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Abstract
In this research, the shape parameter of the Generalized Inverse Exponential Distribution (GIED)
was estimated using maximum likelihood and Bayesian estimation techniques. The Bayes
estimates were obtained under the squared error loss function and precautionary loss function
under the assumption of two non-informative priors. An extensive Monte Carlo simulation study
was carried out to compare the performances of the Bayes estimates with that of the maximum
likelihood estimates at different sample sizes. It was found out that the maximum likelihood have
the same estimate with the Jeffrey’s prior using the squared error loss function, and also
performed better than the Bayes estimates under the Jeffrey’s prior using the precautionary loss
function and uniform prior using both loss function but performed lesser than the Extended
Jeffrey’s prior under both loss functions. The Extended Jeffrey’s prior was observed to have
estimated the shape parameter of the GIED better when compared with the maximum likelihood
estimator and other Bayes estimate at all sample sizes using their mean squared error. Also the
squared error loss function under the Extended Jeffrey’s prior has the best estimate when
compared with other Bayes estimates using their posterior risk. Hence the Bayes estimate under
the Extended Jeffrey’s using the squared error loss function has the best estimator for estimating

the shape parameter of the GIED.

Xiii



CHAPTER ONE

INTRODUCTION

1.1 Background of the Study

In the past, many generalized univariate continuous distribution have been proposed. The
generalization of these distributions is important in order to make its shape more flexible to
capture the diversity present in the observed dataset. One of such generalizations is the
Generalized Inverse exponential distribution (GIED) proposed by Abouammoh and Alshangiti
(2009), in which the shape parameter was added to make the distribution more flexible. As a
result, this parameter has to be estimated using the appropriate estimation technique. One of such
techniques is the Bayesian method of estimation which combines the prior knowledge with new

observations to come up with updated information.

Researchers have estimated the parameter of different distributions using the Bayesian technique
because of its advantage over other methods of estimation. Some of this research includes the
work of Farhad et al., (2013) which studied the scale parameter of inverse weibull distribution.

Also, Dey (2015) studied the inverted exponential distribution using this technique.

Although the GIED has been studied using this technique under the assumption of the
informative prior, but there are situations where we do not have information about the prior as
such there will be need to study it under the non-informative prior. It is in the light of this that,
this research intends to study the estimation of the shape parameter of the GIED under the non-
informative priors using two loss functions with the assumption that the scale parameter is

known.



1.2 Generalized Inverse Exponential Distribution

One of the simplest and most widely discussed distributions that is used for life testing is the one
parameter exponential distribution. The distribution plays a vital role in the development of
theories. One of the limitations of this distribution is that its applicability is restricted to a
constant hazard rate. This is because there is hardly any system that has time independent hazard
rate. As a result, a number of generalizations of the exponential distribution have been proposed
in earlier literatures, for example the gamma distribution which is sum of independent

exponential variates.

One of the extension of the exponential distribution is the inverted exponential distribution
proposed by Killer and Kamath (1982) which possess the inverted bathtub hazard rate and has

cumulative distribution function (CDF) expressed as

F(x,z)=e * (1.1)
and probability density function (pdf) as
f(X,a):%e(x);X>O,a>O (1.2)

The generalized inverse exponential distribution has cumulative distribution function express as;

N
F(x,a, B) :1-(1-e‘xJ (1.3)
and probability density function (pdf),

a a A1
f(x,a,ﬁ):o)‘(—fex[l—exj :x>0,a>0,8>0 (1.4)
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where « is the scale parameter.

[ 1s the shape parameter.

1.3 Statement of Problem
Bayesian estimation involves choosing the appropriate prior for the parameters. Although
there is no way one can say one prior is better than the other. It all depends on the prior
chosen. If there is no information about the parameter of interest then it is more preferable to
estimate the parameter using non-informative prior. Otherwise the informative prior will be
better. As a result there is need for us to find the appropriate prior for estimating the shape
parameter of the Generalized Inverse Exponential Distribution when there is little or no

information about the prior.

1.4 Aim and Objectives
The aim of this research is to estimate the shape parameter of Generalized Inverse Exponential

Distribution (GIED) using Bayesian approach.

The aim is to be achieved through the following specific objectives

1. obtain the posterior distribution under the uniform, Jeffrey and Extended Jeffrey’s
priors;

2. determine the Bayes estimator and Bayes posterior risk of the shape parameter using
the afore mentioned priors under square error loss function (SELF) and precautionary
loss function (PLF);

3. conduct simulation study in order to find the most appropriate combination of the loss
functions and prior for the estimation of the shape parameter of the posterior

distribution.



4. determine which prior estimate the shape parameter of the generalized inverse
exponential distribution with a minimum risk.

5. compare the maximum likelihood estimate and the Bayes estimate.

1.5 Significance and Justification of the study

The research will be of much importance in Statistics, since statistical decision theory deals
with situation in which decision have to be made with some level of uncertainty. The
Bayesian approach offers a method of formalizing a prior belief and combining them with
available observation with the aim of allowing a rational deviation of optimal decision
criteria. Important reason behind the choice of prior belief is that inferential problem can be
naturally viewed as a special case of decision problem. As a result all the conceptual tools of
Bayesian decision theories are incorporated into inference criteria.

This study will help to determine which prior estimate the shape parameter of the generalized

inverse exponential distribution with a minimum risk.

1.6 Definition of Terms

1.4.1 Likelihood function

The likelihood of a parameter 6 given x is define as the joint probability density function

assumed for the observed outcomes given the parameter value.

1.4.2 Prior distribution

The prior distribution is the assumed distribution of the parameter before any data is observed.
There are three different types of prior:



The informative is used when there is previous knowledge about the parameter to be estimated.

This distribution favors certain value of the parameter.

The non- informative prior is used when there is a general lack of knowledge about the

parameter to be estimated. This prior does not favor any value of the parameter.

The conjugate prior has the same functional form with the posterior distribution. The rationale
behind the use of this prior is that of easing computational difficulties and also can have a close

form expression for the distribution.

For this research the non- informative prior will be used in order to allow the data speak for itself
and also to have the prior distribution contribute minimally, since it was stated by Arnold and
Press (1983) that there is no way one can say one prior is better than the other. It all depends on

the prior chosen.

1.4.3 Posterior distribution

Under the Bayesian approach, prior beliefs about parameter of interest are combine with the

sample information to give an updated information about the parameter.

The posterior distribution is define as the distribution of the parameter after taking into
consideration the prior and the observed data. It summarizes available probabilistic information
on the parameter in the form of prior distribution and sample information which are contained in

the likelihood function.



CHAPTER TWO

LITERATURE REVIEW

2.1 Baseline Distribution

A one-parameter Inverse Exponential Distribution introduced by Keller and Kamath (1982) has
an inverted bathtub failure rate and it can compare competitively with exponential distribution. It
is one of the distributions that is used in modelling lifetime data. Recently, several
generalization of inverse-exponential distribution were obtained. One of which is the
Generalized Inverse Exponential distribution (GIED) introduced by Abouammoh and Alshangiti
(2009). They have investigated its statistical properties and its reliability functions. This
distribution can be used to represent different shapes of failure rates and hence different shapes

of aging criteria.

2.2 Bayesian Concept

The Bayesian concept was introduced by Reverend Thomas Bayes in the 1970s. In this concept,
we combine any new information that is available with the prior information we have, to form
the basis for the statistical procedure. The Bayesian approach seeks to optimally merge
information from two sources namely the; the knowledge that is known from theory or opinion
formed at the beginning of the research obtained in the form of prior and information contained
in the data in the form of likelihood function. This two combine together can be used to obtain
the posterior distribution. The main difference between the Bayesian approach and the classical
approach is that in Bayesian approach, the parameters are viewed as random variable, whereas

the classical concept consider the parameters to be fixed but unknown.



Different researcher have used the Bayesian approach to estimate the shape and (or) scale
parameter of different distributions and compare with the classical approach. Some of this

research includes;

Feroze (2012) discussed the Bayesian analysis of the scale parameter of inverse Gaussian
distribution using different priors and loss function. He used both informative (exponential,
gamma and chi-square) and non-informative (uniform and Jeffreys) priors with eight loss
functions namely; squared error loss function (SELF), quadratic loss function (QLF), entropy
loss function (ELF), weighted loss function (WLF), squared logarithmic loss function (SLLF),
linear exponential (LINEX) loss function, precautionary loss function (PLF) and weighted
balanced loss function (WBLF). It was deduced from the study that, the performance of the
estimates under uniform prior is better than those under Jeffreys prior for most of the cases.
While in case of informative priors used, the performance of estimates using exponential prior
is the best in terms of Bayes risks. Similarly, in comparison of informative and non
informative priors, the informative priors give better results. Although, the estimates under
informative priors converge to the estimates under non-informative priors as the values of hyper-
parameters approach zero. It is also indicated that the estimates under ELF are associated with

the minimum risks using each prior.

Farhad et al., (2013) studied the classical and Bayesian approach of estimating the scale
parameter of Inverse Weibull distribution when the shape parameter was known under the
assumption of quasi, gamma and uniform priors using square error loss function, entropy loss
function and precautionary loss function. It was observed that Bayes method of estimation for
gamma prior is superior to the Maximum Likelihood Estimates (MLEs) method. Also in the case

of the gamma prior, the Bayes estimator relative to the precautionary loss function have the

7



smallest mean square error when compared with the Bayes estimator relative to the square error

loss function or the Bayes estimator under entropy loss function or the MLEs.

Yahgmaei et al., (2013) proposed classical and Bayesian approaches for estimating the scale
parameter in the inverse Weibull distribution when shape parameter is known. The Bayes
estimators for the scale parameter of the Inverse Weibull distribution were derived, by
considering Quasi, Gamma and uniform priors under squared error, entropy and precautionary
loss function.The results shows that the Bayes method of estimation for gamma prior is superior
to the MLE method. Also, in the case of gamma prior, the Bayes estimators related to
precautionary loss function have the smallest MSE as compared with the Bayes estimators
related to square error loss function or the Bayes estimators under entropy loss function or the
MLEs. Furthermore, in the case of uniform prior, the Bayes estimators under square error loss

function are doing better than the Bayes estimators under precautionary loss function.

Azam and Ahmed (2014) estimated the scale parameter of Nakagami distribution using Bayesian
approach. The study revealed that the scale parameter was estimated under three prior
distributions, namely; Uniform, Inverse Exponential and Levy priors and three loss functions
namely; Squared Error Loss Function, Quadratic Loss Function and Precautionary Loss
Function. The result of their analysis showed that the Precautionary Loss Function produces the
least posterior risk when uniform prior is used while Squared Error Loss Function is the best
when inverse exponential and Levy Priors are used.

Bhupendra and Reetu (2015) studied the maximum and Bayesian estimation of the inverse
exponential distribution based on type-1l1 censored sample under the assumption of conjugate
prior using square, Generalize Entropy Loss Function (GELF) and LINEX loss functions. The

maximum likelihood was compared with Bayesian estimates using Monte Carlo simulations. The

8



result showed that the Bayesian estimation based on Squared Error Loss Function (SELF),

LINEX and GELF was more precise than that of the maximum likelihood estimation.

Dey (2015) studied the inverted exponential distribution as a life distribution from a Bayesian
viewpoint. The Bayes estimators for the parameter of the distribution base on the SELF and
LINEX loss function were derived. It observed that the LINEX was more appropriate than the

SELF.

Nasir et al., (2015) studied Bayesian estimation of the scale parameter of log logistic distribution
using square error loss function, precautionary loss function, simple precautionary loss function
and weighted loss function with two non-informative priors(uniform and Jeffery). The study
shows that Bayes estimators approach to their true value and posterior risks decreases as sample
size increases. From the study, Jeffery prior performed better than the uniform prior and also
precautionary loss function perform better than the other loss functions. Therefore, Jeffery with
precautionary loss function provides minimum posterior risks as compared to other loss

functions and priors.

Wasif and Navid (2015) studied the posterior analysis of Nakagami distribution under the
assumptions of uniform and inverse gamma prior using Weighted, Weighted Balance and
precautionary loss functions. The Bayesian estimator of the scale parameter of Nakagami
distribution was obtained. The result of the analysis showed that the performance of inverse
gamma prior is better than the uniform prior and that weighted balance loss function are

associated with least amount of posterior risk under each prior.

Yahia et al (2015) developed the maximum likelihood and Bayesian estimation based on pooled

sample of two independent type-1l censored samples from the inverse exponential distribution.



The conjugate gamma prior was used with square error, LINEX and general entropy loss
functions. A simulation study was carried out using Monte Carlo simulation to evaluate the
performance of the maximum likelihood estimate and all the Bayesian estimates. It was observed
that the Bayesian estimates returned smaller values of loss functions than those of maximum

likelihood estimates.

Aliyu and Abubakar (2016) studied the Bayesian estimation of the shape parameter of
generalized Raleigh distribution under the assumption of extended Jeffrey’s prior with three loss
functions; SELF, ELF and PLF, compared the performance of the MLEs and the Bayes estimator
and found out that Bayes estimator under the entropy loss function is better than the Bayes

estimators under the square error and precautionary loss functions and that of MLEs.

Kaisar et al (2016) studied the classical and Bayesian approach of scale parameter of Nakagami
distribution under the assumption of Jeffrey, Extended Jeffrey and Quasi priors using quadratic,
Al-Bayyati and entropy loss functions. The estimate of the scale parameter using simulated data

set was obtained.

Sanjay et al., (2013) studied the maximum likelihood estimates (MLES) of the parameters of
generalized inverted exponential distribution in case of type-Il censoring scheme with binomial
removal under the assumption of gamma prior and two loss functions. The result of the analysis
showed that the estimated risk of estimator decreases as effective sample size increases and
Bayes estimates have the smallest estimated risk when compared with their corresponding

maximum likelihood estimates.

Therefore, with the available knowledge and insight of what others have done, this research

intends to estimate the shape parameter of a generalized inverted exponential distribution using

10



Bayesian viewpoint under three non-informative priors and two loss functions and compare with

the maximum likelihood estimate.

11



CHAPTER THREE

RESEARCH METHODOLOGY

Bayesian estimation procedure will be used to estimate the shape parameter of GIED assuming
the non-informative priors under the squared error loss function which is classified as symmetric

loss function and the precautionary loss function which is classified as asymmetric loss function.

3.1 Likelihood Function

Let (X, X,,..., X,) be random sample of size n, then the likelihood function is defined as;

Lo =TT 041 ) (3.1)

The likelihood plays an important role in the estimation of parameter from a set of statistics.

Let (X, X,,..., X,) be random sample of size n drawn from GIED having pdf given as;

f(x;a,ﬂ):i—fei(l—e(:)“;x>0,a>0,,8>0 (3.2)

then, taking equation (3.2) into (3.1), the likelihood of the GIED is given by:

a

L(x,a, f) = Ho)‘(—fe (1—e %) (3.3)

i
which can also be expressed as;

Lo =arpe © ] S ) (34)

12



3.2 Maximum Likelihood Estimation
The value of the statistic which maximizes the likelihood function is called the maximum
likelihood estimate and it is obtained as follows; taking the natural logarithm of equation (3.3),

we have

InL(x;e, B)=nIn(a)+nIn(pB) —anln (xf)—azn:l+ (,B—l)znlln(l—e_z) (3.5)

i=1 Xi
differentiating equation (3.5) w.r.t g and setting it to zero

dntbe) 0 Sina-e =0 (36)

solving for S in equation (3.6), gives

n

IBAMLE =T
DIn(l-e *)

Which can also be expressed as;

n

ﬁMLE -, (3.7)

ZIn(l—eZ)l

3.3 Prior Distribution
The three non-informative priors used in this research are the uniform, Jeffrey’s and extended

Jeffrey’s priors.

3.3.1 Uniform prior

One of the most famous non-informative priors is a uniform prior, it can be expressed as:

13



7(B) =k, where k is a constant (3.8)

3.3.2 Jeffrey’s prior

Another approach use to elicit a non-informative prior is the Jeffrey’s prior whose principle leads

1
to specifying that a prior should be proportional to the [I (/3’)]5 de.

1

m(B) <[ 1(B)]? (3.9)

where

~ | 9%log f (X p)
1(B)= nE[ T } (3.10)

and f (x;a,,B) denotes the conditional pdf for x given the parameter 3. Now the 1(g) for the

Generalized Inverse Exponential Distribution is obtain as follows:

Taking the natural logarithm of equation (3.2) we have
Inf(xa,B)=Ina+Inf—logx* —Z+(B-1)Ind—e *) (3.11)
X

Taking the first and second derivatives w.r.t § we have

PINT(Xaf) 1 ha—e
op

&*pBln f(;ca.ﬂ) __ 1 (3.12)

1(B) =
(B) B 7

14



taking the expectation of equation (3.12) we have;

|(ﬂ):—nEFZ'Og;’gf“’ﬁ)/ﬂ}:—nE[—%}

1(B)=— (3.13)

If the constant of proportionality is assumed to be one, then the Jeffrey’s prior defined in (3.9) is

given as

A/n
7(f) = — 3.14

3.3.3 Extended Jeffrey’s prior.

The extended Jeffrey’s prior proposed by Al-Kutubi (2005) is defined by

7(B)<(1(B)) (3.15)
Where (1(f))is as defined in equation (3.10).

Substituting (3.13) into (3.15) we obtained the extended Jeffrey’s prior as

7(B)= Vi (3.16)
3.4 Posterior Distribution
The posterior distribution is given as;

P(ﬂ/x):OO L(X17X2’Xn’a’ﬂ)7z-(ﬂ) (317)

J L X0, 0 P7(B)
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where L(X;,X,,...,X, / ) =f[ f(x,0)

and () is the prior distribution.

However, we shall use the GIED as sampling distribution with the non-informative priors to

derive the posterior distribution.

3.4.1 Posterior distribution under the uniform prior
The posterior distribution under the uniform prior can be obtained by substituting 3.4 and 3.8

into 3.17 and it is given as;

n

Q" ﬂ”eagx‘ﬁxlz[l—e_z]ﬁ‘l.k
p(BIx)= — (3.18)

—ay — n

® npn in 1 7% -1
[Campre Hx—iz[l—e Vkdp

integrating and re-arranging the denominator of equation (3.18) gives

ke “HH [ ﬂ“ﬁ%[l—e_xi]ﬂ [l-e *Tdg (3.19)

« 8
Let M = H{l—e } (3.20)
taking the natural logarithm of equation (3.20) and multiplying both sides by minus one (-1)
= —In(M)= A3 In(L—e *)* (3.21)
i=1

making S the subject, we have

16



~In(M)

B=— 2 (3.22)
>in[L-e *T*
—ﬁdM =iln[1—ez]ld i (3.23)
df=—o melld a (3.24)
|\/|Z|n[1—e_x7]-l
substituting equations (3.22) and (3.24) into (3.19) gives,
[ U piin(p)dp=kare = [ MZ nﬁ%mn—e_z]l M
1 {imm—e_%]l} o M Inft-e *T*
= —kanea;)(ij-lo (_In Ma) n+1ll[%[1—e_z]ld|\/|
{iln[l—e_x']l} o
ka'e lxlif[lm— Sy
A 2 0 N
_ i |a — L (—ln M ) dM (325)
{anln[l—e_xl]}
let y=—InM = -y=InM (3.26)
then
e’=M (3.27)

17



differentiating equation (3.27) yields
—eVdy =dM (3.28)

substituting equations (3.26) and (3.28) into equation (3.25)

n

D S| T
ke € hl'HF[l—e 1,

therefore the denominator of equation (3.18) becomes,

B

e T L e T
[ L@ p0)x(B)dp = X r(n+1) (3.29)

(iln[l—ez]lJ

substituting equation (3.29) into (3.18) and re-arranging we have

. ﬁne“gxiﬁ X12 [1_e_z]ﬂ-l_k_[iln[l—e_:]_1]
p(f1x)= ' ill « I &)
" —O!HXT : i _e X T?
ke e fo [1-e “1'T(n+1)
ﬂ”f[[l—e_:]ﬁ {Zn‘,'“[l—e_z]_lJ
| i (3.31)

r'(n+1)

but from equation (3.21)

18



recall that M =H(l—e7i)f" —~_InM :ﬂz"][l_e’?i]_l
L] i

Taking exponential of both sides we have

ﬁ{iln[le_:i]l}
M=e !

therefore the posterior distribution is given as

nn N+l —Ng
X):ﬂ N""e

p(s1 r'(n+1)

where N = [Zn:ln[l—ez]lj

(3.32)

(3.33)

Therefore the posterior distribution under the uniform prior is given as equation (3.32), which is

gamma distribution with parameters (n+1)and N

3.4.2 Posterior distribution under the Jeffrey’s prior

The posterior distribution under the Jeffrey’s prior can be obtain by substituting equations (3.4)

and (3.14) into (3.17) and it is given as;

31

a"pe = Hxlz[l—e

7%.],8—1_@
p(B1%) = n b

1

1

J'Ooanﬁnea;Xi Hz[l_e_xi]ﬂl_\/ﬁdﬂ
0 X, p

re-arranging the denominator of equation (3.34) gives

19
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a

. S n a @
J; Loca pya(p)ap =ra'e = [ [ 5l-e "Vii-e "1'dp (335)

Let M =] ][L-e *V

~InM = ,anlln[l—e_%]‘l

making g subject of formula we have

—InM

ﬂ - n e
D Infl-e 5 T*

(3.36)

—-dM

df=— _
|\/|Z“|n[1—e7i]-1

therefore equation (3.35) becomes

J, Lx . Ar(B)dp

3L — n-t n _a -
:\/ﬁa"e ;Xi 0 ( InM) iM[]__e X]_l dM
1 | _2

- i1 % [NGLLDIRLY (3.37)

Let y=—InM =-y=InM (3.38)

20



taking the exponential of equation (3.38)

e’ =M (3:39)
differentiating equation (3.39) we have,

—e”Vdy =dM (3.40)
substituting into the integral part of equation (3.37) we have

* n-1 _ [ _
[ =InM)™dm =~ "y™*edy =-T'(n)

The denominator of equation (3.34) becomes

[~

—azn: n _a
Jna'e = il_Iiz[l—e q

J, Lova pr(p)d f = ————2————r(n) (341)
{Zln[l—e_X]l}

>

Substituting equation (3.41) into (3.34) we derive the posterior using the Jeffrey’s prior as

—a i n o n a n
anﬂne =% )3-2[1 X ][)’71 JH{ZH’I[I e X]1:|
p(ﬂ/ X) _ i=1 N - i=1
na'e =% Xlz[l—ex]lr(n)

ﬂ”‘lll[(l—e_z)'” {anln[l—ei]‘l}
- = = (3.42)
r(n)

n-Inynay—Ng
=% (3.43)
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where N is as define in equation (3.33).

Therefore the posterior distribution is given as equation (3.43), which is a gamma distribution

with parameters n and N.

3.4.3 Posterior distribution under the extended Jeffrey’s prior.
The posterior distribution under the Jeffrey’s prior can be obtain by substituting equations (3.4)

and (3.16) into (3.17) and it is given as

,aii _a
a”ﬂ“e i % H)j-z[l_e %; ]ﬂ_l.
p(BIx) = X
1

j:a“ﬁ"e_a;*i H?[l—efz]ﬂ‘l.

n

r
ﬂZl’
nr
2r

B

(3.44)
dg

Integrating the denominator of equation (3.44)

. L - a e
J; Loca pyr(pap=nate T g [l Pl g (345)
Let M:ll[[l—ei]ﬂ

_InM :,B_anln[l—e_z]‘l

Making g subject of formula we have

—InM

ﬂ: n e
Zln[l—e T

(3.46)
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—-dM

MY In[L-e *T*
i=1

dp =

Therefore equation (3.45) becomes

n

- “ZiJ-o (—In M )n—Zr no1
2

=nae =" 7
n -2 i1 X
{ZIn[l—e X]‘l}
i=1

—-dM

M {anln[l—ei]‘l}

M[l—e x]*

1

IR R a
_nrOCne i X | )3-?[1_e X]—l )
-— S — [ (CInM)" ¥ dM (3.47)
{Zln[l—e‘x]l}
i=1
Let y=—InM =-y=InM (3.48)
e’=M (3.49)

Substituting into the integral part of equation (3.47) we have,
IO“’ (~InM)"2"dM =-— jo“’ y" e Vdy = —I'(n—2r +1)

Therefore, the denominator of equation (3.47) becomes

51
a) — N

_ Zx. a
nNg"e = 'Hiz[l—e ]
- 1 X% I(n-2r+1) (3.50)

{anln[l—e_i]l} _
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Substituting equation (3.50) into (3.44) we derive the posterior under the extended Jeffrey’s prior

as

a

n-2r+1
a"ple %[1—e ]ﬂl.;h.[Zm[l—e‘x]l}
i i=1

rn—azin 1

na'e = XiHF[l—ef?]‘lr(n—zr +1)

i=1

ﬂ”zrf[(l—e_z)ﬂ {anln[l—ei]l} _

I'(n-2r+1)

n-2r Ny n-2r+1,—Ng
SN e (3.51)
r'(n-2r+1)

Therefore the posterior distribution is given as equation (3.51), which is a gamma distribution

with parameters (n-2r+1) and N.

3.5 Loss Function

From a decision theoretic view point, to select the best estimator, a loss function must be
specified, which is used to present the penalty associated with each of the possible Bayes
estimates. Two loss functions namely squared error loss function and precautionary loss function
shall be used to estimate the penalty associated with each of the possible Bayes estimates of the

GIED parameter.

3.5.1 Squared error loss function
The squared error loss function (SELF), classified under the symmetric loss function associates’

greater importance to both over and under estimation and it is defined as:

24



L(B.B) =(B-B) (3.52)

The Bayes estimator of £ relative to the SELF is denoted by

B=E(B/X) (3.53)
where E(ﬁ/x)zT,Bp(ﬁ/x)d,B (3.54)

Equation (3.54) can be obtain by minimizing the expected loss ( E[L(/3, 8)]) over /3 with respect

to the posterior distribution (p(8/x)) i.e.

E[L(B, B)]= [L(B, B)P(B1 )d 3

=[(B-pyP(BIxdp
0
Differentiating with respect to 3 and equating to zero, we obtain

2[(B-B)P(BIX)dB=0

0

[ BPBI%)dp~[ pP(BIXdp=0

0

O =38

BP(BIX)dB=[pP(BIX)dp

but TP(ﬂ/x)dﬁzl
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This implies that
B=[BP(BIxdA

and the Bayes posterior risk is given as:

V(B1x)=E(B*Ix)-[E(BI 0] (3.55)
3.5.1.1 Bayes estimate and posterior risk relative to squared error loss function under uniform
prior.

Let denote the Bayes estimator of S by ,B relative to the squared error loss function under

elfu

the uniform prior.

,Bse”u can be obtained by substituting equation (3.32) into (3.54)

£ N n+l —N,B
selfu = I (n +l) (356)
0
N n+l  © L Np
_ n+la-NAg 3.57
r'(n+1) -([ P P ( )
let h=Ng
then dh=Nd g
h
and f=—
P N
therefore,
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n+l  © n+l
N LS

ﬂselfu = F(n-i—l) ) Nn+2"’

=———£LTEITh“”e“dh

(n+1)

_ I'(n+2)
" I'(n+1).N

- (n+])
ﬂselfu - N

also E(5° 1 X) :T,BZP(ﬁ/ x)d g

o0 ﬂzﬂn N n+1e—Nﬁ
PPN € 4

rin+1) p

0

Tﬂn+2N n+1e—Nﬁ'
= EF———dp
o I'(n+1)

n+l 0 pn+2
N h"? .,

TT(+1)) N

- [h"%e"dh
I'(n+1)N

0

~ I'(n+3)
" I'(n+1)N?2

(n+2)!

2 p—
therefore, E(5°1x)= VR

27
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(3.59)

(3.60)

(3.61)

(3.62)

(3.63)



- % (3.64)

Therefore the Bayes estimate of the parameter £ under uniform prior is given as (3.61) while the

Bayes posterior risk corresponding to the estimate is obtained as;

spr, = +1)(2n +2) _{(n +1)T
N N
ﬂPRselfu = (n +1)

- (3.65)

3.5.1.2 Bayes estimate and posterior risk relative to squared error loss function under Jeffrey’s
prior.

The estimate can be obtain by substituting equation (3.43) into (3.54)

_ OCﬂlgn—ane—Nﬁ
ﬂselfj =|———d

T

n o

n,-Ng
F(n)gﬂe dg

N" % h"
= — e "dh 3.66
F(n)an+l ( )

where h=Ng

1
()N

j h"e "dh (3.67)
0

_I'(n+1)
~ (NN
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~(n-DIN
therefore,

~ n
ﬂselfj = W

© 02 pn-1nna-Ng
also E(ﬂzlx)zv‘-%dﬂ

n o pn+l
LI JLL PR
l_,(n) ° N n+

where h=Ng

1 o0
_ hn+1e—hdh
'(n)N? I

0

_I'(n+2)
"~ T(n)N?

~ N%(n-1!

n(n+1)

BPR,; = E(ﬁz /X)_[E(’B/X)T

n(n+1)=(n)°

N2
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n
selfj — W

BPR (3.70)

3.5.1.2 Bayes estimate and posterior risk relative to squared error loss function under extended
Jeffrey’s prior.

The estimate can be obtain by substituting equation (3.51) into (3.54)

B B T IBﬂn—Zr N n—2r+1e—Nﬂ
selex r(n—2r+1)

0

dg

N n-2r+1 o0

n—2r+1e—Nﬂd
r'(n-2r+1) !'B p

N n-2r+1 © hn—2r+1

TT(n-2r+1)d N

e "dnh (3.71)

where h=Ng

1

=—————[h"*%e"dn (3.72)
'(n—2r+1)N

_ I'(h-2r+2)
I'(n—2r+1)N

~ (n=2r+1)(n-2r)!
N (n=2r)IN

therefore,

A n—-2r+1

- = 3.73
ﬂselfex N ( )
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ﬁn—Zr N n-2 r+1e—Nﬂ

'(n-2r+1) s

also E(,lex):T’B2

N n-2r+1 © hn—2r+2

= e "dh
C(n—2r+1) 9 N"?°

where h=Ng

— 1 'Thn—ZH—Ze—hdh
C(n-2r+1)N?

~ I'(n-2r+3)
r'(n—2r+1)N?

~_(n=2r+2)(n-2r+1)(n-2r)!
N NZ(n-2r)!

_ (n—=2r +1)(£1—2r+2) (3.74)
N
BPR,,; = E(5%/x)-[E(8/%)]
_(n-2r +1)(n—2r+2)—(n—2r+1)2
_ =
BPR,, -2+l (3.75)

selfex
N 2

Therefore the Bayes estimate is given as equation (3.73) and its posterior risk is given as (3.75)

3.5.2 Precautionary loss function

Precautionary loss function is defied by Norstrom (1996) as;
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L(B. B) =% (3.76)

And the Bayes estimator of g denoted by ﬁp relative to PLF is given as;

B, =|E(B° 0] (3.77)

where E(5°/x) :T,sz(ﬂ/x)dﬂ (3.78)

Equation (3.77) can be obtain by minimizing the expected loss ( E[L(/3, 5)]) over /3 with respect

to the posterior distribution ( p(8/x)) i.e.

R(B,B) = | @P(ﬁ/x)dﬂ

(B-B) B P(BIX)dB

Il
O t—3

Differentiating w.r.t 4 and equating to zero

2B-P)B =B (B-P P(BI0dp=0

O t—3

O sy 8

(B-P) (B-BY)
2 - — — P(p/x)dpB=0
( ; N ; ”(ﬁx)ﬁ

O =8

[ p )( 2| s
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O =8

o3

IP(ﬁ/x)dﬂ—j%P(ﬂ/x)dﬂ:O
1—%Tﬂzp(ﬂ/x)dﬁ=o

L
:T P / d

7 FPBIdp

=—E(B /%)
B =E(B*1x)
p-[E(s 1]

and the Bayes posterior risk is given as
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V(ﬂ/x):Z[ E(ﬁzlx)—E(ﬁ/xX] (3.79)

3.5.2.1 Bayes estimate relative to the precautionary loss function under the uniform prior

Let denote the Bayes estimator of 8 by Bp,fu relative to the precautionary loss function under the

uniform prior.

ﬂp,fu can be obtained by substituting equation (3.32) into (3.78)

wﬁ ﬂ Nn+l -Ng
! roy U4 (3.80)
_ N T'Bn+2e—Nﬂdﬁ (3.81)
T T(n+1) 4 -
let h=Ng
n?2 N R n+2 ~—h
ﬂmm==f?511ﬁq;5£h e"dh (3.82)
_ 1"(n+3)2 (3.83)
'(n+1)N
~_(n+D)(n+2)
=
Bplfu: (n+2)(n+1) (384)

N

Therefore the Bayes estimator of ,B IS given as equation (3.84)

plfu
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The posterior risk is obtained as

2| J(n+2)(n+1)~(n+1)|

BPR,, = N

(3.85)

3.5.2.2 Bayes estimate relative to precautionary loss function under the Jeffrey’s prior

Let denote the Bayes estimator of 3 by ﬁplﬁ relative to the precautionary loss function under the

Jeffrey’s prior.

,BP”J. can be obtained by substituting equation (3.43) into (3.78)

1

_ wﬂzﬂn—ane—Nﬂ 2
ﬂplfj —L[ () _dﬂ} (3.86)

where N is as defined earlier

By = [ prie g (3.87)

1“()

let h=Ng

then 3 j h"e"dh (3.88)

pifj — ( )NZ

_T'(n+2)
" T(n)N?

n(n+1)
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n(n+1)

and ﬁplfj :T

(3.89)

Therefore the Bayes estimate relative to the precautionary loss function under the Jeffrey’s prior

is given as equation (3.89)

The posterior risk is obtained as

2| Jn(n+1)~(n)]

BPR,; = N

(3.90)

3.5.2.3 Bayes estimate relative to precautionary loss function under the Extended Jeffrey’s prior

Let denote the Bayes estimator of S by S, relative to the precautionary loss function under

the extended Jeffrey’s prior.

,Bp,fex can be obtained by taking the square root of equation (74)

1

_ ~ ooﬁzﬂn—Zan—ZHle—Nﬁ 2
B _U AL dﬂ} (3.91)
_{(n—2r+1)(n—2r+2)f
_ N’
_J=2r+)(n-2r+2)
- N
5. 022 352

N
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Therefore the Bayes estimate relative to the precautionary loss function under the Extended

Jeffrey’s prior is given as equation (3.92)

The posterior risk is obtained as

_ o[ N(n=2r+D(n-2r+2) —(n-2r+1)

ﬂ F)Rplfex N

(3.93)

3.6 Transformation of the random variable N and its distribution.

Recall that the random variable N in equation (33) was define as;

N=>YInt-e*)*
i=1

where X;’s are random sample of size n drawn from Generalized Inverse Exponential Distribution

(GIED) with probability density function given in equation (3.2).

The need to know the probability distribution of a random variable N = ¢@(x) where ¢is some
known function when the probability distribution of the random variable X is known arise in
many statistical applications. Various methods for finding the distribution of a transformed
random variable have been developed. These include distribution method, Transformation

method, Convolution method, etc.

Transformation method and convolution methods will be used in this work to find the

distribution of N.

Theorem 3.1: let X be a continuous random variable with probability density function f(x). let
n=T(x)be an increasing (or decreasing) function. Then, the density function of the random

variable n=T(X)is given by
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dx
g(n) =‘%‘ f (w(n)) (3.94)

where x =w(n) is the inverse of T(x)

Proof

Suppose N =T (x) is an increasing function. The distribution function G(n) of N is given by
G(n)=P(N <n)
P(T(x) <n)
P(X <w(n))

w(n)

Gn)= | f(x)dx

—00

On differentiating, the density function of N is obtained as

de(n) d ("
g(m=— =%£j f(x)dxj

—00

dw(n)
dn

= f (w(n))

= f (w(n))% since x =w(n) (3.95)

If on the other hand, n =T (x) is a decreasing function, then the distribution of N is given by

G(n)=P(Y <n)
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P(M(x)<n)
P(X =w(n))

w(n)

G(n)=1— [ f (x)dx
On differentiating, the density function of N is given by
dx
GW%>4(WW»E— (3.96)
Yy
Combining (3.88) and (3.89) the distribution of Y is given by
dx
G(n) = ‘d—‘ f (w(n)) (3.97)
n

Theorem 3.2: let the joint density function of the random variable X and N be f(x,n).The

probability density of X + N is given by

0

hHAV)=If(mv—uxm (3.98)

Proof

Let U=Xand V=X+N,so that X =RU,V)=Uand N=SU,V)=V -U. Hence, the

jacobian is given by

. oxaon 8x8n_1

= v

The joint density function of U and V is given by
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g(u,v) =|j| f (R(u,v),S(u,v))
f (R(u,v),S(u,v))
f(u,v—u)

Hence, the marginal density of V = X + N is given by

o0

h,., (V)= [ f(uv-u)du

—00

If X and N are independent and have pdf f (x)and g(n) respectively, then

. V) = [ 90 f (2= ndn

3.6.1 Convolution

Let f and g be two real valued functions, the convolution of f and g is defined as

o0 o0

(f*g)(@)= [ f(z—n)g(n)dn= [ f(z-x)g(x)dx (3.99)

—00 —00

Hence, the convolution of f and g is equal to the convolution of gand f (i.e. f*g=g*f).

Now, if N :ZIn(l—e_Xii)‘1 and X ~ GIED(«, B) then, the distribution of N can be obtained as

i=1

follows:

a

Let i =1 then N, =Inl—e *)™
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(24

then, x :W

e
ol ———
dx, _ {(1—e‘“1)}
dN, |:|n(1_e—N1)_1]2

ae™

i (1—e‘“'1)[ln(1—e‘“1)*1]2

dx, | ae™

an,| - -e™)[Ina-e™)* T

the jacobian

Therefore, the pdf of N, if X, has the pdf (1.4) is given by

F(N) = f (w(&))‘;% (3.100)
Where f (W(xl)) = E[In(l_e*Ni )—1:|2 e ") [1_e|n(1_e—mi)i|/)’—1
(94

_B Nt TR e ™) 4 ety TP
—a[h’l(l eN)l:Iel [1 el }

_ﬁ _ N1 2 _a N _(M1_aN A1
_a[ln(l et @-e™)[1--e™)]

= —[In(l— e ™ )‘1]2 (L—eM)e MY

R ™

ae ™

-e™)[In-e )]

then f (N]_) = ﬁl:ln(l—eiNi )_1]2 (1_e’Ni )e*Ni(ﬁ—l) X
(24
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[InA*] =[-In AT =[In AT
therefore
f(N,)=pe e ™MD

— 'Be— N;—N; (5-1)
= Be P (3.101)

Following the same technique, for i = 2, 3, ..., n the distribution of x,,x;,..., X, are respectively
given by f(N,)=p8e"", f(N,)=pe"", ..., f(N,)=pe”™ . However, our interest is to find
the distribution of N, + N, +...+N_ and since N;,N,,...,N_ are independent, the convolution
method will be used to find the distribution of N, + N, +...+ N_.First the density of the random

variable z= N, + N, is the convolution of N,with N, that is

o0

h(z)=(f*g)(@) = | f(z-N,)g(N,)dN, (3.102)

Note that the z=N, + N, is between 0 and «and 0 < N, < z, hence (3.102) becomes

h(z) = (f*g)(2) = [ pe "™ pe ™aN, (3.103)
0
= JZ' ﬂze*ﬂ”ﬂNrﬂNOle
0

= pe” [dN, = ge[N,];
0
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= ?ze " (3.104)

Following the same technique the distribution of z= N, + N, is
h(N,+N,)=(f *g)(z) = J.ﬂe*ﬁ’(Z—Ng)ﬁefﬁNng3
0

= BPze”” (3.105)

Following the same procedure, the distribution of z=N, + N, + N, + N, is obtain by

z

h(z)=(f*9)(2) = | f(z-2)0(z)dz (3.106)

0
z
= I B(z—12,)e P BPre fadz,
0
z
= Iﬁ“zl(z —z,)e dz,
0

4
= pe” I 2,2—12,°)dz,
0

2 3%
— Bl {_Zl Z_4
2

3 3
4e—ﬂz Z__Z_
d { 2 3

ﬂ423e—ﬁz

- (3.107)
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Careful examination of (3.104), (3.105) and (3.107) indicates that
f(N,) = fe ™ ~ Gamma(L f)

f(2) = f?ze”* ~ Gamma(2, ) with z =N, + N, and

ﬂA 3,-f2
f(z)= 5 ~Gamma(4, f)with z=N; + N, + N, +N,

Hence by induction f(N,+ N, +...+N,)is given by

ﬁnNn—l —-pN
f(N,+N,+..+N, )= f(N):T~Gamma(n,,B) (3.108)

therefore if N = Zln(l—e_xii)‘l and X ~GIED(«, B)then z = Z N. ~ Gamma(n, 5) .

i=1 i=1

3.6.2 Variance and mean square error of estimates under the uniform prior and Jeffrey’s prior

using the various loss functions

From equation (3.108), it can be shown that

E(Nf):Tfo(N)dN

@ n-1g-AN
=[N AN 4N
> I'(n)

,3 J‘Nn+r 1a-NAgN
F(n)
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let h=Nﬂ:>N=£and szidh
B p

then,

r(n)
_B
= ) (r+n)
E(N") = I'(r+n)
B'T(n)

when r=-1 and r=-2 in equation (91), we have

E(Nfl): E[l]: ﬂr(n_l)
N I'(n)
B
E(NT)= (n-1)
E(N—Z):E[izj:ﬂzr(n_z)
N r(n)
__
(n-1)(n-2)

and variance of % is obtained as follows:
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(3.110)

(3.111)



_ S P
(n-1)(n-2) (n-1)°

__ B (3.112)
(n-1)*(n-2) '

while the MSE is given as

MSE( B) = var () + Bias’ (3.113)
where the Bias is given as

Bias=E(8) - (3.114)

the variance of the estimates under the uniform prior for the various loss functions are obtained

as
var(B) = var(%j =(n+1)* var (%) (3.115)

substituting equation (3.112), the variance of S, is obtained as

elfu

(n+1)°

(n—1)2—(n—2) V;; (3.116)

Var(ﬂselfu ) =

and the Bias is obtain as follows

Bias = E( By, ) - 3

e (D
‘E[ N } /
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:(n+1)E{%:—,B

_ B |
_n+1{ 1)_ p

{(n +1)—(n—1)}ﬂ

(n-1)

B 2
~(n-1)

B

therefore

(n-1 (n-2)
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The var(S,,,) is obtained as

plfu

var(p )V(_J(lxa ]
plfu N

=(n+D(n+ 2)Var(%)

(n+2)(n+1) ,

var(B,y,) = (-’ (n-2) s

The bias is obtained as

Bias=E (prlfu ) -p

N

E[ (n+1)(n+2)}_18

:\/WE[%}%

~ (n+1)(n+2)—(n-1)
_{ (n-1) ]ﬂ

therefore
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MSE . — (n+1)(n+2) 5y

pifu (n—l)z(n—Z) [ (n—l)

=(n€21)2{(n+(?—(2)+2)+[ (n+1)(n+2)—(n—1)}2} (3.121)

the variance of the estimates under the Jeffrey’s prior for the various loss functions are obtained

as

n 2 1
var(f;) = var (Wj =n°var (ﬁj

n2

o V; (3.122)

and the bias is obtained as follows

Bias = E( Aselfj)_ﬁ
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__B (3.123)

therefore

__(n+2) g (3.124)

(n-1)(n-2)

The variance of f_. is obtained as

plfj

var(f,;) =Vvar [ n(r:\:r D ]

1
=n(n+1)Var (Wj

n(n+1)

(n—l)z—(n—Z) Y;; (3.125)

var(B,4) =
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and the bias is obtain as follows
Bias = E(ﬁ’pm )—ﬁ

o),

N

={a/n(nJr )—(n—l)}ﬁ (3.126)

therefore,

MSE,, =2 {“”*”{Jm—(n-l)ﬂ (3.127)

pifj (n—1)2 (n—2)

the variance of the estimates under the Extended Jeffrey’s prior for the various loss functions are

obtained as

Var(ﬂselfex) = var ( n- 2Nr +1j = (n -2r +1)2 var (%j

~ (n—2r+1)°

= D=2 B (3.128)

51



and the bias is obtained as follows

Bias=E (ﬁselfex ) _ﬂ

_ E{n_zNHl}—ﬂ

1
:(n—2r+1)E{W}—,B

I

_p2-2n)
NGESY

therefore

MSE_ ... =
selfex (n_l)z(n_z)

(n-1°| (-2)

£ [ (n-2r+1)° +(n-2)(2-2r)?

_ (n-2r+1)° £(2-2r)

__F _(n—2r+1>2+(2_2r)2}

The variance of g, is obtained as

(n-17°| (n-2)

|

T

(3.129)



var(g,, )=Var(|(n_2r+l)(”—2r+2)]

N
=(n-2r+1)(n-2r+2)Var (%}

)= (n=2r+)(n-2r+2)

—D°(0-2) Vij (3.130)

Var(ﬂ plfex

and the bias is obtain as follows

Bias=E (ﬁplfex ) _ﬂ

=E[\/(n_2r+1,3|(n_2r+2)}_ﬂ

:\/(n—2r+1)(n—2r+2)E[%}—ﬂ

=J(n-2r+1)(n-2r+2) {ﬁ}ﬂ
={\/(n—2r +1)((nn—_21r)+2) —(n—1)}ﬂ (3.131)
therefore,
MSE 0, = (rle)z {(n - +(r1])_(2)_2r +2) s[Jn—2rsnn-2r+2) ~(n-1)]
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also the variance of j3,,, . of equation (3.7) is obtained as

Var (ﬁMLE ) —Var (%) —n%ar (%)

2 n2
_ ”éﬂ (3.132)
(n=)°(n-2)
and the mean squared error as
2
MsE, = (1*2) g (3.133)

" (n-1)(n-2)

3.7 Simulation Study
There are different methods of simulating data under the Monte Carlo’s method some of which
are inverse-transformed method, alais method etc. (Reuven and Dirk 2007) For this work, the

inverse-transform method will be use to generate our random numbers.
3.7.1 Inverse-transformation

Let X be a random variable with cumulative distribution function (cdf) F. where F is a

decreasing function, the inverse function F* may be define as
F7(y)=inf{x:F(x)>y};0<y<1 (3.134)
It is easy to show that if U ~U (0,1) then,
X =F*U)

has cdf F since F is invertible and P(U <u) =u we have
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P(X <x)=P(F'(U)<x)=PU <F(x))=F(x)
Thus, to generate a random variable X with cdf F, draw U ~U(0,1) and set X =F*(U)

For the distribution used in this work,

a

U=1-(1-e %)’ (3.135)
Thus our X = F*(U)is obtain by making X subject of formula from equation

Hence, X = i (3.136)

In(l—(1-u)?)™

3.8 Monte-Carlo test.
The Monte Carlo test introduced by Barnard (1963) has attracted attractable attention recently. In

order to test models against data we have to make use of Monte Carlo test.

The method is straight forward. Quite generally, let b: be the observed value of a statistic B and
let bj , j=2, ...,s, be the corresponding values generated by independent random sampling from
the distribution of B under the simple hypothesis Ho. Let by be the k" order statistic (denote the

k™ largest, among bg), k=1,2,...s. then under Ho
P(bi=bg))=1/s, j=1,2,...,8
And rejection of Ho on the basis that by ranks r largest or highest (or lower or smallest) given an

exact one side test of size & = —. The test is exact in the sense that the type | error is precisely o
S

55



For a two sided Monte Carlos test, r is chosen such that « = E. It is expected that the value of
S

the fixed parameter by should fall within the s=99 simulation bands. This is done to enable us

have 99% confidence bands that the fixed parameter fall between the minimum and maximum

values of the parameters obtained. i.e. 8. <8 <.
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CHAPTER FOUR
ANALYSIS AND DISCUSSION OF RESULT
In this section, an extensive Monte Carlo simulation was carried out to obtain and compare the
performance of the different estimators for different sample sizes (n=15, 35, 75 and 100) against
different shape parameter () values of 0.5, 1.0, 1.5 and 2.0 with the assumption that the scale
parameter is known. The Monte Carlo simulation were replicated 10,000 times and averaged

over.
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4.1. Result Of Analysis

Tablel: average estimates, posterior risk (within parenthesis) and corresponding MSEs (green
color) for n=15

n Method B=05 £=1.0 B=15 £=20
MLE 0.5349772 1.069954 1.604932 2.139909
. 002673302 | 0.10693201 | 0.24059733 | 0.42772846
SELFU 0.5706424 1.141285 1.711927 2.282569
(0.02191433) | (0.08765733) | (0.197229) (0.3506293)
0.0393622 0.1574489 0.3542597 0.6297949
SELFJ 0.5349772 1.069954 1.604932 2.139909
(0.02054469) | (0.08217874) | (0.1849022) | (0.328715)
002673302 | 0.10693201 | 0.24059733 | 0.42772846
SELFEX 0.4279818 0.8559636 1.283945 1.711927
(0.01643575) | (0.06574299) | (0.1479217) | (0.262972)
001408988 | 0.05635951 | 0.12680883 | 0.22543800
PLFU 0.5882047 1.176409 1.764614 2.352819
(0.03512464) | (0.07024929) | (0.1053739) | (0.1404986)
004762833 | 0.19051321 | 0.42865497 | 0.76205349
PLFJ 0.5525221 1.105044 1.657566 2.210088
(0.03508975) | (0.07017951) | (0.1052693) | (0.140359)
003222176 | 0.12888698 | 0.28999571 | 0.51554793
PLFEX 0.4454576 0.8909151 1.336373 1.78183
(0.03495156) | (0.06990312) | (0.1048547) | (0.1398062)
0.01445734 | 0.05782933 | 013011607 | 023131728 |




Table2: average estimates, posterior risk (within parenthesis) and corresponding MSEs for n= 35

and 75
MLE 0.5143571 1.028714 1.543071 2.057429
0.008724456 | 0.034897810 | 0.078520071 | 0.139591374
SELFU 0.5290531 1.058106 1.587159 2.116212
(0.00800992) (0.03203968) | (0.07208928) (0.1281587)
e 0.01047743 | 0.04190972 | 0.09429688 0.16763889
SELFJ 0.5143571 1.028714 1.543071 2.057429
(0.00778742) (0.03114969) | (0.0700868) (0.1245987)
0.008724456 | 0.034897810 | 0.078520071 | 0.139591374
SELFEX 0.4702694 0.9405388 1.410808 1.881078
(0.007119929) | (0.02847971) | (0.06407936) (0.1139189)
0.006701615 | 0.026806461 | 0.060314521 | 0.107225891
PLFU 0.5363507 1.072701 1.609052 2.145403
(0.01459526) (0.02919051) | (0.04378577) (0.05838103)
0.01159560 | 0.04638238 | 0.10436042 0.18552970
PLFJ 0.5216534 1.043307 1.56496 2.086613
(0.01459242) (0.02918484) | (0.04377726) (0.05836968)
0.009515161 | 0.038060660 | 0.085636431 | 0.152242495
PLFEX 0.4775608 0.9551217 1.432682 1.910243
(0.01458287) | (0.02916573) | (0.0437486) (0.05833147)




75

MLE

SELFU

SELJ

SELFEX

PLFU

PLFJ

PLFEX

0.5064477

0.5132003
(0.00351191)

0.5064477
(0.00346570)

0.4861898
(0.003327081)

0.5165656
(0.00673056)

0.5098128
(0.00673027)

0.4895545

(0.006729351)

1.012895

1.026401
(0.01404767)

1.012895
(0.01386284)

0.9723796
(0.01330832)

1.033131
(0.01346114)

1.019626
(0.01346055)

0.9791089

(0.0134587)

1.519343

1.539601
(0.03160727)

1.519343
(0.03119138)

1.458569
(0.02994373)

1.549697
(0.0201917)

1.529438
(0.02019083)

1.468663

(0.02018805)

2.025791

2.052801
(0.0561907)

2.025791
(0.05545134)

1.944759
(0.05323329)

2.066262
(0.02692227)

2.039251
(0.0269211)

1.958218
(0.0269174)

60

|




Table3: average estimates, posterior risk (within parenthesis) and corresponding MSEs (green color)

for n=100
n Method B=0.5 B=1.0 B=1.5 =2.0
MLE 0.5049245 1.009849 1.514774 2.019698
0.002680352  0.010721407 | 0.024123181 | 0.042885627
100 SELFU 0.5099738 1.019948 1.529921 2.039895
(0.00260078) | (0.01040314) | (0.02340706) (0.04161255)
0.002868258 | 0.011473041 | 0.025814308 | 0.045892118
SELFJ 0.5049245 1.009849 1.514774 2.019698
(0.00257503) | (0.01030014) | (0.02317531) (0.04120054)
0.002680352  0.010721407 | 0.024123181 | 0.042885627
SELFEX 0.4897768 0.9795536 1.46933 1.959107
0.002497783 (0.009991132) | (0.02248005) (0.03996453)
0.002447768 | 0.009791073 | 0.022029903 | 0.039164286
PLFU 0.5124922 1.024984 1.537477 2.049969
(0.00503680) | 0.01007362) | (0.01511043) (0.02014724)
0.002984406  0.011937613 | 0.026859665 | 0.047750500
PLFJ 0.5074429 1.014886 1.522329 2.029772
(0.00503668) | (0.01007337) | (0.01511006) (0.02014674)
0.002766707 ~ 0.011066834 | 0.024900377 | 0.044267337
PLFEX 0.492295 0.9845899 1.476885 1.96918
(0.005036299) | (0.0100726) (0.0151089) (0.02014519)
0.002454301 | 0.009817201 | 0.022088708 | 0.039268814

4.3 Discussion of Result

As expected, it was observed that the performance of both the maximum likelihood estimates

(MLEs) and the Bayes estimates become better as the sample sizes increases. Also, the MLEs

and Bayes estimates becomes closer as the sample size increases.




The estimates were better at smaller value of f = 0.5 than at p = 1.0, 1.5 and 2.0 when compare
in terms of their MSEs as well as in terms of the posterior risk. Hence the estimate is better at

small value of B =0.5.

The Extended Jeffrey’s prior tend to perform better than the uniform and Jeffrey’s priors when

compared in terms of their MSEs under both loss functions used.

The uniform prior under the SELF was observed to have better estimate than the uniform prior
under the PLF at all sample sizes. The Extended Jeffrey’s prior under the SELF was observed to
have performed better than the estimate of Extended Jeffrey’s prior under the PLF. Also the
Jeffrey’s prior under the SELF was observed to have performed better than the estimate of

Jeffrey’s prior under the PLF.

But when the estimates of the Extended Jeffrey’s prior under the SELF, was compare with the
estimates of the Jeffrey’s prior under the SELF and uniform prior under the SELF it was
observed that the Extended Jeffrey’s prior estimates the shape parameter with the minimum MSE

and posterior risk

The MLEs performed better than the Bayes estimate under the SELFU, PLFU, and PLFJ, but
performed equally with the SELF under the Jeffrey’s prior. It was also observed to perform

lesser than the extended Jeffrey’s prior under both loss functions used.

It can also be observed that among all the Bayes estimates the SELF under the Extended
Jeffrey’s prior performed better than the other estimates, since SELF under the Extended

Jeffrey’s prior have the minimum posterior risk and mean square error.
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Below is the graphical representation of the mean square error against the sample sizes at

different value of g

MSE against sample size at B=0.5
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MSE against sample size at B=1.0
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Graph of mean square error against sample size at different values of the shape parameter.

It can be seen graphically from figures 1, 2, 3 and 4 that the square error loss function under the

extended Jeffrey’s prior which is the black line have the best estimates for all the values of g

used.

The monte carlos test show that the estimates obtain are from the Generalized inverse
Exponential distribution since it falls within the 99% confidence bound and it represented

graphically below;
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CHAPTER FIVE

SUMMARY, CONCLUSION AND RECOMMENDATION

5.1 Summary

In this research the posterior distribution of the shape parameter of the Generalized Inverse
Exponential Distribution (GIED) were obtained with the assumption that the scale parameter is
known. The estimates of the distribution were also obtain under three non-informative prior
using the squared error loss function (SELF) and precautionary loss function (PLF) as well as
that of the maximum likelihood. A Monte Carlo simulation was carried out to obtain and
compare the performances of the Maximum Likelihood Estimate and the Bayes estimates using

their Mean Squared Errors and also among the Bayes estimates using the posterior risk.

5.2 Conclusion

From the result of the analysis, the following conclusions were made;

The estimates become better as the sample size increases and are better at smaller value of the

shape parameter (B).

The Bayes estimator under the SELF using the extended Jeffrey’s prior have the best estimates

when compared to the maximum likelihood and other Bayes estimators.

When all the priors were compared the extended Jeffrey’s prior have better estimate than the
uniform and Jeffrey’s prior. Also among the Bayes estimators, the SELF under the extended
Jeffrey’s prior have the minimum posterior risk. Therefore the SELF under the extended
Jeffrey’s prior have the best estimator for estimating the shape parameter of the Generalized

Inverse Exponential Distribution base on this research.
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5.3 Recommendation

Based on the result obtained from this research, it is recommendation that when estimating the
shape parameter of the generalized exponential distribution when the scale parameter is known,
and you have little or no information about the prior distribution then, assume the Extended

Jeffrey’s prior using squared error loss function.

5.4 Contribution to Knowledge
i. In this research we were able to show that the Extended Jeffrey’s prior is more
suitable for estimating the shape parameter of the GIED than the uniform and
Jeffrey’s prior when we have little or no information about the prior distribution.
ii. We were also able to show that the most appropriates combination of loss function
and prior for the estimation of the GIED is the Extended Jeffrey’s prior using the
squared error loss function when compared in terms of mean squared error and

posterior risk.
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