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ABSTRACT

In the experimental determination of the conductivity
of metals, a number of different methods of measurement are
required for various classes of materials having different
ranges of conductivity values. A particular method may
thus be preferable over the others for a given material,
and no one method is suitable for all the conditions of
measurment. The appropriateness of a method is further
determined by such considerations as the physical nature
of the materials. The geometry of samples available,
the required accuracy of results depending on the nature
of equipment and funds entailed.

A model each of insulated copper and aluminium rods
was used as test spe¢imen. The steady state method in which
the test specimen is subjected to a temperature profile
which is time invariant was used in determining the thermal
conductivity directly by measuring the rate of heat flow
per unit area and temperature gradient after equilibrium
has been reached. The four wire method in which the voltage is
measured with change in Ammeter current was used to deter-
mine the electrical conductivities.

The method employed in each case showed results which

are in reasonable agreement with each other.




INTRODUCTION

1051 General

Conduction is, basically, the transnission’of energy
by molecular motion. Conductivity is, then, the physical
property denoting the case with which a particular substance
can accomplish this transmission. The coAductivity of a
material is found to depend on the chemical composition
of the substance, or substances, of which it is composed,
the phase (i.e gas, liquid, or solid) in which it exists,
its crystalline structure if a solid, the temperature and
pressure to which it is subjected, and whether or not it is
a homogeneous material.

The factors with greatest influence are chemical
composition, phase changes, and temperature. Usually the
first two of these do not enter a case in which one is
interesteé in a particular material, and, hence, only the
temperature effect has to be accounted for.

Generally speaking, a liquid is a better conductor than
a gas and that a solid is a better conductor than a liquid.
These facts are best illustrated by considering the three

phases of single substance; such as mercury.

Eironry haa L o5




Substance Thermal Conductivity W/M-(

Gases

‘Freon - 12(0%, 1atm) 0.0083 3 1
air (0%, 1 atm) 0.0241

Liquids J
€O, (sat. liquid, 0°c) 0.105

Glycerine, Pure 10°¢) 0.282

Water (sat. Liquid, o°c) 0.562

Solids

Glass, plate (20°¢) 0.76

ice (0°%) 3,93

Magnesite brick (204%c) 3.81

guartz (20%c) 7.6

Stainless steel (18% Cr,

8% N1) (0%C) 16.3
° !
Iron, pure (0 C) 73
zinc, Pure (0°C) 112
Aluminium, Pure (0°C) 202
Copper, Pure (0%) 386
Silver, Pure 10°% 417

J Consider table 1.1 above, as a solid at - 193%,

mercury has a thermal conductivity of 4Bw/n-°c, as a .
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is random. This means that energy transfer by molecular
impact is much more slower than in the case of a liquid
in which the motion is still random but in which the mole=
Ccules are more closely packed. The same is true concerning
the difference between the thermal conductivity of the
liquid and solid phases; however, other factors become
important when the solid state is formed.

Refering to table 1.1 one sees that a solid having
a crystalline structure, such as guartz, has a higher thermal
conductivity than a substance in an amorphous solid state,
such as glass.

Also, metals, crystalline ip structure, are seen to have
greater thermal conductivities than do nonmetals. In the
case of the amorphores solids, the irregular arrangment of
the molecules inhibits the effectiveness of the transfer of
the energy by molecular impact, and hence, the thermal conduc—
tivity js of the same order of magnitude as that observed for
liquids. On the other hand, in a solid having a crystalline
structuxe, there is an additional transfer of heat energy
as a result of a vibratory motion of the crystal lattice
as a whole, in the direction of decreasing temperature.
Imperfections in the lattice structure tend to distort and
scatter these "thermoelastic" Vibrations and, hence, tend
to decrease their intensity.

In the case of metallic conduction, still a third
mechanism of energy transfer, in addition to the molecular
communicatien and lattice vibration mentioned above, comes

When the crystal of a nonmetallic substance is

to play.




4.
is formed, the valence electrons (i.e the outermost elect?onl]
are shared among atoms to form the chemical bond Wwhich
holds the atoms together as a molecule. In a metal crystal
hovever, these valence electrons become detached and are
free to move within the lattice formed by the remaining
positive ilons of the metal atoms. When a diffe&ence exists
between the temperatures of different parts of the metal,
a general drift of these free electrons which makes the
metals so much better as conductors than other sclids. These
electrons account for the observed proportionality between
thermal and electrical condictivities of pure metals.
It is known that the thermal conductivity of metals
is directly proportional to the absolute temperature and the
mean free path of the molecules. The mean %ree path tends
to decrease with increasing temperature so that the net
variation is the result of opposing influences. Pure metals
generally have thermal conductivities which decrease with
temperature, but the presence of impurities or alloying

elements, even in minute amounts, may reverse this trend.

1.2 Definition of the Thermal and Electrical Conductivities

1.21 Thermal Conductivity

The thermal conductivity of a given metallice rod is

defined by the relation a; = = AR :t
x

where A 1s the cross-sectional area, 9y the heat flux
and 9t/dx is the temperature gradient. The proportionality

constant A is called the thermal conductivity with units in

w/M-Cc. In this process the quantity being transported is




the molecular energy. Energy is transported from a high
temperature region to a low tempterature region by the mole-
cular motion. The minus sign is due to the convention
that the heat flow is taken to be positive if 9t is negative

in the direction of increasing X, the normal displacement.

1.22 Electrical Conductivity

The electrical conductivity of a metallic rod is defined

by 8 = 1) (Nee)

]
m
= ue(Nee)

with units in (nm)-i. He is known as the mobility and Nee
the charge density. Thus we may have high conductivities
because there are lots of electrons around or because they
can require high drift velocities (by having high mobilities).
The electrical conductivity, like the thermal conductivity,

is directly propertional to temperature.

1.3 Experimentation

The various methods for the measurement of thermal

conductivity fall into two categories: the steady-state

and the non-steady state methods. In the steady state method
of measurement, the test specimen is subjected to a temperature
profile which is time invariant, and the thermal conductivity
is determined directly by measuring the rate of heat flow per
unit area and temperature gradient after equilibrium has been
reached. 1In the nonsteady-state method, the temperature
distribution in the specimen varies with time, and measurement

of the rate of temperature change, which normally determines




density and specific heat of the test materi i

The primary concern in most methods of measurement
is to obtain a controlled heat flow in a prescribed dtruét&gﬁ
such that the actual boundary conditions in the experiment
agree with those assumed in the theory.

Theoritically, the simplest method to obtain a controlled
heat flow is to use a specimeﬂ in the form of a hollow sphere
with a heater in the center. The heat supplied by the
internal heater passes through the specimen in a radial
direction without less. However, in reality it is very
difficult to fabricate a spherical heater which produces
uniform heat flux in all radial directions. It is also
difficult to fabricate spherical specimens and to measure
the heat input and the temperature gradient in this experi-
ment arrangement.

A more commonly used method of controlling heat flow
in the prescribed direction is the use of guard heaters
(combined Qibh thermal insulation in most cases). So adjusted
that the temperature gradient is zero in all directions
‘'except in the direction of heat flow. 1In most methods of
measuring thermal conductivity, a cyclindrical specimen
with geometry ranging from long rod to short disk is utilized,
and the heat flow is controlled to be in either the iahyﬁﬁh,

(axial) or radial direction as the case may be.




1431 Egquipment

The apparatus used for the different experiments are
listed below.

Tripod base, Bench Clamp, Support rod (630 mm) Support
rod (1,000 mm), Universal Clamp, Right angle clamp, Supporting
block, Glass beaker, Heat conductive paste, distilled water,
Rheostat, heater, Digitat thermometer, temperature probe
(immersion and surface type, Heat conductive rods (copper
and Aluminium), Aquarium pump, Power controller, Calorimeter,
Calorimeter vessel with heat conductor connection, stepping
transformer with rectifier, voltmeter, Ammeter, Measuring
amplifier, stop watch (w interruption type), connecting cord

(red and blue).

1.3.2 Aim and Scope

The primary aim of this experimental research is fo
determine the thermal and electrical conductivities of
selected petals (of which copper and Aluminium were used)
due to their availability), and compare their conductivities.

To do this, the experiement was done in three phases;
(a) The heat capacity of the calorimeter was determined

in a preliminary experiment.

(b) A constant temperature gradient was created in the
| metal rod using two heat reservoirs (boiling water and
jced water) and the thermal conductivity determined.
c) The electrical conductivity of each one of the metals
was then determined by recording a current - voltage

characterstic and to check the Wiedemann-franz law.

o p Tl e



Ved=3 Set-up and Performance

The experiment was set-up as shown in figure
2.1 and the performance was conducted in three phases

(a,b,C) as stated earlier in secion 1.31.

(a) To determine the heat capacity of the lower calorimenter,
the calorimeter was first weighed at room temperature (ZTOCL
The calcorimeter was then filled with water and the
equilibruim temperature of water determinal by the method
of mixtures. The mass of the water was then obtained so
that the heat capacity of the calorimeter can be calculated.
The essence of this preliminary experiment is to determine
the heat capacity of the calorimeter which is then used in
calculating the other factors leading to determination of the
thermal condicutivity.

The effect of the ambient temperature and the circulating
pump on the rise in the the temperature of the water (2°C,
no pieces of ice) in the calorimeter was also determined
by measur%ng the temperature over a period of approximately

half an hour at two minutes interval.

(b) To determine the thermal conductivity, the experiment
was set-up as shown in figure 1.2 with the upper end of
the metal rod smeared with a generous amount of heat conductive
paste before putting the top calorimeter in place.
The water in the top calorimeter was heated with an
immersion heater and maintained at the boiling point with
the aid of the power controller. There are grooves in the
rod for the surface temperature probe, and these were also

smeared with the heat conductive paste.
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| The lower end of the rod sits in a calorimeter full

—

of water, the temperature being maintained at the lowest
degree possible (about 2°c) with ice cubes.

When a constant temperature gradient had been established
in the metal red (i.e. when the values on the surface tem-
perature probes no longer changed as shown on the electronic/
digital thermometer), the ice from the bottom calorimeter
was removed and the rise of temperature of the water, initially
at 2°c measured and the difference in th-e temperature between

the two probes on the rod also measured for approximately five

minutes.

Bowl of water
Aquarian pump

Fig. 1.1 Determination of the effect of ambient temperature

Calorimeler
\ J Digital thermometer

|

m|

Clamp

Probes

—.

Z\

Fig. 1.2 Experiment set-up for determining thermal

conductivity of metal rods.




conductivity was set up as shown in £ig. 1.3 below.

ur

WAL |

Rheostat

=

F— sy : ' i §,> i
._' *—t

Amplifier

Fig. 1.3 circuit diagram showing the equipment used 1h
measuring the electrical conductivity of the

metal rods.

The metal rod was connected to the stepping transformer
' using a rheostat and an ammeter and the.voltage drop
measured at two sockets on the side, using the puv amplifier
(four-wire method). The current - voltage characteristic

was then recorded and the widemann-Franz law checked.
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CHAPTER TWO

THEORITICAL BACKGROUND

2.1 Theory of Thermal Conductivity of Metals

The basic law governing heat conduction may best be

illustrated by considering a simple, idealized situation in

= U A Tk
aXx
‘-i...-.-. t1 12
;—
/
Pig. 2.1 A Plate of Material

Consider a plate of material having a surface area A and
a thickness pAX. Let one side be maintained at a temperature
ti1, uniformly over the surface, and the other side at tempera-

ture t Let q denote the rate of heat flow (i.e, energy per

4 -
unit time) through the plate, nelgecting any edge effects.
Experiment has shown that the rate of heat flow is directly

proportional to A and (ﬁ = & ) but inversely proportional to

AXe, A e
q = Jti-t2 o ety 2
AX
The constant of proportionality, ), is called the
thermal conductivity of the material of which it is composed.

It is a property dependent only on the composition of the

material, not the geometrical configuration.




TR

2.

Sometimes a gross quantity, unit thermal conductance,
is used to express the heat conducting capacity of a given

Physical system, so that if Cc = )/DX denote the unit

thermal conduct
b S L e s 2.15

Thus, it is seen that the thermal conductance is the
conductivity of a substance divided by its thickness. It is {
no longer a physical property but depends, as well, on the
geometrical configuration at hand, and thus, is a less

general quantity than is thermal condictivity.

Equation 2.1 forms the basis for the fundamental
relation of heat conduction.
Consider now a homogeneous solid as depicted in

fig. 2.2 below

Fig 2.2 A homogeneous Solid

|
If the solid is subjected to certain known boundary temperatures;

selecting a point P on the surface S, one can gelect @& Wafer

of material having an area §A, which is part of the surface

s containing P, and having a thickness &n in the direction

f the normal drawn to the surface at P. [If the difference
o

the back face of the wafer

between the temperature of

>,
.




i3.
and its front face is 8t, and if 6A is chosen small enough
so that 6t is essentially uniform over it, the rate of

heat heat flow across the wafer, 8g, is, by equation 2.4

q = = A8a 8t
Em o et

0
e nt o

The minus sign is due to the convention that the heat flow
taken to be positive if &t is negative in the direction of
increasing n, the normal displacement.

Forming the ratio 8§q/8A and allowing the earea 6A 20,

one obtains what is termed the flux of heat conducted through 'z
L

the thickness &n at the point P, ;
i

fn = dgq = =) 8t '

4aa 8n %

i

o

Further, allowing &n +o, one arrives at the flux of
heat accross S at P in terms of the temperature gradient
in the n direction, 6t/én:

fn _ASt

_EE_ e

2.3

Wwhere fn is the flux in the n direction. The statement

in equation 2.3 is called fourier's condition law after the
french mathematician who first made an extensive analysis |
of heat conduction. It states that the flux of heat conducted
(energy per unit time per unit area) across a surface is -
proportional to the temperature gradient taken in a direction
normal to the surface at the peint in gquestion.

From equation 2.3 , total rate of heat transferred

across the surface S would be

q =-;E_g_nd“ 2.4

8
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Generally speaking, 8t/6n may vary over S, but in
many instances it is possible to select the surface as one
on which the gradient is everywhere the same. This is the
situation in the case depicted in fig. 2.1, in which every
plane normal to AX in such a surface. In the case of a
hollow cylinder with uniform outside and inside surface
temperatures, every concentric interior cyclindrical surface .
is isothermal with a uniform temperature gradient normal
to it. In such cases

qE =R g% ik i o 2.5

Where A is the total area of the finite surface.

-,
242 The Theory of Electrical Conductivity 3

Suppose a potential difference U is applied between
the two ends of a solid of length L. Then an electric field

& . 2.6

[l [=]

is present at every point in the solid, causing an acceleration

a Le

Thus the electrons, in addition to their random velocities,
will acquire a velocity in the direction of the electric |
field. We may assume that this directed velocity is completely

lost after each collision, because an electron is much lighter

than a lattice atom. Thus only the part of‘this velocity

that is picked up in between collisions counts. If we write

7 for the average time between two collisions, the final velocity
of the electron will be aT and the average velocity

= dt
Vave % DTk 2.8 1

Kon.
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This is simple enough but not quite correct. We
shouldn't use the average time between collisions to
calculate the average velocity but the actual times, and

then average.

The correct derivation is fairly lengthy but all it gives
is a factor of 2. Numerical factors like 2 or 3 or = are by
generally not' worth worrying about in simple models but just

to agree with the formulae generally quoted in the literature

we shall incorporate that factor 2, and use
Vave = at ey 2.9 4
The average time between collisions (1) is also referred 5
v

to as mean free time, relaxation time, and collision time.

Similarly, the average velocity is also referred to as the
mean volocity or drift velocity. We shall call them 'collision
time' and 'drift velocity', (denoting the latter by VD).
The relationship between drift velocity and electric
field may be obtained from egns. 2.7 and 2.8 as follows:
]
Since VD = at J
o
and a = %e |
m
then A = 2
2 Lo chpiamn oo 2.10 {

where the proportionality constant in parentheses is called

the 'mobility.' The higher the mobility, the more mobile the

electrons.

Assuming now that all electrons drift with their

drift velecity, the total number of electrons crossing a

plane of unit area per second is

J = Ne eVD




‘The random velocities do not contribute to the

b

Current because they average out to zero. They give ris

however to 'electrical noise' in a conductor. Its value is
usually much smaller than the signals we are concerned with.
From equations 21.10and 2.11 the current density is j

found by substituting V, from 2y 10 into 2.10 1i.e,
= £
Vh S O
and J = Ne C v

hence J = Ne c?¢

This is a linear relationship which may be recognized as |
Ohm's Law

g g E wo w1 2.13

where o is the electrical conductivity. We can write it

in the form

' s = -(%_T) (Nec) I
= pe (NeC) ek s 2.14

‘That is, we may regard conductivity as a product of

two factors, charge density (NeC) and mehil;tx-£u¢i~~‘xﬁgigi

we may have high conductivities because there are 1

~ velocities (by having high mobilities).

3




It seems reasonable at this stage to assume that the charge
and mass of the electron and the number of nIﬂ;t-tans present
will be independent of the electric field.

¥From our model so far it is more reasonsble to assume
.that %, the distance between collisions (u;ually called the
mean free path) in the regularly spaced lattice, rather than
T, is independent of electric field. But £ must be related

toe T by the relationship

£ e P Lt N s 2.15

Since V, varies with electric field, T must also

vary with the field unless

v
th >> VD

As Ohm's law is accurately true for most metals this

inequality should hold. 1In a typical metal pe = 5x10'3u2v“1§“1,

which gives a VvV, of 5x10'3u/s for an electric field of .f

1 v/M. The thermal velocity at room temperature according

to HVE; - 3 KT
P ol g

1
2



. This is less true for semiconductors a

‘Ohm's law at high electric fields.

This important consideration can be emphasized
in another way. Let us draw the graph (fig 2.1) of the
 distribution of particles in velocity space, i.e. with
rectilinear ones representing velocities in three dimensions

Vn, Vy, Vz. z

X

Fig. 2.1 Distribution of electrons in velocity space.

With -no electric field present the distribution is
spherically symmetric about the origin. The surface of t
of a sphere of radius vth represents all electrons

moving in all possible directions with that r.m.s. speed.

When a field is applied along the X-axis (ray), the distri.

pution is minutely perturbed -(the electrons acquire some



negligible pertubation of the electron velocity distril

&

] Wiedemann-Franz Law and the Lorente Number

The Wiedemann-Franz law states that for metals at not
too low temperature the ratio of the thermal conductivity
to the electrical condictivity to the electrical conductivity
is directly proportional to the temperature, with the value
of the constant of proportionality independent of the
particular metal. This result was most important in the
history of the theory of metals, for it supported the
picture of an electron gas. It can be explained by using

§ _ n&’t

and K .= _N2nk’Tr
3m

=> K _ M’ rnt/3m . M’ke? ¢
= '_'Enxa"'r/m =50 2.18

Where the electron concentration is n, and t is the collision

time

The loventz number L is defined as .

@ i M s
T 111 r

according te 2.18




do ot in T 1£ the iiiéﬁ% . s

identical for electrical and thermal processes.

‘Experimental values of L at 0°C and dt 100% ij"f

given in table 5 below are in good agreement with 3.19.

Table 2.1 Experimental Lorentz numbers:

hX 1oB Watt ohm/deg2

Metal 0% 100%¢
ag 2.31 2.37
Au 2.35 2.40 i
cu 329 .35
Pb 2.47 2.56
5n 2.52 2.49
Zn W 2033

On purely classical theory with a maxwellian distribution
of velocities, the result is L = 3 (UB/g)2, yery close to
2.19 and also in fair agreement with experiment.

At low temperatures, T<<®@ the Lorentz number tends to
decrease; for pure copper near 15k the value is an order of

magnitude smaller than 2.13, The reason is attributed to

'a difference in the collision averages involved in the

thermal and electrical conductivities; the therm 1 and

electrical relaxation times are not identical.
ne iihm:"{

"y

.-
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atoms or vacancies in a solid, there will be a iihu'uf

these through the solid. 1In equilibrium the wvacancies
will be distributed uniformly. The net £lux j“ of atoms
of one species in a solid is related to the gradient of
the concentration N of this species by a phenomenological

relation called fick's law:

jN = =D grad N m——— 3,21 e
Here jN is the number of atoms crossing unit area in
unit time; the constant D is the diffusion constant or
diffusivity and has units ¢ m’/s. The minus sign means
that diffusion occurs away from regions of high concentration.
In order to diffuse, an atom must surmount the potential
energy barrier presented by its neighbours.

Electric conduction in gases arises as a result of {
motion of the free electrons present in the gas. These
electrons are liberated as a result of collisions between
the few high-energy molecules in the system. Most gases
at room temperature do not have many such high-energy
molecules and, thus, have very few free electrons. 1If
-here are no external electric fields impressed on the
‘as, the electrons will be distributed uniformly throughou
he gas volume. In this instance there is no net '

port at a particular location in the g

-

4 S
is what we could expe



Fe = as E = Mede = Me dNe ve, Ne = 0 at t = 0
dt

where ge is the charge on the electron and E is the

electric field Strength. Integrating the above

ve = 11:]_3 = ge Et o L
dt Me

The electron velocity ve is randomly oriented in the
case of a zero electric field, so that there is no
preferred direction of motion. The motion described by
above equation then expresses the directed velocity “
the electron would attain t seconds after the electric
field is turned on, assuming it had no collisions.

To take the effects of collisions into account, we
assume that the electrons are brought to rest after each
collision, reaccelerated by the electric field, and then
experience another collision.

CQﬁsider the system shown in Fig.2.4 a. The

container is Filled with a mixture of molecules having

different masses and sizes.

hrLer
CAr el ]

e i




~ uniform distribution with no te
b) concentration gradients resulting from

gradients.

As shown, the two types of molecules are -distributed
uniformly throughout the volume when the temperature is
uniform. Now suppose a temperature gradient is imposed
on the system, as shown in Fig. b. As a result of this
temperature gradient, it is observed experimentally that
the lighter molecules tend to concentrate in the higher
temperature region and the heavier molecules tend to
concentrate in the lower temperature region. This is
known as thermal diffusion because the diffusion results
from a temperature gradient instead of a concentration

gradient.

Consider the typical collision shown below

¥ You
Before
Vir v
:: v 2F After

Fig 2.5 typical collision for analysis of thermal diffusion.

The rate of transport will be governed by the speeds at

cules leave the collision, which, in tuzrn,

which the mole

are dependent on the relative velocity of the molecu

For Fig 2.5 molecule 1 gives up

pefore impact.
‘ le 2 'thereby'puih¢ng }t-tﬁ the right.
ule 2, . . igh




imutiea in the gas mixture all uo:.ceulu have the same

average kinetic energy (since T is uniform at any z
location), but the lighter molecules have a higher average
velocity than the heavier molecules. The greatest momentum
exchange occurs in a collision between unlike molecules having
greatest relative velocity. This situatlon occurs when a
light molecule from a warm region collides with a heavy
molecule from a cool region. After the collision the light
molecule is pushed back toward the cool region. The basic
thermal diffusion effect, is thus, a result of the fact

that the unlike molecule collisions having the greatest
momentum exchange will be those tending to force the light
molecules into the hot region.

Hence the molecular size as well as molecular mass can f
influence the diffusion process.

Thus

kT

g, = 3kl ————- 2.2%
2 = gzt

¢ haing dlamerexs: ofi Ehs Huay
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2.5 SPECIFIC HEAT e

Rapid advances in the frontiers of science and

technology have brought about a general realization of the
fact that the present limitations in many technical
developments are a direct result of inadeguate knowledge
of the thermophysical properties of materials. 1In the
high-temperature range (T > 1000 K), interest in the
determination of specific heats of materials has been
hastened because of the requirements in space programs
as well as industrial applications.
The measurement of specific heat at cryogenic temperatures
(Cp z Cv for T € 4 k) provides us with a direct means to
test theoretical models of a system. For instance,
precise specific heat measurements were needed to test
the validity of Debye's and E%nstein's theory for specific
heat of solids at low temperatures.

when a quantity of heat @ is added to a system so
t there is a change in temperature, TZ_TI' then the

tha

maant heat capacity of the mass m of the substance is

defined by

alue of the above ratio as the
. EN)

imiting Vi
o qr is defined ad ths




In order to obtain a quantity that is indepe

of the mass, m, of a substance, equation 2.23 is divided

by m i.e.

C = E. = dg ----- 2.24
m

where g is the amount of heat per unit.mass, so that

equation 3.33 may alsc be written as

¢c=4d¢g  e=ea- 2425
dar

Raising the temperature of a unit mass of a
substance by an amount dT, however, does not define the
process in a thermodynamic sense; for instance, it will
take a different amount of heat dg if the process is at
constant pressure than when the process is at constant
volume. As a matter of fact there are an infinite number
of different processes for a system at temperature T
to chanqé to a temperature T +.dT. It is clear, therefore,
an infinite number of specific heats could alsoc be

that

defined for a substance. The two processes that are most
commonly used in thermodynamics are those at constant

volume and constant pressure. For these two processes
equation 2.24 may be written

2.25

"
|







RESULTS AND EVALUATION

DETERMIN ¥
ATION OF THE HEAT CAPACITY OF THE GALOEfﬂ!!BI,

If different parts of a body differ in temperature,
heat is conducted between them. In this experiment the
temperature gradient is unidimentional along the rod.
The amount of heat energy dé flowing in time dt depends

on the cross-sectional area A of the rod and the tempera-

lac. .

ture gradient 3T/3x perpendicular to this area.

af = ke AEE 00 SRRl 3k
dt Ix

where A is the thermal conductivity of the material which

we have copper and Aluminium in this case.
The temperature distribution in the body depends

generally on position and time and varies the conduction

equation

. B2 ————- Bini2

where p is the density and ¢ the specific heat capacity

of each one of the metal rods.
If the two ends of themetal rod of length 1 are
kept at constant temperatures T, and Tz by two heat

reservoirs (see £i9- pelow) 1’



L T rrrrr—T

0 K

Ty > Ty

Fi w1
g3 fa Two ends of metal rod kept at constant

temperature 'I‘1 and T,. 7 stationary state is reached

where,

after some time.

We obtain the following from (3.2) and 13.3)

lx) =T ety . % ¥ T
1

1

The heat capacity C of the calorimeter being used in

first determined is the mixing experiment. Using the

relation

S5 - Cw

4.187 J/g K, the specific heat capacity of water

26 °C; i8 the temperature of the calorimeter

(room temperature) .
of the hot water
60 °C, is the temperature
of the m

°C, is the temperature

54




= 62.79 J/Kg.

The energy contributed by the environment and by
the circulating pump is calculated from the rise in

temperature A8 of the cold water in the calorimeter
vessel (see figure 3.1)

i1.e.

40

= temperature at
= 0 hence, since Cw = 4.187 J/g9 K, B 70 g
(4.187 J/g K x 70 g + 62.79 J/K) . VAB
355.88 . A®
AB is calculated for each value of A® and the

result is as tabulated as shown in table Al




rise (°C)

12
14
16
18
20
22
24
26
} 28

30

7.0 5.0
7.5 Biah
8.0 6.0
8.9 6.9
9.3 Ted
10.0 8.0
1e.5 8.8
11.2 9.2

11.9 90

‘each one of t

created i

1ing water and

nce to find the thermal conductivities of

he metals,

n each of th

the rise in the tempe

a constant temperature gradient
e metals using two heat re

iced water). When the pieces




oPPer (cu) (see table 3.2)

Length AL = 0.42 m

Diameter = 0,24 m

u

DETERMINATION OF THE THERMAL CONDUCTIVITY COPPER

TABLE 3.2 Temperature difference as a function of

time
T2 T, AT = Ty-Ty time Q temp
(°c} {=C) t2e) (min) (kJ) rise (K)
10.40 1 . aH 9,29 0 0 -
11.10 1-47 9.63 0.50 0.16 0.50
12.20 1.22 10.98 1.00 0.25 0.80
12.40 1.81 10.59 1.50 0.36 1.13
12.70 1.88 10.82 2.00 0.58 1.83 f
13.00 2.50 10.50 2.50 0.64 2.01
13.40 2,82 10.58 3.00 0.95 3.00
13.70 | 3.40 10.30 3.50 1.08 3.41
13.90 | 3.36 10.54 4.00 123 3.88
14.30 4.1 10.20 4.50 1.41 4,43
14.60

From equation 3.2 above,

.% 3*T_ _ o since 3% = 0 .in eguation
p.c 09X

T _ o simce A s P+
2




where 5

[

RS M0 0w 0. ~ %0, 2 mEees 3.8
dt dat at
wherewdgrod = d0 in equation (3.1)
dt
Now,
T, -T
T 2 L
= Y L where 1 = length of the rod{cu) = 42 x 10 I
=> at 0.5 min, 3T =,9.63 = 22,92 °
R . (o]
¥x 42 x 107 m &
at 1.0 min, 2T = 10.98 = 26.14 2
Eo.88 -
Bx Sz xi0 - @m
at 1.5 min, 9T = 10.58 = 25.21 "
Tx  42x10°7 nm
at ‘2.0 min, OT = 10.82 = 25.76 "

42x107%* m

El

at 2.5 min, 8T = 10.50 = 25.00 I
9% 42x107%* m

3.0 min, 9T = 10.58 = 25.19
5 ‘3% 2zx10° m

oy = 10.54 = 24.52 .

.5 min
ab. 2 J 42x107* m

- 10.20



at 5.0 min,

8T = 10.00
x  42x10° % m

Also,

at 0.5 min,

at 1.0 min, agtot =
| 3t

agtot
ot

at 1.5 min,

at 2.0 min, aQtot

at

at 2.5 min, aQtot =

ot

at 3.0 min, aQtot =
at

at 3.5 min, 9Q . =
ot

at 4.0 min, Q. =
3t

at 4.5 min, aQtot
ot

at 5.0 min, aQtot
ot

using

equ;ti.on 3.8 i.e.

0.5x60sec

0.18

0.5x60sec

0.15

0.5x60sec

6.0x10°

5.0x10"

3

3

oot = 0.16
it 0.5x60 sec
= 018 = I.5
-3
0.09 = 1.5%10 -,
0.5x60sec
0.11 = 3.67x107,
0.5x60sec
=
0.22 = 7.34x10 °,
0.5x60sec
006 = 2.0x1073,
0.5x60sec
-2
0.31 = 1.03x10 °,
0.5x60sec
-3
0.13 = 4.34x10 ",
0.5x60sec
0.15 - 5.0x1077 ,

’

T

_ = 23.80

= 2.67x10

/M

3

x 1073 KI/sec

99

env_=

2t

env
ot

env
ot

3Q -

= 0.18

2x60

=292 %

=2.92 x

= 1.59 x

= 2.67 x

= 1.75:x

1.5 x

=15 x

, and aqénf
ot

1073

1073

1072

2.67 x 1073



copper rod with time, (in KJ/sec)

b 0:8imin, A0, . = 267 % 1077 < 1.8 x 107 s ATRT

rod
at i i
at 1.0 min, ag, , = 1.5 x 1073 - 2.92 x 107> = -1.42 x 10
at
at 1.5 min, dQ . = 3.67 x 107> - 2.92 x 1677 « 15,0 & 10
at Bl =
86020 win, Ap_ , = T.dam 1070 - 1.50 x 1077 =S TANEHE
"Tac i "
at 2.5 min, dQ__, = 2.0 x 1073 - 2.67 x 1077 = 67,0 % 10
& =3 o5
at 3.0 min, dg__, = 1.03 x 1072 - 1.75 % 10 = 8.45 x 10
at ) ' 5
at 3.5 min, dQ__, = 4.34 x 10 3 1.5 x 10 - 2.84 x 10
at ¢ 3 2
at 4.0 min, dQ__, = 5.0 x 10 3 48 s = 3.5/ x a0
v =3 -3 i 6-3
LS i, Bp, - B x 1T 5 15 = TS R 1
dt
at 5.0 min, dQ . 4 = 5-0 % 10~ - 5,67 x 1073 = 2,37 S
at
The values for 3T and An. qlate then tabulated as shown
% —ac
below and the graph of dQ .4 versus %% plotted where the :

at

; ion (3.1) -
3T as in equat
Tone L1a dge/idt
s at/ 9%
ductivity) is determined
of A (thermal con
Hence the value

from equation 3.1



dgrod
dt

eroé AT o
dt ax

s,
where
ggrOd / 3T _ gsiope and A = cross-sectional area of
dt 9x the copper rod.

from fig. 3.2
: 3.6 % 10 ° Kdysec,

ar - 26 °C/m
3 x

40,0

e .,I"‘




zod / 5‘ == A. A g

=> 1.38 x 10 R T 4 kI pee lﬂc-ll

A

BOb N s Te e Nx 1.2 % 1077 6o~ 3.77 % 10 K
Therefore

(=-A)2 = 1.38 x 107% ko"lsec™ A = 1.38 x 1074 = 366.00

3.77 & 1079 u 3.77 x 10°° w/m® ¢
= 366 W/m-°c

3.3 DETERMINATION FOR THE ELECTRICAL CONDUCTIVITY OF COPPER

The experiment for the electrical conductivity of
copper was conducted as described in section 1-32 ¢ and

the result as stated below:
TABLE 3.4 Voltage versus current through the conductor.

—_—

volt Ampere




nuclei, and so it is chiefly electrons that conduct heat

in metals.

The electrical conductivity o is determ;ned from
the resistance of the rod R and it's dimensions

(i.e. 1 = 0,42 no and A = area = 1.58 m?

Now,
o =
ﬁ ----- (4.9)
but,
v = IR => R = ¥
I
where v = voltage and I = current

=> R = AV from the graph of V wversus I

Al

(i.e. fig3.6} £for copper where

Slope of the graph = R

hence from (figure 4.6, AV = 0.88 v, AI = 0.78 A

=> R =0.08 = 0.10Q

0.78
Therefore,
1
g = 0.42 m = 0.42
cu 1.58mx0.10m 0.16

- 2.63 @m

3.4 LORENTZ NUMBER AS DETERMINED FROM THE THERMAL AND

RICAL CONDUCTIVITY OF COPPER:

ELECT
p between the t!

The resulting zalatiqnéai



A =<n. T
o

- The Lorentz number L, which is determined experimentally
according to equation 4.10, is obtained from the theory
of the electron gas (for temperatures above the Debye

temperature) and is represented by

TS U

3 e? ;

where K = Beoltzmann's constant =
-19

e = welectron change = 1.6 x 10 c

I = constant = 3.14

= L=l K

1
B e MO 6

P

From experiment, using equation (3.10) where

)4 = 366.00 w/m °C
m
-1
s = 2.63 (@m
T = constant = 335 K

= 366 w/m °C x_1

=> L = A 1 S=—————r 300 K
e g T 5os3lam)
1000

242355-75

wi/k?

-3
1.52 % 10




The table below shows the experimental result for

thermal determination of thermal conductivity.

TABLE 3.5 Tﬁlll\perntuxe difference as a .‘.unct:l.‘é:.l UI t!.__l:
for Aluminium :
¢
2 Ty ar(Ty-1))| time | @ temp |
°c W R °c (x60) sec| kJ rise °C’
23-90_ B.:10Q 15.80 0 0 -
24.30 8.57 1573 0.50 10.25 0.48
24.60 8.97 15.63 1.00 0.33 0.63 ‘
24.80 9.40 15.40 1.50 (0.50 0.94 .:
25.00 9.68 15,32 2.00 0.53 102 "3
25,35 10.00 1538 2.50 0.77 1.48
25.65 10.40 15.30 3.00 0.90 1.7%2
27470 ' 10.50 15.25 3.50 [1.45 | 2,78
25.80 10.60 15.20 4.00 |1.62 a2
26.10 . | -11.00 SLILRE S

i dne B A

= AT just as in the case of 3
= i

il

Now, we again f£ind %%

-2 )
i T 42 x 10 m=0.42m



at 4.5 min, 3T = 15.10 = 35.95 " - %”
ax 0.47m -

Hence, %

as in the case of copper (using equation 3.8)

at 0.5 min, aQtot = 262255 = 3-34x10'3 and aQenv z l.5x19'5
at i It
T3 - -
at 1.0 min, Q. . = 0.08 = 2.67x10 and annv = 2-92R40'3
3t 30secs s
: - i . S
at 1.5 min, 3Q .. = gé::cs = 5.67x10 and agenv'- 2.92x1

= 0.03 = 1.00x1073

at 2.0 min, 2.,¢ e

3

- 0.24 = 8.00x10°
-2~
30secs

.5 min, QQtot




3

-5 min, MW e * 0.5R:

3t 30secs :

at 4.0 min, 3g =3 :
ot = 0.4% =5 et and 3Q _ ° = 1.5x
ot 30secs LRy

it

B v | e e g 30, . = 1.5y4g0 0
—EESE 30secs —-%E!

Tharefore, using equation 3.8 as before:

R 008 man, agl o~ 8,34 < fi5h ox 1000

dt

= 6.84 x 1077 ky/sec

at 1.0 min, 99 ca = §2-67 % 2.9%) x 072 = —p.p5 i~ =

dt

at 1.5 min, dg = (5.67 - 2.92) =3

e x 107" = 2.75 x a0 *

at 3
-3 =3 5
at 2.0 min, erOd = (1.00 - 1.59) x 10 = -0.59 x 10 J ?
at :
-3 -3 v
at 2.5 min, dQ . = (8.00 - 2.67) x 107> = 5.33 x 10
at
; = (4,38 = 1.75) 3 407 & o lEal s o
at 3.0 min, H0 i ™ (4. =i x 4 x
dt
= ELBA - 1457w 4077 = 0Lae nned "
at 2.5 min, 4p LA £ ) 0

rod

dt

T ' -3 - g il
at 4.0 min, dQ . = £5167 ~ aimxtit0 = 417 e 10

dt

= (1.3 x 107%-1.5)x107% = 415

4.5 min, erga




The graph of erod versus 3T is plotted as shown
at ax
in figure 4.9 and bag 4 aT is called the slope and
‘ O T

this is then substituted in equation 3.1 to fing g
Al

Now,

‘ er°d=-J\.A._B__T_

dat

d9¥é6 / T =X . A

at ax

= area

S

37 = slope and A
/ ax



i & o~ I
A Wt‘hﬁ = 4.2 k
dt

T 2
ﬁ".b’d = rod AT = 4.2 chIB 0 Dot SRS
R Loy % 's = 0.110 kJsec °C m
ac /% 38 e/ ' o R

=> ?8lope = -~ A . A => 0.110 = - X x &

where A& = IIr' = (1 x 1.2 % 10°2 wj® = 3.77 x 10" ®

=> AA]\. = 0,11 k3 sec .c-i = 170.8 W/m - °C
897 % 1077

3.6 ELECTRICAL CONDUCTIVITY OF ALUMINIUM

The experiment for the electrical conductivity of
copper was conducted according to section 1.32 and the

result as stated below: B

TABLE 3.7 Voltage versus current through the conductor

voltage (volts}| Current (Amp)

The electrical conductivity Op




m :_..'

s -
il S T 0.42 g

3.10 ile.

and R from i s
fig. graph of av aqs;n!i?_ﬂ
raph

Ro= 4y = 415 e of
g P the ¢

S = 1.28 g

Thaxafore,

i g = 0,42 n ==0.42 ‘:.
l 1.58m" x1.28 2,032 I

= =1
UAL 0.21 (Qm)

THE LORENTZ NUMBER as DETERMINED FROM THE THERMAL AND

ELECTRICAL CONDUCTIVITY OF ALUMINIUM

From the experiment using Aluminium, and applying

equation(3.10) where

A

" °C
it 170.8 W/m

0.21 (gm)~1

OaL '

constant = 419 K

170.8 W/m °C x 1
0.21(Qm)

170.8
24021.27

B 10T Wl
=1, - 7.1 x 10 f



w2y
2.63 1.52x1073
ST R 0.21 7.10x1073

e

The table below shows standard results

Table 3.9. Table of standard values as recorded elsewhere,

A R, . . L
= iy & n 2
£ w/M "¢ (2) (am) (Wa/x<)
3 -8
cu 386.00 1.0 5ol .2.“;‘3”_-‘“.
3 AL 202.00 2.18 3.0 2




since electrons are carrjerg bot

h of heat and of electxicity
in metals,

And the ratio of the thermal

to electrical
conductivity known as the Lorentz number is found to be

directly Proportional to the temperatu:e, and the Lorentz
number is independent of the particular metal hence there is

vVery small difference between the Lorentz numbers for copper

and Aluminium as seen in table 3.8 for our case and also’

table 2.1 for standard values.

Tables 3.2 and 3.5 also depict the general trend in which

the quantity of heat flowing through the insulated metal rods

increase with increasing temperature, hence the rate of heat

flow is proportional to the temperature difference.

The scattering of electrons intensifies with rising
e s

1 cbnductivity s

-esults didn't turn
‘ hat most resu :
an be seen t

11 depicted gen




ked alge,
Methods choosen

environment,
I

The points to be noted in the event of !u:the:z:.i.ng

this kind of research work are:

1. To find the most aPpropriate method for a given test !

material, ? |
2. To minimise €rrors due to choice of material [
iy

To see if it is possible to find the best way of
determining the conductivity of metal rods of this
nature and for this environment.

To check whether there are other less tedious and

more precise ways of calculating the various _\ralue_a

in the course of finding these conductivities.
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j". Fig. 3.1 Quantity of heat in KJ, contributed by environ
a function of time t (mass of water M, = 70g,
temperature = 26°C1. .




Fig.3.2 Rate of heat transfer, in watts, from
environment as a function of water

temperature 8-




Fig.3.3 Calorimetrically determined ‘Fempi‘.'a

difference AT () as a function

time for Copper.




min

Calorimetrically determined qual
of heat Q along the rod'' -
against time for Copper.
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Calorimetrically determined qua

Fig. 3.8 :
of heat as @ function (Q/KJ)

a function of fime (ks ) for 4
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