the likelihood function is defined as; 

1

( / ) ( / )
n

i i

i

L x f x 


        (3.1) 

The likelihood plays an important role in the estimation of parameter from a set of statistics. 

Let 1 2( , ,..., )nx x x be random sample of size n drawn from GIED having pdf given as; 

1

2
( ; , ) (1 ) ; 0, 0, 0x xf x e e x

x

 


   
 

         (3.2) 

then, taking equation (3.2) into (3.1), the likelihood of the GIED is given by: 

( )
1

2
1

( , , ) (1 )i i

n
x x

i i

L x e e
x

 


 

 




        (3.3) 

which can also be expressed as; 

( ; , )L x    1

1
( )

1

2

1
(1 )

n

ii i

n
x xn n

i i

e e
x


  

 



      (3.4) 

 



13 
 

3.2 Maximum Likelihood Estimation 

The value of the statistic which maximizes the likelihood function is called the maximum 

likelihood estimate and it is obtained as follows; taking the natural logarithm of equation (3.3), 

we have 

   2

1 1 1

1
ln ; , ln( ) ln( ) ln ( 1) ln(1 )i

n n n
x

i i

i i ii

L x n n x e
x



     


  

            (3.5) 

differentiating equation (3.5) w.r.t  and setting it to zero 

 

1

ln ; ,
ln(1 ) 0i

n
x

i

d L x n
e

d


 

 





             (3.6) 

solving for   in equation (3.6), gives 

1

ˆ

ln(1 )i

MLE
n

x

i

n

e








 



        

Which can also be expressed as; 

    

1

1

ln(1 )i

MLE
n

x

i

n

e













      (3.7) 

3.3 Prior Distribution 

The three non-informative priors used in this research are the uniform, Jeffrey’s and extended 

Jeffrey’s priors. 

3.3.1 Uniform prior 

 One of the most famous non-informative priors is a uniform prior, it can be expressed as:   
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( ) k   , where k is a constant      (3.8) 

 

3.3.2 Jeffrey’s prior 

Another approach use to elicit a non-informative prior is the Jeffrey’s prior whose principle leads 

to specifying that a prior should be proportional to the  
1

2I    .i.e. 

 
1

2( ) I              (3.9) 

where 

 
 2

2

log ; ,f x
I nE

 




 
   

 
      (3.10) 

and  ; ,f x  
 
denotes the conditional pdf for x  given the parameter β. Now the ( )I   for the 

Generalized Inverse Exponential Distribution is obtain as follows: 

Taking the natural logarithm of equation (3.2) we have  

2ln ( ; , ) ln ln log ( 1) ln(1 )xf x x e
x




    


          (3.11) 

Taking the first and second derivatives w.r.t β we have 

ln ( ; , ) 1
ln(1 )x

f x
e


  

 


  


      

2

2 2

ln ( ; , ) 1
( )

f x
I

  


 


  


      (3.12) 
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taking the expectation of equation (3.12) we have; 

 
 2

2 2

log ; , 1
/

f x
I nE nE

 
 

 

   
       

   
 

   2

n
I 


                    (3.13) 

If the constant of proportionality is assumed to be one, then the Jeffrey’s prior defined in (3.9) is 

given as  

  ( )
n

 


          (3.14)  

3.3.3 Extended Jeffrey’s prior. 

The extended Jeffrey’s prior proposed by Al-Kutubi (2005) is defined by  

   ( )
r

I           (3.15) 

Where  ( )I  is as defined in equation (3.10).  

Substituting (3.13) into (3.15) we obtained the extended Jeffrey’s prior as  

  2

r

r

n
 


          (3.16) 

3.4 Posterior Distribution 

The posterior distribution is given as; 

  1 2

1 2

0

( , ,... , , ) ( )
/

( , ,... , , ) ( )

n

n

L x x x
P x

L x x x d

   


    






      (3.17) 
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where  
2

1

( , ,..., / ) ( , )
n

i n i

i

L x x x f x 


         

and ( )  is the prior distribution. 

However, we shall use the GIED as sampling distribution with the non-informative priors to 

derive the posterior distribution. 

3.4.1 Posterior distribution under the uniform prior 

The posterior distribution under the uniform prior can be obtained by substituting 3.4 and 3.8 

into 3.17 and it is given as; 

1

1

1

1

2

1

1

20

1
[1 ] .

( / )

1
[1 ] .

n

ii i

n

ii i

n
x xn n

i i

n
x xn n

i i

e e k
x

p x

e e kd
x







 



  





 


 














    (3.18) 

integrating and re-arranging the denominator of equation (3.18) gives 

1

1

1

20

1
[1 ] [1 ] .

n

ii i i

n
x x xn n

i i

k e e e d
x

 
  

  



       (3.19) 

Let M  1 i

n
x

i

e


 

 
  

        (3.20) 

taking the natural logarithm of equation (3.20) and multiplying both sides by minus one (-1) 

1

1

ln( ) ln(1 )i

n
x

i

M e










          (3.21) 

making   the subject, we have 
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1

ln( )

ln[1 ]i

n
x

i

M

e












        (3.22) 

1

1

1
ln[1 ]i

n
x

i

dM e d
M










         (3.23) 

1

1

ln[1 ]i

n
x

i

dM
d

M e














       (3.24) 

substituting equations (3.22) and (3.24) into (3.19) gives,  

 
1

1 0

1

20
1 1

1

ln 1
( , ; ) ( ) [1 ]

ln[1 ]ln[1 ]

n

ii i

i
i

n
n

x xn

n n
n i i x

x

i
i

M dM
L x d k e M e

x
M ee




      

 



 



  
 

 
 

  

 


  

 
1

1
0

1

1 21
1

1

ln 1
[1 ]

ln[1 ]

n

ii i

i

n
n

x xn

n
n i i

x

i

M
k e e dM

x
e




 

 



 



 
  

 
 

  





     

 

1

1

1

1

2
0

1 1

1
[1 ]

ln

ln[1 ]

n

ii i

n
x xn

ni i

n
n

x

i

k e e
x

M dM

e





 

 






 

 
 

 
  






    (3.25) 

let ln lny M y M            (3.26) 

then 

ye M            (3.27)   
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differentiating equation (3.27) yields 

ye dy dM           (3.28)  

substituting equations (3.26) and (3.28) into equation (3.25) 

1

1

1

2

1

0
1

1
[1 ]

ln[1 ]

n

n
ii i

i

n
x x

n yi i

n
n

x

i

k e e
x

y e dy

e





 

 














 
 

 
 






 

therefore the denominator of equation (3.18) becomes, 

0
( , , ) ( )L x d    





1

1

1

2

1

1

1
[1 ]

ln[1 ]

n

n
ii i

i

n
x x

i i

n
n

x

i

k e e
x

e





 

 











 

 
 
 





 1n    (3.29) 

substituting equation (3.29) into (3.18) and re-arranging we have 

1

1

11

1 1

2

1

1

2

1
[1 ] . . ln[1 ]

( / )

1
[1 ] ( 1)

n

ii i i

n

n
ii i

n
n n

x x xn n

ii i

n
x x

i i

e e k e
x

p x

k e e n
x

 




 










  

 

 


 
  

 
 


  





  (3.30) 

1

1[1 ] ln[1 ]

( 1)

i i

n
n n

x xn

ii

e e

n

 




 


 

  
 
 

 


      (3.31) 

but from equation (3.21) 
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  recall that  
1

1

(1 ) ln ln[1 ]i i

n n
x x

ii

M e M e

 

 
 





        

Taking exponential of both sides we have 

   

1ln[1 ]

n
xi

i

e

M e







 
  
 
 


  

therefore the posterior distribution is given as 

1

( / )
( 1)

n n NN e
p x

n




 


 

       (3.32) 

where 1ln[1 ]i

n
x

i

N e





 

  
 
 
        (3.33) 

Therefore the posterior distribution under the uniform prior is given as equation (3.32), which is 

gamma distribution with parameters ( 1)n and N  

3.4.2 Posterior distribution under the Jeffrey’s prior 

The posterior distribution under the Jeffrey’s prior can be obtain by substituting equations (3.4) 

and (3.14) into (3.17) and it is given as; 

1

1

1

1

2

1

1

20

1
[1 ] .

( / )

1
[1 ] .

n

ii i

n

ii i

x xn n

i

x xn n

i

n
e e

x
p x

n
e e d

x







 




  






 


 



 




 

    (3.34) 

re-arranging the denominator of equation (3.34) gives 
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1 1 1

20 0

1
( ; , ) ( ) [1 ] [1 ]

n

i

i i i

nx
x xn n

i i

L x d n e e e d
x



 

       



  
 


      (3.35) 

Let [1 ]
n

x

i

M e





        

1

1

ln ln[1 ]i

n
x

i

M e










    

making   subject of formula we have 

1

1

ln

ln[1 ]i

n
x

i

M

e














        (3.36) 

1

1

ln[1 ]i

n
x

i

dM
d

M e














 

therefore equation (3.35) becomes 

0
( , , ) ( )L x d    





 
1

1 1
0

1

1 21
1 11

11

ln 1
[1 ]

ln[1 ]ln[1 ]

n

ii

n
n

xn x
n nn

i i xx

ii

M dM
n e M e

x
M ee




 


 




  



  
 

  
   

  




 

1

1

1

2
0

11

1

1

1

1
[1 ]

( ln )

ln[1 ]

n

ii

n
xn x

ni i

n
n

x

i

n e e
x

M dM

e





 

 










 

 
 

 
 






    (3.37) 

Let ln lny M y M            (3.38) 
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taking the exponential of equation (3.38) 

ye M           (3.39) 

differentiating equation (3.39) we have, 

ye dy dM           (3.40) 

substituting into the integral part of equation (3.37) we have 

1 1

0 0
( ln )n n yM dM y e dy

 
      ( )n   

The denominator of equation (3.34) becomes 

0
( , , ) ( )L x d    





1

1

1

2
1

1

1

1
[1 ]

( )

ln[1 ]

n

ii

n
xn x

i i

n
n

x

i

n e e
x

n

e





 

 













 

 
 





   (3.41) 

Substituting equation (3.41) into (3.34) we derive the posterior using the Jeffrey’s prior as 

1

1

1

1 1

2
11

1

1

2
1

1
[1 ] . . ln[1 ]

( / )

1
[1 ] ( )

n

ii i

n

ii

n
n n

x xn n x

ii i

n
xn x

i i

n
e e e

x
p x

n e e n
x

 




 










  
 



 




  
  

 


 





 

1 1

11

(1 ) ln[1 ]

( )

i

n
n n

xn x

ii

e e

n

 


 
 



 
  

 



     (3.42) 

1

( )

n n NN e

n

  




         (3.43) 
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where N is as define in equation (3.33). 

Therefore the posterior distribution is given as equation (3.43), which is a gamma distribution 

with parameters n and N. 

3.4.3 Posterior distribution under the extended Jeffrey’s prior. 

The posterior distribution under the Jeffrey’s prior can be obtain by substituting equations (3.4) 

and (3.16) into (3.17) and it is given as 

  

1

1

1

1

2 2

1

1

2 20

1
[1 ] .

( / )

1
[1 ] .

n

ii i

n

ii i

r
x xn n

r

i

r
x xn n

r

i

n
e e

x
p x

n
e e d

x







 




  






 


 



 




 

    (3.44) 

Integrating the denominator of equation (3.44) 

  1

1

2 1

20 0

1
( ; , ) ( ) [1 ] [1 ]

n

ii i i

n
x x xr n n r

i i

L x d n e e e d
x

 
       

   
 


     (3.45) 

Let [1 ]
n

x

i

M e





   

1

1

ln ln[1 ]i

n
x

i

M e










    

Making   subject of formula we have 

 

1

1

ln

ln[1 ]i

n
x

i

M

e














        (3.46) 
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1

1

ln[1 ]i

n
x

i

dM
d

M e














 

Therefore equation (3.45) becomes  

  
 

1

1 2
0

1

2 21
1 11

11

ln 1
[1 ]

ln[1 ]ln[1 ]

n

ii

n r
n

xr n x
n r nn

i i xx

ii

M dM
n e M e

x
M ee




 


 




  



  
 

  
   

  




 

  

1

1

1

2
0

21

2 1 1

1

1

1
[1 ]

( ln )

ln[1 ]

n

ii

n
xr n x

n ri i

n r
n

x

i

n e e
x

M dM

e





 

 




 







 

 
 

 
 






    (3.47) 

 Let ln lny M y M           (3.48) 

  ye M           (3.49) 

Substituting into the integral part of equation (3.47) we have, 

  
2 2

0 0
( ln ) ( 2 1)n r n r yM dM y e dy n r

 
           

Therefore, the denominator of equation (3.47) becomes 

  

1

1

1

2
1

2 1

1

1

1
[1 ]

( 2 1)

ln[1 ]

n

ii

n
xr n x

i i

n r
n

x

i

n e e
x

n r

e





 

 




 









   
 

 
 





     (3.50) 



24 
 

Substituting equation (3.50) into (3.44) we derive the posterior under the extended Jeffrey’s prior 

as 

  

1

1

2 11

1 1

2 2
11

1

1

2
1

1
[1 ] . . ln[1 ]

( / )

1
[1 ] ( 2 1)

n

ii i

n

ii

n r
rn n

x xn n x
r

ii i

n
xr n x

i i

n
e e e

x
p x

n e e n r
x

 




 










 
  

 



 




  
  

 


   





 

  

2 1

2 1

11

(1 ) ln[1 ]

( 2 1)

i

n r
n n

xn r x

ii

e e

n r

 


 
 

 



 
  

 
  


 

  
2 2 1

( 2 1)

n r n r NN e

n r

    


  

        (3.51) 

Therefore the posterior distribution is given as equation (3.51), which is a gamma distribution 

with parameters (n-2r+1) and N. 

3.5 Loss Function 

From a decision theoretic view point, to select the best estimator, a loss function must be 

specified, which is used to present the penalty associated with each of the possible Bayes 

estimates. Two loss functions namely squared error loss function and precautionary loss function 

shall be used to estimate the penalty associated with each of the possible Bayes estimates of the 

GIED parameter. 

3.5.1 Squared error loss function  

The squared error loss function (SELF), classified under the symmetric loss function associates’ 

greater importance to both over and under estimation and it is defined as: 
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2( , ) ( )L              (3.52) 

The Bayes estimator of  relative to the SELF is denoted by  

( / )E x           (3.53) 

where   
0

( / ) ( / )E x p x d   


         (3.54) 

Equation (3.54) can be obtain by minimizing the expected loss ( [ ( , )]E L   ) over  with respect 

to the posterior distribution ( ( / )p x ) i.e. 

0

[ ( , )] ( , ) ( / )E L L P x d     


   

2

0

( ) ( / )P x d   


   

Differentiating with respect to  and equating to zero, we obtain 

0

2 ( ) ( / ) 0P x d   


   

0 0

( / ) ( / ) 0P x d P x d     
 

    

0 0

( / ) ( / )P x d P x d     
 

   

 but 
0

( / ) 1P x d 


   
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This implies that 

0

( / )P x d   


   

and the Bayes posterior risk is given as: 

 
22( / ) ( / ) ( / )V x E x E x          (3.55) 

3.5.1.1 Bayes estimate and posterior risk relative to squared error loss function under uniform 

prior. 

Let denote the Bayes estimator of   by selfu  relative to the squared error loss function under 

the uniform prior. 

selfu  can be obtained by substituting equation (3.32) into (3.54) 

selfu 
1

0
( 1)

n n NN e
d

n




  

         (3.56) 

1
1

0
( 1)

n
n NN

e d
n

 


 
          (3.57) 

let h N  

 then dh Nd  

and 
h

N
   

therefore, 
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1 1

2

0
( 1)

n n
h

selfu n

N h
e dh

n N


 




          (3.58) 

  
 

1

0

1

1 .

n hh e dh
n N



 


        (3.59) 

  
( 2)

( 1).

n

n N

 

 

         (3.60) 

selfu
( 1)n

N


          (3.61) 

also
2 2

0

( / ) ( / )E x P x d   


   

2 1

0
( 1)

n n NN e
d

n

 


  

          (3.62) 

2 1

0
( 1)

n n NN e
d

n




   


   

1 2

3

0
( 1)

n n
h

n

N h
e dh

n N

 




          (3.63) 

2

2

0

1

( 1)

n hh e dh
n N



 
            

2

( 3)

( 1)

n

n N

 

 

 

therefore,   
 2

2

2 !
/

!

n
E x

n N



   
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2

( 2)( 1)n n

N

 
         (3.64) 

Therefore the Bayes estimate of the parameter   under uniform prior is given as (3.61) while the 

Bayes posterior risk corresponding to the estimate is obtained as; 

2

2

( 1)( 2) ( 1)
selfu

n n n
PR

N N


   
   

 
 

2

( 1)
selfu

n
PR

N



         (3.65) 

3.5.1.2 Bayes estimate and posterior risk relative to squared error loss function under Jeffrey’s 

prior. 

The estimate can be obtain by substituting equation (3.43) into (3.54) 

1

0
( )

n n N

selfj

N e
d

n


 

  


     

  
0

( )

n
n NN
e d

n

 




   

  
1

0
( )

n n
h

n

N h
e dh

n N







          (3.66) 

where h N  

0

1

( )

n hh e dh
n N




          (3.67) 

( 1)

( )

n

n N

 


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!

( 1)!

n

n N



 

therefore, 

                 ˆ
selfj

n

N
            (3.68)   

also   
2 1

2

0

/
( )

n n NN e
E x d

n

 
 

  


  

1

2

0
( )

n n
h

n

N h
e dh

n N

 




   

where            h N  

1

2

0

1

( )

n hh e dh
n N



 
   

2

( 2)

( )

n

n N

 



 

2

( 1) ( 1)!

( 1)!

n n n

N n

 



 

2

( 1)n n

N


          (3.69) 

   
22 / /selfjBPR E x E x       

   
2

2

1n n n

N

 
  
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2selfj

n
BPR

N
          (3.70) 

3.5.1.2 Bayes estimate and posterior risk relative to squared error loss function under extended 

Jeffrey’s prior. 

The estimate can be obtain by substituting equation (3.51) into (3.54) 

2 2 1

0
( 2 1)

n r n r N

selfex

N e
d

n r


 

    


       

  
2 1

2 1

0
( 2 1)

n r
n r NN

e d
n r

 
 

  

     

   
2 1 2 1

2 2

0
( 2 1)

n r n r
h

n r

N h
e dh

n r N

   


 

          (3.71) 

where h N  

2 1

0

1

( 2 1)

n r hh e dh
n r N



  
          (3.72) 

( 2 2)

( 2 1)

n r

n r N

  

  

 

( 2 1)( 2 )!

( 2 )!

n r n r

n r N

  



 

therefore, 

                 
2 1ˆ

selfex

n r

N


 
          (3.73)   
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also   
2 2 2 1

2

0

/
( 2 1)

n r n r NN e
E x d

n r

 
 

    


    

2 1 2 2

2 3

0
( 2 1)

n r n r
h

n r

N h
e dh

n r N

   


 

     

where            h N  

2 2

2

0

1

( 2 1)

n r hh e dh
n r N



  
     

2

( 2 3)

( 2 1)

n r

n r N

  

  

 

2

( 2 2)( 2 1)( 2 )!

( 2 )!

n r n r n r

N n r

    



 

2

( 2 1)( 2 2)n r n r

N

   
        (3.74) 

   
22 / /selfjBPR E x E x       

 
2

2

( 2 1)( 2 2) 2 1n r n r n r

N

      
  

2

2 1
selfex

n r
BPR

N

 
         (3.75) 

Therefore the Bayes estimate is given as equation (3.73) and its posterior risk is given as (3.75) 

3.5.2 Precautionary loss function 

Precautionary loss function is defied by Norstrom (1996) as; 
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2( )
( , )L

 
 




         (3.76) 

And the Bayes estimator of   denoted by p  relative to PLF is given as; 

1
2 2( / )p E x              (3.77) 

where 2 2

0

( / ) ( / )E x p x d   


         (3.78) 

Equation (3.77) can be obtain by minimizing the expected loss ( [ ( , )]E L   ) over  with respect 

to the posterior distribution ( ( / )p x ) i.e. 

2

0

( )
( , ) ( / )R P x d

 
   






   

2 1

0

( ) ( / )P x d    


   

Differentiating w.r.t  and equating to zero 

1 2 2

0

2( ) ( ) ( / ) 0P x d       


        

2

0

( ) ( )
2 ( / ) 0P x d

   
 

 

      
     
     
  

0

( ) ( )
2 ( / ) 0P x d

   
 

 

     
    

   
  
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0

( )
2 1 ( / ) 0P x d

  
 

 

    
     

   
  

0

( )
1 ( / ) 0P x d

  
 

 

    
    

   
  

0

1 1 ( / ) 0P x d
 

 
 

    
     

   
  

2

2

0

1 ( / ) 0P x d


 


   
   

  
  

2

2

0 0

( / ) ( / ) 0P x d P x d


   


 

    

2

2

0

1
1 ( / ) 0P x d  





   

2

2

0

1
1 ( / )P x d  





   

 2

2

1
1 /E x


  

 2 2 /E x   

 
1

2 2/E x  
 

 

and the Bayes posterior risk is given as 
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   2( / ) 2 / /V x E x E x    
  

     (3.79) 

3.5.2.1 Bayes estimate relative to the precautionary loss function under the uniform prior 

Let denote the Bayes estimator of   by plfu  relative to the precautionary loss function under the 

uniform prior. 

plfu  can be obtained by substituting equation (3.32) into (3.78) 

2 1

0
( 1)

n n NN e
d

n

 


  


          (3.80) 

1
2

0
( 1)

n
n NN

e d
n

 


 
          (3.81) 

let h N  

2
1

2

3

0
( 1)

n
n h

plfu n

N
h e dh

n N



 



         (3.82) 

        

2

( 3)

( 1)

n

n N

 

 

         (3.83) 

2

( 1)( 2)n n

N

 
          

  2 1
plfu

n n

N


 
        (3.84) 

Therefore the Bayes estimator of plfu  is given as equation (3.84) 
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The posterior risk is obtained as  

    2 2 1 1

plfu

n n n
BPR

N

    
       (3.85) 

3.5.2.2 Bayes estimate relative to precautionary loss function under the Jeffrey’s prior 

Let denote the Bayes estimator of   by Plfj  relative to the precautionary loss function under the 

Jeffrey’s prior. 

Plfj can be obtained by substituting equation (3.43) into (3.78) 

1

2 1 2

0
( )

n n N

plfj

N e
d

n

 
 

   
  

 
       (3.86) 

where N is as defined earlier 

2 1

0
( )

n
n N

plfj

N
e d

n

  


 
         (3.87) 

let h N  

then 
2 1

2

0

1

( )

n h

plfj h e dh
n N




 
        (3.88) 

2

( 2)

( )

n

n N

 



 

2

( 1)n n

N


  
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and ˆ
plfj

 1n n

N


         (3.89) 

Therefore the Bayes estimate relative to the precautionary loss function under the Jeffrey’s prior 

is given as equation (3.89) 

The posterior risk is obtained as 

   2 1

plfj

n n n
BPR

N

  
         (3.90) 

3.5.2.3 Bayes estimate relative to precautionary loss function under the Extended Jeffrey’s prior 

Let denote the Bayes estimator of   by Plfex  relative to the precautionary loss function under 

the extended Jeffrey’s prior. 

Plfex can be obtained by taking the square root of equation (74) 

1

2 2 2 1 2

0
( 2 1)

n r n r N

plfex

N e
d

n r

 
 

     
  

   
       (3.91) 

1

2

2

( 2 1)( 2 2)n r n r

N

    
  
 

   

=
( 2 1)( 2 2)n r n r

N

   
        

ˆ
plfex

( 2 1)( 2 2)n r n r

N

   
       (3.92) 
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Therefore the Bayes estimate relative to the precautionary loss function under the Extended 

Jeffrey’s prior is given as equation (3.92) 

The posterior risk is obtained as 

 
plfexPR

( 2 1)( 2 2) ( 2 1)
2

n r n r n r

N

       
  

  

   (3.93) 

3.6 Transformation of the random variable N and its distribution. 

Recall that the random variable N in equation (33) was define as; 

  1

1

ln(1 )i

n
x

i

N e








   

where xi’s are random sample of size n drawn from Generalized Inverse Exponential Distribution 

(GIED) with probability density function given in equation (3.2).  

The need to know the probability distribution of a random variable ( )N x where  is some 

known function when the probability distribution of the random variable X is known arise in 

many statistical applications. Various methods for finding the distribution of a transformed 

random variable have been developed. These include distribution method, Transformation 

method, Convolution method, etc.  

Transformation method and convolution methods will be used in this work to find the 

distribution of N. 

Theorem 3.1: let X be a continuous random variable with probability density function f(x). let 

( )n T x be an increasing (or decreasing) function. Then, the density function of the random 

variable ( )n T X is given by 
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 ( ) ( )
dx

g n f w n
dn

         (3.94) 

where ( )x w n is the inverse of ( )T x  

Proof 

Suppose ( )N T x is an increasing function. The distribution function ( )G n of N is given by 

( ) ( )G n P N n   

( ( ) )P T x n  

 ( )P X w n  

( )

( ) ( )

w n

G n f x dx


   

On differentiating, the density function of N is obtained as 

( )
( )

( ) ( )

w n
dG n d

g n f x dx
dn dn



 
    

 
  

 
( )

( )
dw n

f w n
dn

  

 ( )
dx

f w n
dn

    since ( )x w n     (3.95) 

If on the other hand, ( )n T x is a decreasing function, then the distribution of N is given by 

( ) ( )G n P Y n   



39 
 

( ( ) )P T x n  

 ( )P X w n  

( )

( ) 1 ( )

w n

G n f x dx


    

On differentiating, the density function of N is given by 

 ( ) ( )
dx

G y f w y
dy

          (3.96) 

Combining (3.88) and (3.89) the distribution of Y is given by 

 ( ) ( )
dx

G n f w n
dn

         (3.97) 

Theorem 3.2: let the joint density function of the random variable X and N be ( , ).f x n The 

probability density of X N is given by 

( ) ( , )x nh V f u v u du







         (3.98) 

Proof 

Let U X and ,V X N  so that ( , )X R U V U and ( , )N S U V V U   . Hence, the 

jacobian is given by 

1
x n x n

j
u v v u

   
  
   

 

The joint density function of U and V is given by 
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 ( , ) ( , ), ( , )g u v j f R u v S u v  

 ( , ), ( , )f R u v S u v  

( , )f u v u  

Hence, the marginal density of V X N  is given by  

( ) ( , )x nh V f u v u du







   

If X and N are independent and have pdf ( )f x and ( )g n respectively, then 

( ) ( ) ( )x nh V g n f z n dn







   

3.6.1 Convolution 

Let f and g be two real valued functions, the convolution of f and g is defined as 

( * )( ) ( ) ( ) ( ) ( )f g z f z n g n dn f z x g x dx

 

 

         (3.99) 

Hence, the convolution of f and g is equal to the convolution of g and f (i.e. * *f g g f ). 

Now, if 1

1

ln(1 )i

n
x

i

N e








  and ( , )X GIED   then, the distribution of N can be obtained as 

follows: 

Let 1,i  then 
1

1 ln(1 )ix
N e




   
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 then, 
1

1 1ln(1 )
N

x
e


 




   

1

1

1

1

2
1

1

(1 )

ln(1 )

N

N

N

e

edx

dN e






 

 
 

 
  

 

1

1 1
2

1(1 ) ln(1 )

N

N N

e

e e

 

  


   

 

the jacobian 
1

1 1

1

2
1

1 (1 ) ln(1 )

N

N N

dx e

dN e e

 

  


   

 

Therefore, the pdf of 1N  if 1X has the pdf (1.4) is given by 

  1
1 1

1

( ) ( )
dx

f N f w x
dN

        (3.100) 

Where  
12

1 ln(1 ) ln(1 )

1( ) ln(1 ) 1
N Ni i

iN e ef w x e e e




  
          

 

  
1 1

1

12
1 ln(1 ) ln(1 )ln(1 ) 1

N NN e ee e e




  
          

 

2 1
1ln(1 ) (1 ) 1 (1 )i i iN N N

e e e





              

2
1 ( 1)ln(1 ) (1 )i i iN N N

e e e 



         

then 
1

1 1

2
1 ( 1)

1 2
1

( ) ln(1 ) (1 )
(1 ) ln(1 )

i i i

N
N N N

N N

e
f N e e e

e e

 




   

  

     
   
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   
2 2 21ln ln lnA A A       

therefore  

  1 1 ( 1)

1( ) .
N N

f N e e
   

  

  1 1 ( 1)N N
e

   
  

1N
e

 
          (3.101) 

Following the same technique, for i = 2, 3, …, n the distribution of 2 3, ,..., nx x x  are respectively 

given by 2

2( ) ,
Nf N e  

 3

3( ) ,
N

f N e
 

 … , ( ) nN

nf N e
 

 . However, our interest is to find 

the distribution of 1 2 ... nN N N   and since 1 2, ,..., nN N N are independent, the convolution 

method will be used to find the distribution of 1 2 ... .nN N N   First the density of the random 

variable 1 2z N N  is the convolution of 1N with 2N that is 

1 1 1( ) ( * )( ) ( ) ( )h z f g z f z N g N dN





        (3.102) 

Note that the 1 2z N N  is between 0 and  and 10 ,N z  hence (3.102) becomes 

1 1( )

1

0

( ) ( * )( )

z

z N N
h z f g z e e dN

    
        (3.103) 

1 1 )2

1

0

z

z N N
e dN

     
   

 2 2

1 1 0

0

z
zz ze dN e N      
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2 zze            (3.104) 

Following the same technique the distribution of 3 4z N N  is  

3 3( )

3 4 3

0

( ) ( * )( )

z

z N N
h N N f g z e e dN

    
     

2 zze            (3.105) 

Following the same procedure, the distribution of 1 2 3 4z N N N N    is obtain by 

1 1 1

0

( ) ( * )( ) ( ) ( )

z

h z f g z f z z g z dz        (3.106) 

1 1( )2 2

1 1 1

0

( )

z

z z z
z z e z e dz

    
   

4

1 1 1

0

( )

z

zz z z e dz    

4 2

1 1 1

0

)

z

ze z z z dz    

2 3
4 1 1

0
2 3

z

z z z z
e    

  
 

 

3 3
4

2 3

z z z
e    

 
 

 

4 3

6

zz e  

          (3.107) 
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Careful examination of (3.104), (3.105) and (3.107) indicates that  

1

1( ) (1, )
N

f N e Gamma
 

  

2( ) (2, )zf z ze Gamma  with 1 2z N N  and 

4 3

( ) (4, )
6

zz e
f z Gamma






 with 1 2 3 4z N N N N     

Hence by induction 1 2( ... )nf N N N   is given by  

1

1 2( ... ) ( ) ( , )
( )

n n N

n

N e
f N N N f N Gamma n

n




 

    


   (3.108) 

therefore if 1

1

ln(1 )i

n
x

i

N e








  and ( , )X GIED   then 
1

( , )
n

i

i

z N Gamma n 


 . 

3.6.2 Variance and mean square error of estimates under the uniform prior and Jeffrey’s prior 

using the various loss functions 

From equation (3.108), it can be shown that  

0

( ) ( )r rE N N f N dN



   

1

0
( )

n n N
r N e

N dN
n


  


  

1

0
( )

n
n r NN e dN

n




  
   
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let 
h

h N N


   and 
1

dN dh


  

then,  

 

1

0
( )

n rr
r h

n r

h
E N e dh

n





 



       

( )
( )

r

r n
n

 

 


 

( )
( )

( )

r

r

r n
E N

n

 



        (3.109) 

when r=-1 and r=-2 in equation (91), we have 

1 1 ( 1)
( )

( )

n
E N E

N n

   
  

 
 

1( )
( 1)

E N
n

 


        (3.110) 

2
2

2

1 ( 2)
( )

( )

n
E N E

N n

   
  

 
 

2

( 1)( 2)n n




 
        (3.111) 

and variance of 
1

N
is obtained as follows: 

22
1 1 1

var E E
N N N

      
       

      
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2 2

2( 1)( 2) ( 1)n n n

 
 

  
 

2

2( 1) ( 2)n n




 
        (3.112) 

while the MSE is given as 

      2varMSE Bias          (3.113) 

where the Bias is given as  

( )Bias E            (3.114) 

the variance of the estimates under the uniform prior for the various loss functions are obtained 

as 

2( 1) 1
var( ) var ( 1) varselfu

n
n

N N


   
     

   
     (3.115) 

substituting equation (3.112), the variance of 
selfu is obtained as 

2
2

2

( 1)
var( )

( 1) ( 2)
selfu

n

n n
 




 
       (3.116) 

and the Bias is obtain as follows  

 selfuBias E     

( 1)n
E

N


 
  

 
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 
1

1n E
N


 

   
 

 

 
1

1
n

n




 
   

 

 

 1 ( 1)

( 1)

n n

n


   
  

 
 

2

( 1)n



         (3.117) 

therefore  

  
 

   

22

2

2

1 2

( 1)1 2
selfu

n
MSE

nn n
 

  
   

   
 

  
 

   

2

2 2

2 2

1 4

( 1)1 2

n

nn n
 


 

 
 

  
 

 

 

22

2

1
4

21

n

nn

  
  

   

 

   
 

   

 

22

2

1 4 2

21

n n

nn

    
  

   

 

  
 

 

 

2

2

7 ( 1)

21

n n

nn

   
  

  
 

  
 

  
2

7

1 2
selfu

n
MSE

n n





 
       (3.118) 
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The var( )plfu is obtained as  

  
( 1)( 2)

var( )plfu

n n
Var

N


  
   

 

 

  
1

( 1)( 2) ( )n n Var
N

    

  2

2

( 2)( 1)
var( )

( 1) ( 2)
plfu

n n

n n
 

 


 
       (3.119) 

The bias is obtained as  

   plfuBias E     

  
 ( 1) 2n n

E
N


  
  
  

 

   
1

( 1) 2n n E
N


 

    
 

 

   
 

( 1) 2
1

n n
n




 
    

 

 

  
   

 

( 1) 2 1

1

n n n

n


    
 

  

      (3.120) 

therefore    
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  

   

   

 

2

2

2

( 1) 2 11 2

11 2
plfu

n n nn n
MSE

nn n
 

     
  

    

 

 

  

 
   

2 2

2

1 2
( 1) 2 1

21

n n
n n n

nn

   
          

   (3.121) 

the variance of the estimates under the Jeffrey’s prior for the various loss functions are obtained 

as 

2 1
var( ) var varselfj

n
n

N N


   
    

   
       

2
2

2( 1) ( 2)

n

n n


 
        (3.122) 

and the bias is obtained as follows 

   selfjBias E     

  
n

E
N


 

  
 

 

  
1

nE
N


 

  
 

 

  
 1

n
n




 
  

 
 

  
 

 

1

1

n n

n


  
  

 
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 1n





         (3.123) 

therefore  

  
     

2
2

2

2
11 2

selfj

n
MSE

nn n




 
   

   
 

  
   

2 2

2
1

21

n

nn

  
  

  
 

  
 

 

 

22

2

2

21

n n

nn

   
  

  
 

  
 

 

 

2

2

2 ( 1)

21

n n

nn

   
  

  
 

  
 

  
2

2

1 2

n

n n





 
        (3.124) 

The variance of 
plfj is obtained as  

( 1)
var( )plfj

n n
Var

N


 
   

 
 

1
( 1)n n Var

N

 
   

 
  

2

2

( 1)
var( )

( 1) ( 2)
plfj

n n

n n
 




 
       (3.125)  
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and the bias is obtain as follows  

 plfjBias E     

( 1)n n
E

N


 
  

  

 

1
( 1)n n E

N


 
   

 
 

 
( 1)

1
n n

n




 
   

 

 

 

 

( 1) 1

1

n n n

n


   
  

  

       (3.126) 

therefore,   

 
 

 

 
 

2 2

2

1
( 1) 1

21
plfj

n n
MSE n n n

nn

  
         

    (3.127) 

the variance of the estimates under the Extended Jeffrey’s prior for the various loss functions are 

obtained as 

22 1 1
var( ) var ( 2 1) varselfex

n r
n r

N N


    
      

   
     

  

2
2

2

( 2 1)

( 1) ( 2)

n r

n n


 


 
        (3.128) 
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and the bias is obtained as follows 

   selfexBias E     

  
2 1n r
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
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( 2 1)n r E
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 

    
 

 

  
 
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1

n r
n




 
    

 

 

  
 

 
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1

n r n

n


    
  

 

 

  
 
(2 2 )

1

r

n

 



         (3.129) 

therefore  

  
     

2
2

2

2

( 2 1) (2 2 )

11 2
selfex

n r r
MSE

nn n




   
   
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   
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 

 

 
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2

( 2 1) 2 (2 2 )
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n r n r

nn

      
  

  
 

  The variance of 
plfex is obtained as  
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( 2 1)( 2 2)
var( )plfex

n r n r
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   
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 
     (3.130)  

and the bias is obtain as follows  

 plfexBias E     
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therefore,   
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also the variance of ˆ
MLE of equation (3.7) is obtained as  

    2 1ˆ
MLE

n
Var Var n Var

N N


   
    

   
 

2 2

2

.
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

 
         (3.132) 

and the mean squared error as 

 

  
2

2

1 2
MLE

n
MSE

n n





 
       (3.133) 

3.7 Simulation Study 

There are different methods of simulating data under the Monte Carlo’s method some of which 

are inverse-transformed method, alais method etc. (Reuven and Dirk 2007) For this work, the 

inverse-transform method will be use to generate our random numbers. 

3.7.1 Inverse-transformation 

Let X be a random variable with cumulative distribution function (cdf) F. where F is a 

decreasing function, the inverse function F-1 may be define as 

 1( ) inf : ( ) ;0 1F y x F x y y           (3.134) 

It is easy to show that if ~ (0,1)U U then, 

  1( )X F U  

has cdf F since F is invertible and ( )P U u u  we have 
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  1( ) ( ( ) ) ( ( )) ( )P X x P F U x P U F x F x       

Thus, to generate a random variable X with cdf ,F draw ~ (0,1)U U and set 1( )X F U  

For the distribution used in this work,  

  1 (1 )ix
U e






           (3.135) 

Thus our 1( )X F U is obtain by making X subject of formula from equation  

Hence,  
1

1ln(1 (1 ) )

X

u 







 

        (3.136) 

3.8 Monte-Carlo test. 

The Monte Carlo test introduced by Barnard (1963) has attracted attractable attention recently. In 

order to test models against data we have to make use of Monte Carlo test.  

The method is straight forward. Quite generally, let b1 be the observed value of a statistic B and 

let bj , j=2, …,s, be the corresponding values generated by independent random sampling from 

the distribution of B under the simple hypothesis Ho. Let b(k) be the kth order statistic (denote the 

kth largest, among  b(k)), k=1,2,…s. then under Ho  

P(b1= b(j))=1/s, j=1,2,…,s 

And rejection of Ho on the basis that b1 ranks r largest or highest (or lower or smallest) given an 

exact one side test of size 
r

s
  . The test is exact in the sense that the type I error is precisely   
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For a two sided Monte Carlos test, r is chosen such that 
2r

s
  . It is expected that the value of 

the fixed parameter b1 should fall within the s=99 simulation bands. This is done to enable us 

have 99% confidence bands that the fixed parameter fall between the minimum and maximum 

values of the parameters obtained. i.e. min 1 max
ˆ ˆ     
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CHAPTER FOUR 

ANALYSIS AND DISCUSSION OF RESULT 

In this section, an extensive Monte Carlo simulation was carried out to obtain and compare the 

performance of the different estimators for different sample sizes (n=15, 35, 75 and 100) against 

different shape parameter (β) values of 0.5, 1.0, 1.5 and 2.0 with the assumption that the scale 

parameter is known. The Monte Carlo simulation were replicated 10,000 times and averaged 

over. 
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4.1. Result 0f Analysis 

 

Table1: average estimates, posterior risk (within parenthesis) and corresponding MSEs (green 

color) for n= 15 

 

n 

 

Method 

 

0.5   

 

1.0   

 

1.5   

 

2.0   

 

 

 

15 

 

MLE 

 

 

SELFU 

 

 

 

SELFJ 

 

 

 

SELFEX 

 

 

 

PLFU 

 

 

 

PLFJ 

 

 

 

PLFEX 

 

0.5349772 

0.02673302 

 

0.5706424 

(0.02191433) 

0.0393622 

 

0.5349772 

(0.02054469) 

0.02673302 

 

0.4279818 

(0.01643575) 

0.01408988  

 

0.5882047 

(0.03512464) 

0.04762833 

 

0.5525221 

(0.03508975) 

0.03222176 

 

0.4454576 

 (0.03495156) 

0.01445734 

 

1.069954 

0.10693201 

 

1.141285 

(0.08765733) 

0.1574489 

 

1.069954 

(0.08217874) 

0.10693201 

 

0.8559636 

(0.06574299) 

0.05635951 

 

1.176409 

(0.07024929) 

0.19051321 

 

1.105044 

(0.07017951) 

0.12888698 

 

0.8909151 

(0.06990312) 

0.05782933 

 

1.604932 

0.24059733 

 

1.711927 

(0.197229) 

0.3542597 

 

1.604932 

(0.1849022) 

0.24059733 

 

1.283945 

 (0.1479217) 

0.12680883 

 

1.764614 

(0.1053739) 

0.42865497 

 

1.657566 

(0.1052693) 

0.28999571 

 

1.336373 

(0.1048547) 

0.13011607 

 

2.139909 

0.42772846 

 

2.282569 

(0.3506293) 

0.6297949 

 

2.139909 

(0.328715) 

0.42772846 

 

1.711927  

(0.262972) 

0.22543800 

 

2.352819 

(0.1404986) 

0.76205349 

 

2.210088 

(0.140359) 

0.51554793 

 

1.78183 

 (0.1398062) 

0.23131728 
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Table2: average estimates, posterior risk (within parenthesis) and corresponding MSEs for n= 35 

and 75 

 

 

 

 

 

 

 

35 

 

 

 

 

MLE 

 

 

SELFU 

 

 

 

SELFJ 

 

 

 

SELFEX 

 

 

 

PLFU 

 

 

 

PLFJ 

 

 

 

PLFEX 

 

 

 

0.5143571 

0.008724456 

 

0.5290531 

(0.00800992) 

0.01047743 

 

0.5143571 

(0.00778742) 

0.008724456 

 

0.4702694 

 (0.007119929) 

0.006701615 

 

0.5363507 

(0.01459526) 

0.01159560 

 

0.5216534 

(0.01459242) 

0.009515161 

 

0.4775608 

 (0.01458287) 

0.006759375 

 

1.028714 

0.034897810 

 

1.058106 

(0.03203968) 

0.04190972 

 

1.028714 

(0.03114969) 

0.034897810 

 

0.9405388 

(0.02847971) 

0.026806461 

 

1.072701 

(0.02919051) 

0.04638238 

 

1.043307 

(0.02918484) 

0.038060660 

 

0.9551217 

(0.02916573) 

0.027037507 

 

1.543071 

0.078520071 

 

1.587159 

(0.07208928) 

0.09429688 

 

1.543071 

(0.0700868) 

0.078520071 

 

1.410808 

(0.06407936) 

 0.060314521 

 

1.609052 

(0.04378577) 

0.10436042 

 

1.56496 

(0.04377726) 

0.085636431 

 

1.432682 

(0.0437486) 

0.060834343 

 

2.057429 

0.139591374 

 

2.116212 

(0.1281587) 

0.16763889 

 

2.057429 

(0.1245987) 

0.139591374 

 

1.881078 

(0.1139189) 

0.107225891 

 

2.145403 

(0.05838103) 

0.18552970 

 

2.086613 

(0.05836968) 

0.152242495 

 

1.910243 

(0.05833147) 

0.108149982 



60 
 

 

 

 

 

 

75 

 

MLE 

 

 

SELFU 

 

 

 

SELJ 

 

 

 

SELFEX 

 

 

 

PLFU 

 

 

 

PLFJ 

 

 

 

PLFEX 

 

0.5064477 

0.003655993 

 

0.5132003 

(0.00351191) 

0.003997911 

 

0.5064477 

(0.00346570) 

0.003655993 

 

0.4861898 

 (0.003327081) 

 0.003238089 

 

0.5165656 

(0.00673056) 

0.004210489 

 

0.5098128 

(0.00673027) 

0.003812596 

 

0.4895545 

 (0.006729351) 

0.003249865 

 

1.012895 

0.014623960 

 

1.026401 

(0.01404767) 

0.015991655 

 

1.012895 

(0.01386284) 

0.014623960 

 

0.9723796 

 (0.01330832) 

0.012952357 

 

1.033131 

(0.01346114) 

0.016841948 

 

1.019626 

(0.01346055) 

0.015250396 

 

0.9791089 

(0.0134587) 

0.012999459 

 

1.519343 

0.032903932 

 

1.539601 

(0.03160727) 

0.035981200 

 

1.519343 

(0.03119138) 

0.032903932 

 

1.458569 

(0.02994373) 

0.029142788 

 

1.549697 

(0.0201917) 

0.037894408 

 

1.529438 

(0.02019083) 

0.034313347 

 

1.468663 

(0.02018805) 

0.029248768 

 

2.025791 

0.058495899 

 

2.052801 

(0.0561907) 

0.063966556 

 

2.025791 

(0.05545134) 

0.058495899 

 

1.944759 

(0.05323329) 

 0.051809418 

 

2.066262 

(0.02692227) 

0.067367793 

 

2.039251 

(0.0269211) 

0.061001525 

 

1.958218 

(0.0269174) 

0.051997846 
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Table3: average estimates, posterior risk (within parenthesis) and corresponding MSEs (green color) 

for n= 100 

n Method  β = 0.5 β = 1.0 β = 1.5 β = 2.0 

 

 

 

 

100 

 

MLE 

 

 

SELFU 

 

 

 

SELFJ 

 

 

 

SELFEX 

 

 

 

PLFU 

 

 

 

PLFJ 

 

 

 

PLFEX 

 

0.5049245 

0.002680352 

 

0.5099738 

(0.00260078) 

 0.002868258 

 

0.5049245 

(0.00257503) 

0.002680352 

 

0.4897768 

0.002497783 

0.002447768 

 

0.5124922 

(0.00503680) 

0.002984406 

 

0.5074429 

(0.00503668) 

0.002766707 

 

0.492295 

(0.005036299) 

0.002454301 

 

1.009849 

0.010721407 

 

1.019948 

(0.01040314) 

0.011473041 

 

1.009849 

(0.01030014) 

0.010721407 

 

0.9795536 

(0.009991132) 

0.009791073 

 

1.024984 

0.01007362) 

0.011937613 

 

1.014886 

(0.01007337) 

0.011066834 

 

0.9845899 

(0.0100726) 

0.009817201 

 

1.514774 

0.024123181 

 

1.529921 

(0.02340706) 

0.025814308 

 

1.514774 

(0.02317531) 

0.024123181 

 

1.46933 

(0.02248005) 

0.022029903 

 

1.537477 

(0.01511043) 

0.026859665 

 

1.522329 

(0.01511006) 

0.024900377 

 

1.476885 

(0.0151089) 

0.022088708 

 

 

2.019698 

0.042885627 

 

2.039895 

(0.04161255) 

0.045892118 

 

2.019698 

(0.04120054) 

0.042885627 

 

1.959107 

(0.03996453) 

0.039164286 

 

2.049969 

(0.02014724) 

0.047750500 

 

2.029772 

(0.02014674) 

0.044267337 

 

1.96918 

(0.02014519) 

0.039268814 

 

4.3 Discussion of Result 

As expected, it was observed that the performance of both the maximum likelihood estimates 

(MLEs) and the Bayes estimates become better as the sample sizes increases. Also, the MLEs 

and Bayes estimates becomes closer as the sample size increases.  
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The estimates were better at smaller value of β = 0.5 than at β = 1.0, 1.5 and 2.0 when compare 

in terms of their MSEs as well as in terms of the posterior risk. Hence the estimate is better at 

small value of β = 0.5. 

The Extended Jeffrey’s prior tend to perform better than the uniform and Jeffrey’s priors when 

compared in terms of their MSEs under both loss functions used. 

The uniform prior under the SELF was observed to have better estimate than the uniform prior 

under the PLF at all sample sizes.  The Extended Jeffrey’s prior under the SELF was observed to 

have performed better than the estimate of Extended Jeffrey’s prior under the PLF. Also the 

Jeffrey’s prior under the SELF was observed to have performed better than the estimate of 

Jeffrey’s prior under the PLF. 

But when the estimates of the Extended Jeffrey’s prior under the SELF, was compare with the 

estimates of the Jeffrey’s prior under the SELF and uniform prior under the SELF it was 

observed that the Extended Jeffrey’s prior estimates the shape parameter with the minimum MSE 

and posterior risk  

The MLEs performed better than the Bayes estimate under the SELFU, PLFU, and PLFJ, but 

performed equally with the SELF under the Jeffrey’s prior. It was also observed to perform 

lesser than the extended Jeffrey’s prior under both loss functions used. 

It can also be observed that among all the Bayes estimates the SELF under the Extended 

Jeffrey’s prior performed better than the other estimates, since SELF under the Extended  

Jeffrey’s prior have the minimum posterior risk and mean square error.   
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Below is the graphical representation of the mean square error against the sample sizes at 

different value of   

 

Figure 1       Figure 2 

  
 Figure 3 Figure 4 
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Graph of mean square error against sample size at different values of the shape parameter. 

It can be seen graphically from figures 1, 2, 3 and 4 that the square error loss function under the 

extended Jeffrey’s prior which is the black line have the best estimates for all the values of

used. 

The monte carlos test show that the estimates obtain are from the Generalized inverse 

Exponential distribution since it falls within the 99% confidence bound and it represented 

graphically below; 
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Fig 2: graph of confidence bound against sample sizes for different values of the shape parameter  
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CHAPTER FIVE 

SUMMARY, CONCLUSION AND RECOMMENDATION 

5.1 Summary 

In this research the posterior distribution of the shape parameter of the Generalized Inverse 

Exponential Distribution (GIED) were obtained with the assumption that the scale parameter is 

known. The estimates of the distribution were also obtain under three non-informative prior 

using the squared error loss function (SELF) and precautionary loss function (PLF) as well as 

that of the maximum likelihood. A Monte Carlo simulation was carried out to obtain and 

compare the performances of the Maximum Likelihood Estimate and the Bayes estimates using 

their Mean Squared Errors and also among the Bayes estimates using the posterior risk. 

5.2 Conclusion 

From the result of the analysis, the following conclusions were made; 

The estimates become better as the sample size increases and are better at smaller value of the 

shape parameter (β).  

The Bayes estimator under the SELF using the extended Jeffrey’s prior have the best estimates 

when compared to the maximum likelihood and other Bayes estimators.  

When all the priors were compared the extended Jeffrey’s prior have better estimate than the 

uniform and Jeffrey’s prior. Also among the Bayes estimators, the SELF under the extended 

Jeffrey’s prior have the minimum posterior risk. Therefore the SELF under the extended 

Jeffrey’s prior have the best estimator for estimating the shape parameter of the Generalized 

Inverse Exponential Distribution base on this research.  
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5.3 Recommendation 

Based on the result obtained from this research, it is recommendation that when estimating the 

shape parameter of the generalized exponential distribution when the scale parameter is known, 

and you have little or no information about the prior distribution then, assume the Extended 

Jeffrey’s prior using squared error loss function. 

5.4 Contribution to Knowledge 

i. In this research we were able to show that the Extended Jeffrey’s prior is more 

suitable for estimating the shape parameter of the GIED than the uniform and 

Jeffrey’s prior when we have little or no information about the prior distribution. 

ii. We were also able to show that the most appropriates combination of loss function 

and prior for the estimation of the GIED is the Extended Jeffrey’s prior using the 

squared error loss function when compared in terms of mean squared error and 

posterior risk. 
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