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ABSTRACT 

 A noncommutative algebra involving operators of the form  𝜌Λ
𝛼(𝑡)

∙ 𝜌Λ
𝛼(𝑡)

 is defined. 

Using the noncommutative 𝐿𝑝 −spaces technique, we give a constructive approach to 

quantum Markov evolution of infinite system, based on the notion of the 

thermodynamic limit. The infinite Markov time evolution is constructed as the 

thermodynamic limit of the corresponding finite volume (dynamics) evolution. The 

extended Markov time evolution is then studied, with a view of addressing questions of 

exponential stability and ergodicity . In  quantum spin system the existence of non local 

physical correlation at a phase transition is a manifestation of the entanglement among 

the constituents parts. We studied asymptotic entanglement within the frame work of 

open quantum systems for two independent quantum harmonic oscillators interacting 

with an environment. The question of separability is addressed using the Peres-Simon 

equation. 
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                                                             CHAPTER 1 

GENERAL    INTRODUCTION 

In this chapter we state the research problem as well as the justification and objectives for 

the investigation. We also give some definitions and results needed in this work.  First of 

all, we begin with a general introduction.  

In the last two decades, more and more interest arose about the problems of dissipation in 

quantum mechanics. The quantum description of dissipation is important in physics. For 

example, dissipative processes play a basic role in the theory of laser and that of atomic 

nucleus. The irreversible dissipative behaviour of the vast majority of physical 

phenomenon come into a contradiction with reversible nature of our basic models. The very 

restrictive principles of conservative and isolated systems are unable to deal with this type 

of situations. The fundamental quantum dynamical laws are of the reversible type. The 

dynamics of a closed system is governed by the Hamiltonian, a self adjoint operator that 

represents its total energy and is a constant of motion. The paradox of irreversibility arises; 

the reversibility of microscopic dynamics contrasting with the irreversibility of the 

macroscopic behaviour we are trying to deduce from it. One way to solve this paradox of 

irreversibility is to use models to which the Hamiltonian dynamics and Liouville theorem 

do not apply but the irreversible behaviour is clearly present even in the microscopic 

dynamical description. The reason for replacing Hamiltonian dynamics and Liouville‟s 

theorem is that no system is truly isolated being subject to uncontrollable random 

influences from outside. For this reason these models are called quantum open system    

(Isar, etal.1994). The aim of quantum open system theory is to study the interaction of 

simple quantum system interacting with very large ones. In general the properties that one 

is seeking are to exhibit the dissipation of the small system in favour of the large one, to 

identify when this interaction gives rise to a return to equilibrium or a thermalization of the 

small system (Attal and Joyce, 2006). There are two ways of studying these systems. The 

first approach is the Hamiltonian approach. Here the complete quantum system formed by 

the small system and the reservoir is studied through a Hamiltonian describing the free 

evolution. The associated unitary group gives rise to a group of *-endomorphism of a von 

Neumann algebra of observable together with a state for the system constitute a quantum 

dynamical system. The aim is to then to study the ergodic properties of that quantum 

dynamical system. The second approach is the Markovian approach. In this approach one 

gives up the idea of modelizing the reservoir and concentrates on the effective dynamics of 

the small system. This evolution is supposed to be described by a semigroup of completely 

positive maps. These semigroups admit a generator which is of the Lindblad form (Attal 

and Joyce, 2006).  

Quantum spin system introduced in 1961 in the discussion of magnetic properties of 

crystalline substance could also be studied within the frame work of open quantum 

systems. Basically a quantum spin system consists of a set of particles confined to a lattice 

and interacting at distance. There are two physical interpretations of these models, either as 

a lattice gas or as a spin system. In the spin system it is assume that every lattice site is 

permanently occupied by a particle but the particle have various internal degrees of 

freedom e.g. the particles could have an intrinsic spin with several possible orientation. The 
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interaction between the particles then follows from the coupling of the internal degrees of 

freedom and this yield an evolution in which the spin orientation are constantly changing. 

(Bratteli and Robinson, 1979).  
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1.1    Statement of the research problem  

In   noncommutative analysis a major problem is the construction of a dissipative quantum 

dynamical semigroup. The description of infinite quantum spin systems is far less advanced 

than in the commutative case and there is no satisfactory description of quantum stochastic 

dynamics especially for spin systems at high temperature or for one dimensional lattice 

with finite interaction at arbitrary finite temperature ( Majewski and Zegarlinski ,1996). 

The purpose of statistical mechanics is the description of the mechanics of large or even 

infinite systems. We recall that infinite systems in statistical mechanics arose as a result of 

the thermodynamic limit (the general name to the limit Λ → ∞, where Λ is a finite subset of 

the 𝑑 -dimensional lattice ℤ𝑑 , 𝑑 ≥ 1). The aim of this is to give an unambiguous meaning 

of such concept as temperature, pressure, and phase transition (Ruelle, 1969). 

An attempt to use the theory of noncommutative 𝐿𝑝  spaces for the construction and analysis 

of quantum stochastic dynamics for spin systems was initiated by Majewski and 

Zegarlinski (1996). A constructive approach for the construction of quantum Markov 

evolution of infinite system based on the notion of the thermodynamic limit,   is addressed 

in this work. By a constructive approach, we mean one in which existence of the evolution 

of the extended system is not postulated, as in pure semigroup approach, but constructed on 

the basis of the local character of the evolution in the bounded regions Λ𝑛  i.e the evolution 

is constructed as the thermodynamic limit of the corresponding finite volume dynamics 

with an appropriate control of the convergence. In order words we adopt the view that the 

dynamics of extended quantum system has to be derived from the limit of the time 

evolution  𝑃𝑡
𝑋,Λ𝑛  as  Λ𝑛 → ∞. If it exists in the appropriate topology and posses some 

necessary properties, then the time evolution of the system can be defined as  

                                                  𝑃𝑡
𝑋  = limΛ𝑛

𝑃𝑡
𝑋 ,Λ𝑛   . 

No work has been done in a constructive approach to quantum Markov evolution of infinite 

systems, before the work of Majewski and Zegarlinski (1996), except for a few models. In 

this work we consider a noncommutative algebra, i.e a von Neumann algebra ℳ0 with 

elements of the form 𝜌𝛼(𝑡). 𝜌𝛼(𝑡). This  will made clear in chapter three.  The finite time 

evolution satisfies the following equation,      

                                      
𝑑

𝑑𝑡
𝑃𝑡

𝑋 ,Λ = ℒ𝑋 ,Λ  𝑃𝑡
𝑋,Λ   ;      𝑃0

𝑋 ,Λ = 𝑖𝑑                                          (1.1.1)  

where    𝑃𝑡
𝑋 ,Λ

 is the finite volume stochastic dynamics and ℒ𝑋 ,Λ   the generator, with 𝑋 ⊂ Λ.  

Here   ℤ𝑑   is the  d-dimensional  lattice,  ℱ is the collection of all the finite subsets of  ℤ𝑑 , 
Λ ∈ ℱ. The extended time evolution 𝑃𝑡

𝑋  is then studied with a view of addressing questions 

of exponential stability and ergodicity of the extended time evolution 𝑃𝑡
𝑋 . 
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In quantum spin system, it was realized that the existence of non local physical correlation 

at a phase transition is a manifestation of the entanglement among the constituents parts  

(Its etal., 2008).  

We studied entanglement within the frame work of open quantum systems, the question of 

separability of two Harmonic oscillators interacting with an environment is addressed using 

the Peres-Simon equation. 

1.2    Justification 

  In classical mechanics, a commutative dynamical system is a triple  (𝑋, 𝑇𝑡  , 𝜇) , where  𝑋 a 

measurable space,  is the phase space of the system.  𝑇𝑡  is the time evolution expressed as a 

one parameter family of transformation on the phase space  𝑋, and  𝜇 an invariant measure 

for  𝑇𝑡 .   Having a commutative dynamical system, it is natural to ask fundamental 

questions on ergodicity, return to equilibrium and a proper description of the classical 

Markov semigroup. However the measurable structure of the phase space  𝑋 is too weak for 

a study of such questions. There is need for an additional structure. This is the point where  

we introduce the 𝐿𝑝 −spaces.  We associate with the triple (𝑋, 𝑇𝑡  , 𝜇)  the  𝐿𝑝(𝑋, 𝜇)  spaces 

and study the time evolution as a family of transformation on 𝐿𝑝 𝑋, 𝜇 . The 𝐿𝑝 −spaces 

plays an essential role in the construction and analysis of classical Markov evolution.  

In order to generalized the classical  𝐿𝑝 −spaces  technique, to the quantum setting we  

need a noncommutative 𝐿𝑝 −spaces, this is realized by a von Neumann algebra. The triple 

(𝑋, 𝑇𝑡  , 𝜇) is then replaced with a quantum counterpart of a dynamical system, namely, the 

triple  (ℳ0,  𝑃𝑡
𝑋 ,Λ  , 𝜑), where ℳ0 is a von Neumann algebra, 𝑃𝑡

𝑋,Λ
 is the finite volume 

stochastic dynamics, and 𝜑 is a faithful normal state. This constitutes a basis for a 

description of infinite quantum system. The general properties of 𝐿𝑝 −spaces can then be 

applied. The advantage lies in the fact that functional analysis technique could be employed 

to get a proper description of the infinite volume quantum dynamics for spin systems, as 

well as a study to the questions of ergodicity and stability of   the infinite quantum system.  

An example of a physical application, is the Heisenberg model of a ferromagnetic material. 

In quantum information science, entanglement is indispensable and play an important role 

in quantum computation and other related fields (Nielsen and Chuang, 2000). Despite the 

potential application of quantum entangled states, the theory of quantum entanglement 

itself is far from being complete.   

  



14 

 

1.3      Objective 

 Non-commutative   𝐿𝑝 −spaces over a von Neumann algebra with respect to a faithful 

normal semi-finite trace was constructed by Segal (1953).Since then, various types of 𝐿𝑝  

spaces have been constructed,(Trunov,1979), (Zolotarev,1982), (Haagerup,1979), 

,(Terp,1981),(Yeadon,1975), (Kosaki,1984). We study the Trunov 𝐿𝑝 -spaces involving 

closed operators of the form 𝜌𝑛
𝛼(𝑡)

.  𝜌𝑛
𝛼(𝑡)

. 

Conditional expectations, which are projections of norm one, have been studied by 

Umegaki (1954,1956) and Tomiyama (1957,1958). Takesaki (1972), established the 

necessary and sufficient conditions for the existence of such conditional expectations. We 

use the generalized conditional expectation formulated in Majewski and Zegarlinski (1996) 

to define a pre-markov generator which is symmetric, bounded and ∗ −invariant. This 

makes sense for spin systems which interact over a finite range.   

In Majewski and Zegarlinski (1996), the construction of a dynamics on the inductive limit 

𝐶∗algebra was presented. In this work, we study dynamics on an inductive limit von 

Neumann algebra ℳ0 , and formulate a strong ergodicity condition for the dynamics of spin 

system on a lattice. We derive a coordinate form of the Lindblad-type generator and the 

Simon-Peres type equation in terms of the variance and covariance. This is then applied in  

addressing the question of separability. 

The outline of the work is as follows. In chapter one we give an introduction containing a 

statement of the problem. Chapter two is a review of the works of some authors. In chapter 

three, we give a definition of a noncommutative algebra, and study stochastic dynamics for 

spin system on a lattice, in chapter four. Within the Lindblad theory of open quantum 

systems, we study entanglement and derived the equations of motions in terms of the 

variance and covariance of the coordinates   𝑞𝑥 , 𝑞𝑦  and momenta  𝑝𝑥 , 𝑝𝑦  operators, of two 

harmonic oscillators  interacting with an environment in chapter five. While chapter six 

gives the summary and conclusion. 
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1.4    Mathematical Tools 

Here we give some definitions and theorems.  

Definition 1.4.1 

Let 𝔘 be a vector space over ℂ .The space 𝔘 is called an algebra if it is equipped with a 

multiplication which associates the product 𝐴𝐵 to each pair 𝐴, 𝐵 ∈ 𝔘   such that 

1 𝐴 𝐵𝐶 =  𝐴𝐵 𝐶,                      𝐴, 𝐵, 𝐶 ∈ 𝔘 

2 𝐴 𝐵 + 𝐶 = 𝐴𝐵 + 𝐴𝐶,              𝐴, 𝐵, 𝐶 ∈ 𝔘 

3 𝛼𝛽 𝐴𝐵 =  𝛼𝐴 (𝛽𝐵),               𝐴, 𝐵 ∈ 𝔘,     𝛼, 𝛽 ∈ ℂ                                       (1.4.1) 

Definition 1.4.2 

The algebra 𝔘 is a normed algebra if to each element 𝐴 ∈ 𝔘 there is associated a real 

number  𝐴 , the normed of A, satisfying 

(i)  𝐴 ≥ 0   and     𝐴 = 0   if and only if  𝐴 = 0. 

(ii)  𝛼𝐴 =  𝛼  𝐴 ,                      𝛼 ∈ ℂ                             

(iii)  𝐴 + 𝐵 ≤  𝐴 +  𝐵 ,          𝐴, 𝐵 ∈ 𝔘 

(iv)  𝐴𝐵 ≤  𝐴  𝐵 ,               𝐴, 𝐵 ∈ 𝔘                                                            (1.4.2) 

If the algebra 𝔘 is complete with respect to the norm, that is, if 𝔘  is also a Banach space, 

then it is called a Banach algebra. 

 

Definition 1.4.3 

A mapping   A→ 𝐴∗  of 𝔘 into itself is called an involution or  adjoint operation of the 

algebra 𝔘 if it has the following properties 

(i)  𝐴∗ ∗ = 𝐴,                       𝐴 ∈ 𝔘 

(ii) (𝐴𝐵)∗ = 𝐵∗𝐴∗,               𝐴, 𝐵 ∈ 𝔘 

(iii) (𝐴 + 𝐵)∗ = 𝐴∗ + 𝐵∗,      𝐴, 𝐵 ∈ 𝔘   

(iv)  𝛽𝐴 ∗ = 𝛽 𝐴∗,                  𝐴, 𝐵 ∈ 𝔘,     𝛽 ∈ ℂ                     
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An algebra with an involution  * is called a *- algebra.                                                  

A  Banach algebra 𝔘 with an involution * is called a Banach * -algebra. 

A  Banach * -algebra 𝔘 is called a C* algebra if it satisfies  𝑥∗𝑥 =  𝑥 2,  for  𝑥 ∈ 𝔘 . 

Definition 1.4.4 (Sunders, 1987) 

Let ℌ be a complex Hilbert Space, ℬ(ℌ)the algebra of all bounded linear operators on  ℌ. 

A von Neumann algebra is a *-subalgebra ℳ of ℬ(ℌ) which is self-adjoint, contain the 

identity operator 1 and is closed in the weak operator topology. Let ℳ+ denote the positive 

elements  of ℳ, i.e  ℳ+ =  𝑥 ∈ ℳ: 𝑥 ≥ 0 . 

Example;    

 ℬ(ℌ) is an example of a von Neumann algebra. 

 

Definition 1.4.5 

A linear functional 𝜑 on  ℳ is said to be positive if 𝜑(𝑥∗𝑥) ≥ 0 for each 𝑥 ∈ ℳ. 

Definition 1.4.6 Topologies on  𝓜 (Sunders, 1987) 

The strong operator topology is the locally convex topology induced by the family of semi 

norms  𝑝𝜉  defined on  ℳ by   𝑝𝜉 𝑥 =  𝑥𝜉 ,  with   𝑥 ∈ ℳ, 𝜉 ∈ ℌ.  

The  𝜍 − strong operator topology is the locally convex topology induced by the family of 

semi norms  𝑝𝜉𝑛
  defined on ℳ by 𝑝𝜉𝑛

 𝑥 = (  𝑥𝜉𝑛 2)1 2 , with  𝑥 ∈ ℳ,    𝜉𝑛 ⊂ ℌ such 

that    𝜉𝑛 2 < ∞. 

 The 𝜍 −weak operator topology is the locally convex topology induced by the family of                       

seminorms  𝑝𝜉𝑛 ,휂𝑛
  defined on  ℳ by  𝑝𝜉𝑛 ,휂𝑛

 𝑥 =    𝑥𝜉𝑛 , 휂𝑛  , with  𝑥 ∈ ℳ,   

 𝜉𝑛 ,  휂𝑛 ⊂ ℌ,      such that    𝜉𝑛 2 < ∞,       휂𝑛 2 < ∞. 

The  weak operator topology is induced by the family of  semi norms  𝑝𝜉,휂   defined on  

ℳ by  𝑝𝜉,휂
 𝑥 =    𝑥𝜉, 휂  , with  𝑥 ∈ ℳ, 𝜉, 휂 ∈ ℌ. 

Definition 1.4.7 

The predual ℳ ∗  of a   von Neumann algebra ℳ is the space of all 𝜍- weakly continuous 

linear functionals   on ℳ. We denote  the positive part of  ℳ∗ by  ℳ∗,+.  

 

Definition 1.4.8 (Commutant) 
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Let ℳ be a subset of ℬ(ℌ).We put  ℳ ′ =  𝑥 ∈ ℬ ℌ ; 𝑥𝑦 = 𝑦𝑥 𝑓𝑜𝑟 𝑎𝑙𝑙  𝑦 ∈ ℳ . The 

space ℳ ′  is called commutant the of   ℳ and we denote by ℳ ′′ =  ℳ ′ ′  the bicommutant 

of ℳ. 

Proposition 1.4.1 ( Bratteli and Robinson, 1979)  

For every subset ℳ of ℬ(ℌ) we have 

(i) ℳ ′  is weakly closed 

(ii) ℳ ′ = ℳ ′′′ = ℳ(5) = ⋯ 

and  ℳ ⊂ ℳ ′′ = ℳ(4) = ⋯ 

Proposition 1.4.2 ( Bratteli and Robinson, 1979) 

Let  ℳ be a self-adjoint subset of  ℬ(ℌ). Let  ℌ1 be a closed subspace of the Hilbert space 

ℌ and 𝑃 be the orthogonal projection onto ℌ1. Then ℌ1 is invariant under ℳ(in the sense 

𝑥ℌ1 ⊂ ℌ1 for all  𝑥 ∈ ℳ) if and only if  𝑃 ∈ ℳ ′ . 

Theorem 1.4.1 (von Neumann density theorem) 

 Let  ℳ be a ∗ −subalgebra of  ℬ(ℌ) which contains the identity I. Then ℳ is weakly 

(strongly) dense in ℳ ′′ . 
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Theorem 1.4.2 (Bicommutant theorem) 

Let  ℳ be a ∗ − sub algebra of ℬ(ℌ) which contains the identity I. The following 

conditions on ℳ are equivalent. 

(i) ℳ is weakly (strongly) closed. 

(ii) ℳ = ℳ ′′ . 

Definition 1.4.9 

The center of a von Neumann algebra is the abelian von Neumann subalgebra                

𝒵 = ℳ ∩ ℳ ′ , 

Definition 1.4.10 

Given an element 𝑥 ∈ ℳ ,  the smallest projection  𝑃 ∈ ℳ  𝑤𝑖𝑡 𝑃𝑥 = 𝑥 is called the left 

support of 𝑥  and is denoted by 𝑠𝑙 𝑥 . Similarly, the right support is the smallest projection 

 𝑄 ∈ ℳ  𝑤𝑖𝑡  𝑥𝑄 = 𝑥 and is denoted by 𝑠𝑟 𝑥 . 

Definition 1.4.11  

Let 𝒵  be the center of a von Neumann algebra ℳ.Then 𝒵 is weakly closed. Let 𝑃  be a 

projection in ℳ.There exists a least central projection in ℳ majorizing 𝑃.This central 

projection is called the central support of 𝑃, and is denoted by 𝑐(𝑃). 
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Definition 1.4.12  

Two projections 𝑃 𝑎𝑛𝑑 𝑄  in a von Neumann algebra ℳ are said to be equivalent if there 

exist a partially isometric operator 𝑢 ∈ ℳ whose initial domain is the range of 𝑃 and 

whose terminal domain is the range of 𝑄. 

Definition 1.4.13  

A projection 𝑃 in a von Neumann algebra ℳ is said to be finite if  P∼ 𝑄 ≾ 𝑃 implies   

𝑃 = 𝑄, 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒  it is said to be infinite. A projection 𝑃 is said to be purely infinite if 

there is no nonzero finite projection  𝑄 ≾ 𝑃 ∈ ℳ  . If   𝑧𝑃   is infinite for every central 

projection 𝑧 ∈ ℳ  with   zP ≠ 0, then 𝑃 is called properly infinite. 

Definition 1.4.14 

 A von Neumann algebra ℳ is said to be finite if the identity  projection is finite , infinite if 

the identity  projection  is infinite, properly infinite if the identity  projection  is  properly 

infinite.  

Definition 1.4.15 

A non-zero projection 𝑃 in a von Neumann algebras ℳ is said to abelian if  𝑃ℳ𝑃 is 

commutative. 

Proposition 1.4.3 (Sakai,1971) 

An abelian projection  𝑃 is finite. 

 Definition 1.4.16 

(i)  A  von Neumann algebra ℳ is said to be of type  I  if every  nonzero  central 

projection in ℳ majorizes a non zero abelian  projection  in ℳ. 

(ii)  If there is no nonzero finite projection inℳ,  that is, if ℳ  is purely infinite then it 

is said to be of type III .  

(iii)  If ℳ has no nonzero abelian projection and if every non zero central projection in 

ℳ majorizes a non zero finite projection of ℳ then it is said to be of type II. 

(iv)   If   ℳ  is finite   and of type II  , then it is said to be of type 𝐼𝐼1.  

(v)   If   ℳ  is of type II and  has no nonzero central finite projection, then ℳ is to be 

of type 𝐼𝐼∞  . 
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Definition 1.4.17 

A von Neumann algebra ℳ is said to be countably decomposable if every family of 

mutually orthogonal non-zero projections in ℳ is at most countable. A projection 𝑃 in ℳ 

is said to be countably decomposable if 𝑃ℳ𝑃  is countably decomposable.  

Proposition 1.4.4  (Bratteli and Robinson, 1979). 

 Let ℳ  be a   von Neumann algebra on a Hilbert space ℌ .Then the following four 

conditions are equivalent. 

(i) ℳ is    𝜍 − 𝑓𝑖𝑛𝑖𝑡𝑒. 

(ii) There exists a countable subset of  ℌ  which is separating for ℳ. 

(iii) There exists a faithful normal state  on ℳ. 

(iv)  ℳ is isomorphic with a von Neumann algebra 𝜋(ℳ ) which admits a separating 

and cyclic vector. 

Definition 1.4.18 

 ℳ is a quasi-local algebra if there is a net  ℳ Λ Λ∈𝕫d  of von Neumann algebras such that,  

(i) If   Λ1  ≥ Λ2 then    ℳ Λ1
   ⊇ ℳ Λ2

 

(ii) ℳ =∪ ℳ Λ           where the bar is the uniform closure 

(iii) The algebras  ℳ Λ  have a common identity I. 

Definition 1.4.19 

 A linear map 𝜑 on ℳ+ defined by 𝜑: ℳ+  →  0, ∞   Satisfying 

  (i) 𝜑 𝑥 + 𝑦 = 𝜑 𝑥 + 𝜑 𝑦      for  𝑥, 𝑦 ∈ ℳ +   

  (ii) 𝜑 𝜆𝑥 = 𝜆𝜑(𝑥)  for  𝑥 ∈ ℳ + , 𝜆 ≥ 0 

is called a weight. 

(iii)    If     0    0x x    .Then the weight  is said to be faithful  

(iv)    If    𝜑 𝑥 = 𝑠𝑢𝑝𝑖𝜑 𝑥𝑖  whenever x  is the supremum of a monotone increasing net 

 ix  in ℳ+ then the weight  is said to be normal. 
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(v)     If   𝜑(𝑥∗𝑥) = 𝜑(𝑥 𝑥∗) then the weight 𝜑 is called a trace 

(vi)     If   ∀𝑥 ∈ ℳ+, ∃ 𝑥𝑖  ∈ ℳ with xxi   𝜍 − strongly and 𝜑 𝑥𝑖 < ∞. Then the weight         

 is   semi-finite. 

Definition 1.4.20 

 A state  on ℳ is a weight such that  𝜑 = 1.
 

A weight 𝜑  is said to be finite if 𝜑(𝑥) < ∞ for all 𝑥 ∈ ℳ+. 

Definition 1.4.21 Fundamental to the study of a weight 𝜑 is an analysis of certain 

subspaces of ℳ   defined as follows, 

  𝑃𝜑 =  𝑥 ∈ ℳ+: 𝜑 𝑥 < +∞       

 𝑁𝜑 =  𝑥 ∈ ℳ: 𝜑(𝑥∗𝑥) < ∞   

𝑚𝜑 = 𝑁𝜑
∗𝑁𝜑 =   𝑥𝑖

∗𝑦𝑖
𝑛
𝑖=1 :  𝑥𝑖 , 𝑦𝑖 ∈ 𝑁𝜑 ,   𝑛 = 1,2 …    

  𝑃𝜑  is a hereditary positive cone , that is , 𝑥, 𝑦 ∈ 𝑃𝜑  and   𝜆 ∈  0, ∞  implies that  

 𝜆𝑥 + 𝑦 ∈ 𝑃𝜑  and  𝑥 ∈ 𝑃𝜑 ,   𝑧 ∈  ℳ+with 𝑧 ≤ 𝑥, ⇒ 𝑧 ∈ 𝑃𝜑  

𝑁𝜑  is  a left ideal  in ℳ 

𝑚𝜑  is a self adjoint  sub algebra of ℳ 

𝑃𝜑 = 𝑚𝜑
+ = 𝑚𝜑  ∩ ℳ+, and every element of 𝑚𝜑  is a linear combination of four elements 

of   𝑃𝜑 . 

Theorem 1.4.3 (Haagerup, 1975) 

The following theorem characterizes normal weights. 

For a weight  𝜑 on ℳ,  the following conditions are equivalent: 

(i)     φ is normal 

(ii)     There exist a monotone increasing net  ωi ∶ i ∈ I  ⊆ ℳ∗,+  such that 

ωi  x ↑ φ(x)   for all  x ∈  ℳ+. 

(iii) There exist a family ψi   : i ∈ I ⊆ ℳ∗+  such that  φ x =  ψi(x)  i∈I for all 

x ∈  ℳ+. 
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(iv)  φ x  is σ-weakly lower semi continuous, that is if  xi → x,  σ − weakly, 

𝑥𝑖  , 𝑥 ∈  ℳ+  then 𝜑 𝑥    ≤ liminfφ(𝑥i). 

Definition 1.4.22 (Trunov,1982) 

 A weight 𝜑  is called locally finite if ∀𝑥 ∈ ℳ+ , 𝜑 𝑥 = ∞, ∃ 𝑦 ∈ ℳ+  with  𝑦 ≤ 𝑥 such 

that       0 < 𝜑(𝑦) < ∞ . 

Definition 1.4.23 (Trunov,1982) 

A weight 𝜑 is called regular, if ∀𝜔 ∈ ℳ∗+, 𝜔 ≠ 0, ∃ 𝜔′ ∈ ℳ∗+ , 𝜔′ ≠ 0,  

with  𝜔′ ≤ 𝜔   such  that  𝜔′ ≤ 𝜑. 

 

 

Definition 1.4. 24 

A representation of  a von Neumann algebra ℳ is a pair (ℌ, 𝜋) where ℌ is a complex 

Hilbert space and 𝜋 is a ∗ − homomorphism of ℳ into   ℬ(ℌ).The representation  (ℌ, 𝜋) is 

said to be faithful if and only if  𝜋  is a  ∗ −isomorphism between ℳ and  𝜋 ℳ . 

Theorem1.4.4 (Sunders, 1987) 

Let 𝜑 ∈ ℳ∗+ be a faithful, normal state on ℳ.Then there exist a triple (ℌ𝜑 , 𝜋𝜑 , Ω𝜑) where, 

(i) 𝜋𝜑  is  a ∗ − algebra homomorphism of  ℳ into ℬ(ℌ) 

(ii) Ω𝜑 ∈ ℌ𝜑   and ℌ𝜑 = 𝜋𝜑 (ℳ)Ω𝜑
                

(iii)        𝜋𝜑 (𝑥)Ω𝜑 , Ω𝜑  = 𝜑(𝑥),             for all  𝑥 ∈ ℳ 

The image 𝜋𝜑 (ℳ) is a von Neumann algebra of operators  on  ℌ𝜑 ,  𝜋𝜑  is   an  isometric 

(norm-preserving) 𝜍 − weakly continuous  homomorphism of ℳ onto 𝜋𝜑 ℳ . 

Theorem 1.4.5 (Sunders, 1987) 

Let 𝜑 ∈ ℳ∗+ be a faithful, normal, semifinite weight on ℳ. Let 𝑃𝜑  , 𝑁𝜑  , 𝑎𝑛𝑑 𝑚𝜑  be the 

associated subspaces of ℳ, as in definition 1.4.21.Then there exist a triple (ℌ𝜑 , 𝜋𝜑 , 휂𝜑 ) 

where 

(𝑖)      ℌ𝜑  is a Hilbert space 
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(𝑖𝑖)     𝜋𝜑  is  a  *- algebra homomorphism of  ℳ into ℬ(ℌ) 

(iii) 휂𝜑 : 𝑁𝜑 → ℌ𝜑  is a linear map such that 

              휂𝜑 (𝑥), 휂𝜑 (𝑦) = 𝜑(𝑦∗𝑥),              such that   𝜋𝜑 𝑧 휂𝜑 𝑥 : 𝑥 ∈ 𝑁𝜑 , 𝑧 ∈ ℳ   

is dense in  ℌ𝜑 . For all 𝑥, 𝑦 ∈ 𝑁𝜑  and  𝑧 ∈ ℳ. Such a representation is  unique up to 

unitary isomorphism.  

Definition 1.4.25 

 A set  𝑆 ⊂ ℌ is said to be  

(i) cyclic for ℳ if  ℳ𝑆 = ℌ 

(ii) separating for ℳ if for 𝑥 ∈ ℳ, 𝑥 = 0  if and only if  𝑥𝑆 =  0  

where   ℳ𝑆   denotes the closed linear span of ℳ𝑆. 

Proposition 1.4.5 (Sunders,1987)  

Let 𝑆0 and 𝐹0 be the conjugate-linear operators, with domains ℳΩ and ℳ ′Ω , 

respectively,with    Ω cyclic for ℳ defined by  𝑆0 𝑥Ω  = 𝑥∗Ω, 𝐹0 𝑥Ω  = 𝑥∗Ω.  Then 𝑆0 

and 𝐹0 are densely defined closable operators; their closures, denoted by  𝑆 and 𝐹, 

respectively, satisfy   𝑆 = 𝑆0
 = 𝐹0

∗ and  𝐹 = 𝐹0
   = 𝑆0

∗ 

Definition 1.4.26 

Let ∆ = 𝐹𝑆 = 𝑆∗𝑆. Then ∆ is invertible,with inverse ∆−1= 𝑆𝐹 = 𝑆𝑆∗. 𝑆 and  ∆  have dense 

range and thus ∆1 2   have dense range, we have the following  𝑆 = 𝐽  𝑆∗𝑆 1 2 , where J  is 

a self-adjoint partial anti -isometry operator on ℌ. 

(i)  𝑆 = 𝐽∆1 2 ,   polar decomposition of 𝑆. 

(ii) 𝐹 = 𝑆∗ = ∆1 2 𝐽. 

(iii) Let 𝑥 be in the domain of 𝑆.  Then 𝐼 = 𝐽2 and  ∆−1= 𝐽∆𝐽. 

  ∆   is called the modular operator and 𝐽  the modular conjugation. 

Theorem 1.4.6 Tomita –Takesaki  

(i)      Δ𝑖𝑡ℳΔ−𝑖𝑡 = ℳ,     ∀   𝑡 ∈ ℝ  

(ii)     JℳJ  =ℳ ′                                                                                                               
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  Put       𝜍𝑡
𝜑 𝑥 =  ∆𝜑

𝑖𝑡  𝑥 ∆𝜑
−𝑖𝑡                                𝑥 ∈ ℳ, ∀   𝑡 ∈ ℝ                                        

This defines a one parameter group of automorphisms of ℳ. 

 Definition 1.4.27 (Sunders) 

Let  𝔘 be an  involutive  algebra over the complex number field ℂ with the involution 

 𝜉 ∈ 𝔘 ⟶ 𝜉#  ∈ 𝔘.  𝔘  is called a generalized Hilbert algebra if 𝔘 admits an inner product 

 𝜉, 휂  satisfying following conditions: 

(i)  𝜉휂, 휁 =  휂, 𝜉#휁 ,                    𝜉, 휂, 휁 ∈ 𝔘 

(ii) For each 𝜉 ∈ 𝔘 ,the map 휂 ∈ 𝔘 ⟶ 𝜉휂 ∈ 𝔘 is continuous. 

(iii) The subalgebra 𝔘 2 =   𝜉𝑖휂𝑖
𝑛
𝑖=1 : 𝜉𝑖 , 휂𝑖 ∈ 𝔘, 𝑛 = 1,2, …   of 𝔘, is spanned by the 

elements  𝜉휂   with  𝜉, 휂 ∈ 𝔘,  is dense in 𝔘. 

(iv) The involution 𝜉 ⟶ 𝜉# ∈ 𝔘  is preclosed. 

Suppose 𝔘 is a generalized Hilbert algebra. Let ℌ  be the Hilbert space obtained by 

completion of 𝔘. To each   𝜉 ∈ 𝔘,  there corresponds a unique bounded  operator  

𝜋 𝜉    on ℌ   defined  by   𝜋 𝜉 휂 = 𝜉휂,  휂 ∈ 𝔘. 𝜋 𝔘 , the set of bounded operators 

satisfying condition (i)-(iii) is a non-degenerate self-adjoint algebra of operators on ℌ. 
𝜋 𝔘 ′′  is the von Neumann algebra generated by 𝜋 𝔘 .  𝜋 𝔘 ′′  

is called a left von Neumann algebra denoted by  𝔏 𝔘 . 

Since the involution 𝜉 ∈ 𝔘 ⟶ 𝜉# ∈ 𝔘  with domain 𝔇# =  𝜉 ∈ 𝔘: 𝜉# ∈ 𝔘  is preclosed 

and therefore has a closure whose adjoint involution is given by  휂 ∈ 𝔘 → 휂𝑏 ∈ 𝔘 with 

domain                  𝔇𝑏 =  휂 ∈ 𝔘:  휂𝑏 ∈ 𝔘 , we have the following definition. 

Definition 1.4.28 

A vector  휂 ∈ 𝔇𝑏  is said to be   𝜋′ -bounded if  𝜉 ∈ 𝔘  ⟶ 𝜋 𝜉 휂 is bounded. If this is the 

case, then the map  𝜉 ∈ 𝔘  ⟶ 𝜋 𝜉 휂 ∈ ℌ  extends to a bounded operator 𝜋′ (휂).The set of                

  𝜋′ - bounded elements is denoted by   𝔘𝑏    and  given by                      

𝔘𝑏 =  휂 ∈ 𝔇𝑏 ; ∃𝑐 > 0 ∋  𝜋 𝜉  휂 ≤ 𝑐 𝜉    ∀ 𝜉 ∈ 𝔘                                                        

and also the set of 𝜋 – bounded elements is denoted by 𝔘#   and given by    

  𝔘# =  𝜉 ∈ 𝔇#; ∃𝑐 > 0 ∋  𝜋′  휂 𝜉  ≤ 𝑐 휂    ∀ 휂 ∈ 𝔘𝑏           
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Definition 1.4.29 

The generalized Hilbert algebra 𝔘  is said to be achieved if  𝔘  = 𝔘#. 

Definition 1.4.30   Kubo-Martins-Schwinger boundary conditions 

A 𝜍𝑡- invariant positive linear functional 𝜑 of ℳ is said to satisfy the Kubo-Martins-

Schwinger boundary condition for   𝜍𝑡 𝑡∈ℝ if for any pair 𝑥, 𝑦 ∈ ℳ,there exist a bounded 

function  𝐹𝑥𝑦 :  𝜆 ∈ ℂ: 0 ≤ 𝑖𝑚 𝜆 < 1 ⟶ ℂ  continuous on and  analytic in the strip 

0 ≤ 𝑖𝑚 𝜆 < 1 with boundary values 

                          𝐹𝑥𝑦  𝑡 = 𝜑 𝜍𝑡 𝑥 𝑦  𝑎𝑛𝑑  𝐹𝑥𝑦  𝑡 + 𝑖 = 𝜑 𝑦𝜍𝑡(𝑥)        

 

Lemma 1.4.1  (Sunders,1987) 

 𝜑 ∈ ℳ∗+  satisfies the KMS conditions with respect to the 𝜍 -weakly continuous one 

parameter group   𝜍𝑡
𝜑
 
𝑡∈ℝ

   if 𝜑 is invariant with respect to 𝜍𝑡 , that is   𝜑 ∘ 𝜍𝑡
𝜑

= 𝜑. 

Definition 1.4.31 

Let 𝜑 be a linear map from a von Neumann algebra ℳ to a von Neumann algebra 𝒩 and 

consider the algebra of n n  matrices with entries from ℳ and  𝒩 denoted by𝑀𝑛(ℳ) and  

𝑀𝑛(𝒩)respectively. The linear map   is called completely positive, if  

 𝜑𝑛⨂𝐼: 𝑀𝑛(ℳ) → 𝑀𝑛 𝒩  , defined by 𝜑𝑛 𝑥 ⊗ 𝐸𝑖𝑗  = 𝜑(𝑥) ⊗ 𝐸𝑖𝑗 , is positive for all 𝑛. 

Where 𝐸𝑖𝑗 ,    𝑖, 𝑗 =1,2,...n are matrix units spanning 𝑀𝑛(ℂ). 

Theorem 1.4.7  (Takesaki, 1979) 

(a) Let  𝒩  be a 𝐶 ∗ − algebra and ℌ a Hilbert space. If  𝜋, 𝔑  is a representation of 𝒩,    

𝑉  is a bounded linear operator of ℌ into 𝔑, then the map   𝑇: 𝑥 ∈ 𝒩 → 𝑉∗𝜋 𝑥 𝑉 ∈ ℬ(ℌ)  

is completely positive .  

(b) If  𝑇 is a completely positive map of a  𝐶 ∗ − algebra 𝐴 into another 𝐶 ∗ − algebra 

𝐵, then we have   𝑇 𝑎 ∗𝑇 𝑎 ≤  𝑇 𝑇 𝑎∗𝑎 ,            𝑎 ∈ 𝐴. 

 

Definition 1.4.32 
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(i) A closed, densely defined linear operator on ℌ is said to be affiliated to ℳ if 

𝑢𝑥 ⊆ 𝑥𝑢 for every unitary 𝑢 ∈ ℳ ′ . If 𝑥 is affiliated to ℳ, we write 𝑥 휂ℳ. If 𝑥  

is bounded then we say that 𝑥 is in ℳ  

(ii) A linear set 𝔇 in ℌ is said to be associated with ℳ, if 𝑢(𝔇) ⊆ 𝔇 for every 

unitary 𝑢 ∈ ℳ ′ . We write  𝔇휂ℳ. 

(iii) Let 𝔇 be a linear subset of ℌ.Then  𝔇 is said to be strongly dense in ℌ with 

respect to ℳ if 

(a) 𝔇휂ℳ. 

(b) There is a sequence  𝔇𝑛  of subspaces of ℌ, with 𝔇𝑛휂ℳ such that 𝔇𝑛 ⊂ 𝔇  

and, 

(c) the projection operator of ℌ onto the orthogonal complement 𝔇𝑛
⊥ of  𝔇𝑛  is a 

finite projection in ℳ and 𝔇𝑛
⊥ ↓ 0. We say that   𝔇𝑛  defines  𝔇 . 

(iv) A closed, densely defined linear operator 𝑥 on ℌ is said to be measurable with 

respect to ℳ provided that 

(a) 𝑥 휂ℳ and 

(b) 𝑥 has a strongly dense domain 

 

Definition 1.4.33 

(a) Let ℳ𝑝𝑟𝑜𝑗   be the set of  projections in ℳ, a measure 𝜏 is a nonnegative mapping  

𝜏: ℳ𝑝𝑟𝑜𝑗 → ℝ+ such that, 

(i) 𝜏 0 = 0 

(ii) 𝜏  𝑃𝑛 =  𝜏(𝑃𝑛), for any countable set  𝑃𝑛  of mutually orthogonal 

projections in ℳ𝑝𝑟𝑜𝑗  . 
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(b)  An integral 𝜑 on  (ℌ, ℳ) is a faithful, nonnegative linear functional  𝜑: ℳ → ℂ , 

such that the restriction of  𝜑 to ℳ𝑝𝑟𝑜𝑗  is a measure. 

(c) A sequence  𝑥𝑛  of measurable operators( see definition, 1.4.32)  is said to 

converge in measure to a measurable operator 𝑥 if given 𝛿 > 0, there is a sequence 

 𝑃𝑛  of projections in ℳ𝑝𝑟𝑜𝑗  such that  (𝑥𝑛 − 𝑥) × 𝑃𝑛 < 𝛿 and 𝜑(𝑃𝑛
⊥) → 0, 

where  ∙  is the operator norm on ℳ.  

(d) Suppose  is a densely defined closed operator associated with ℳ,  is said to be 

locally measurable (with respect to  ℳ) if the following equivalent conditions 

hold: 

(i) There exists a sequence  𝑒𝑛  of projections in the center of ℳ such that 

𝑒𝑛 ↗ 𝐼 and all operators 𝑒𝑛  are measurable in the sense of Segal. 

(ii) For each 𝑥 ∈ ℳ, the operator  𝑥 is closed. 

 

A gauge space Γ  is a system (ℌ, ℳ, 𝜏)  composed of a complex Hilbert space ℌ, a von 

Neumann algebra ℳ and a normal  trace 𝜏.The normal  trace 𝜏 associated with Γ is called a 

gauge, and the gauge space Γ is finite if  𝜏 𝐼 < ∞, where 𝐼 denotes the identity operator. 

 Definition 1.4.34 

A projection 𝑃 will be said to be associated with Γ if it is ℳ, and is said to be metrically 

finite or 𝜏 −finite if  𝜏 𝑃 < ∞. 

Definition 1.4.35 

A gauge space is called regular when the only projection of gauge zero is the zero 

projection. 

A projection on which a gauge vanishes is called a null projection. 

Definition 1.4.36 

Let 𝑁 be the maximal  central null projection then (𝐼 − 𝑁)ℌ  is  called the  carrier of  𝜏. 
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Definition 1.4.37 

Let  (ℌ, ℳ, 𝜏) be a gauge space. Then a sequence  𝑇𝑛  of measurable operators is said to 

converge nearly everywhere (n.e) to a measurable operator 𝑇 if given 휀 > 0, there is a 

sequence  𝑃𝑛  of projections in ℳ  such that 𝑃𝑛 ↑ 𝐼 as 𝑛 ↑ ∞,  (𝑇𝑛 − 𝑇) × 𝑃𝑛 < 휀 and  𝑃𝑛
⊥ 

is algebraically finite. 

Definition 1.4.38 

A sequence  𝑇𝑛  of measurable operators converges metrically nearly everywhere (m.n.e) 

to a measurable operator T with respect to a gauge space (ℌ, ℳ, 𝜏), if it converges nearly 

everywhere (n.e)to T on the carrier  of  𝜏. 

Definition 1.4.39 

The rank of an operator T with respect to the gauge space is defined as the gauge of the 

closure of the range of T.  T is said to be elementary, if it is everywhere defined and its rank 

is finite, or nearly everywhere zero. 

Definition 1.4.40 

A measurable operator T on the gauge space is called integrable if it is the limit metrically 

nearly everywhere (m.n.e) of a sequence  𝑇𝑛  of elementary operators that is Cauchy in the 

set of all integrable operators    𝐿1(ℌ, ℳ, 𝜏). The integral or trace of T, denoted by  𝜏(𝑇) is 

defined as  lim𝑛 𝜏(𝑇𝑛).    

 

Definition 1.4.41 

A strongly continuous one parameter semigroup  𝑃𝑡 𝑡≥0  on a Hilbert space ℌ is a family  

𝑃𝑡  of linear maps satisfying, 

𝑃0 = 1  

𝑃𝑠  𝑃𝑡 =  𝑃𝑠+𝑡   

lim𝑡→0  𝑃𝑡𝑢 = 𝑢,      where  𝑢 ∈ ℌ                                                                                        

Definition 1.4.42 

A  semigroup   𝑃𝑡 𝑡≥0 on a von Neumann algebra  ℳ is said to be 

(i) a contraction semigroup  if  𝑃𝑡𝑥 ≤  𝑥    ∀ 𝑥 ∈ ℳ , 𝑡 ≥ 0 . 
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(ii) uniformly  continuous if lim𝑡→0 𝑃𝑡 − 𝐼 = 0. 

(iii) strongly continuous or 𝐶0 −semigroup if lim𝑡→0 𝑃𝑡𝑥 − 𝑥 = 0  , 

  ∀  𝑥 ∈ ℳ.  

Lemma 1.4.2 (Davies,1976) 

Every weakly continuous one parameter contraction semigroup   𝑃𝑡 𝑡≥0 on a Hilbert space 

ℌ is also strongly continuous. 

 

 

Definition 1.4.43 

A linear operator  𝐺 on ℳ  is said to be the generator of a 𝐶0 −semigroup  𝑃𝑡 𝑡≥0 if:  

𝐺 𝑓 = lim𝑡→0
1

𝑡
 𝑃𝑡𝑓 − 𝑓  ,   exists  for each 𝑓  in 

𝔇 𝐺 =  𝑓 ∈ ℳ: lim𝑡↓0
1

𝑡
 𝑃𝑡𝑓 − 𝑓  𝑒𝑥𝑖𝑠𝑡𝑠 𝑖𝑛 ℳ 

  
Lemma 1.4.3 (Ahmed,1991) 

If  𝐺 ∈ ℬ ℌ , then   𝑃𝑡 = 𝑒𝑡𝐺 ,   𝑡 ≥ 0, is a uniformly continuous semigroup of operators on 

ℌ and its infinitesimal generator is  𝐺.  

Theorem 1.4.8(Ahmed,1991) 

Let X be a Banach space and  𝑃𝑡 𝑡≥0 a  𝐶𝑜- semigroup on X, then there exists constants 

𝑀 ≥ 1  and 𝛼 ∈ ℝ such that   𝑃𝑡 ≤ 𝑀𝑒𝛼𝑡 ,   ∀𝑡 > 0. 

Theorem 1.4.9  (Ahmed, 1991) 

If   𝑃𝑡 𝑡≥0 is a  𝐶𝑜- semigroup on a Banach space X, then for each 𝑥 ∈ 𝑋,  𝑡 → 𝑃𝑡𝑥  is a 

continuous X-valued function on [0, ∞).  

 

 

 

Theorem 1.4.10 (Ahmed, 1991) 
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Let X be a Banach space and   𝑃𝑡 𝑡≥0 a 𝐶𝑜- semigroup on X with 𝐺 as its infinitesimal 

generator. Then   

i. For  𝑥 ∈ 𝑋, 𝑡 ∈  0, ∞ ,    lim↓0
1


∫ 𝑃휃

𝑡+

𝑡
 𝑥 𝑑휃 = 𝑃𝑡𝑥. 

ii. For 𝑥 ∈ 𝑋, 𝑡 > 0,          ∫ 𝑃휃 (𝑥)
𝑡

0
𝑑휃 ∈ 𝐷 𝐺 . 

iii. For 𝑥 ∈ 𝔇 𝐺 , 𝑃𝑡𝑥 ∈ 𝔇 𝐺    and  
𝑑

𝑑𝑡
 𝑃𝑡𝑥 = 𝐺𝑃𝑡𝑥 = 𝑃𝑡  𝐺𝑥. 

iv. For 𝑥 ∈ 𝔇 𝐺 ,    𝑡 ≥ 𝑠 ≥ 0 , 𝑃𝑡𝑥 − 𝑃𝑠𝑥 = ∫ 𝐺𝑃𝑡𝑥 𝑑𝜏
𝑡

𝑠
= ∫ 𝑃𝑡  𝐺𝑥

𝑡

𝑠
 𝑑𝜏. 

v. The domain of 𝐺 is dense in X that is 𝔇(𝐴)       = 𝑋. 

vi. 𝐺 is a closed operator or equivalently the 

 𝐺𝑟𝑎𝑝  𝐺 =   𝑥, 𝑦 ∈ 𝑋 × 𝑋 ∶ 𝑦 = 𝐺𝑥  is a closed subset of 𝑋 × 𝑋. 

Definition 1.4.44 

Let 𝐴  be a linear, not necessarily bounded, operator on ℌ. The set 𝜌(𝐴)  defined by                  

 𝜆 ∈  ℂ: (𝜆𝐼 − 𝐴)−1 ∈ ℬ(ℌ)  is called the resolvent set of the operator A. If  𝜌(𝐴) is non-

empty then for 𝜆 ∈ 𝜌 𝐴 , 𝑅 𝜆, 𝐴 ≡ (𝜆𝐼 − 𝐴)−1is called the resolvent of the operator A 

corresponding to 𝜆.  

Lemma 1.4.4 (Ahmed, 1991) 

Let 𝐺 be the infinitesimal generator of a 𝐶𝑜- semigroup  𝑃𝑡 𝑡≥0 of contractions on a Banach 

space ℌ then,  

(a) For every 𝜆 > 0 the operator  𝑅𝜆𝑥 = ∫ 𝑒−𝜆𝑡𝑃𝑡
∞

0
(𝑥)𝑑𝑡 is defined on all of ℌ and  

𝑅𝜆𝑥 ∈ 𝐷 𝐺  ,  for every  𝑥 ∈ ℌ. 

(b)  𝑅 𝜆, 𝐺 ≡ (𝜆𝐼 − 𝐺)−1 =  𝑅𝜆   for  𝜆 > 0 ,  𝜌 𝐺 ⊃ (0, ∞) and  𝑅 𝜆, 𝐺  <
1

𝜆
, for  

𝜆 > 0. 

Theorem Hille-Yosida 1.4.11 (Ahmed, 1991)  

 Let  ℌ be a Hilbert space and  𝐺  be a linear, not necessarily bounded, operator on ℌ with  

domain  𝐷(𝐺) and range 𝑅(𝐺) in  ℌ. Then 𝐺 is the infinitesimal generator of a  𝐶𝑜- 

semigroup  of contractions  𝑃𝑡 𝑡≥0 on ℌ  if and only if,  
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(i) 𝐺  is closed,  𝐷(𝐺)) is dense in ℌ. 

(ii) 𝜌 𝐺 ⊃ (0, ∞) and   𝑅 𝜆, 𝐺  <
1

𝜆
, for  𝜆 > 0. 

Definition 1.4.45 

A quantum sub-Markov semigroup, or quantum dynamical semigroup (q.d.s) on a von 

Neumann algebra ℳ, is a one parameter family   𝑃𝑡 𝑡≥0   of linear maps of  ℳ into itself 

satisfying. 

(a) 𝑃𝑡 𝑥 = 𝑥  for all 𝑥 ∈ ℳ. 

(b) Each  𝑃𝑡 .    is completely positive. 

(c) 𝑃𝑡 𝑃𝑠 = 𝑃𝑡+𝑠          for  all  t, s≥ 0.  

(d) 𝑃𝑡 I ≤ I 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 0. 

(e) For each 𝑥 ∈ ℳ, 𝑡𝑒 𝑚𝑎𝑝  𝑡 → 𝑃𝑡(𝑥) is  𝜍-weakly  continuous on ℳ  

(f) 𝑃𝑡  is a normal operator  on ℳ for all 𝑡 ≥ 0,   i.e.  for every increasing net (𝑎𝛼)𝛼  

in ℳ  with  l.u.𝑏 𝑎𝛼 = 𝑎 ∈ ℳ , we have   l.u.𝑏 𝑃𝑡(𝑎𝛼) = 𝑃𝑡(𝑎). 

Definition 1.4.46 

(i) A quantum dynamical semigroup is called a quantum Markov semigroup if 

𝑃𝑡 1 = 1   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 0. 

(ii) A von Neumann subalgebra 𝑝ℳ𝑝 reduces a quantum Markov semigroup 𝑃𝑡  if 

and only if 𝑃𝑡 𝑝 = 𝑝 for all positive t, where 𝑝 is a projection. 

(iii) A dynamical semigroup is said to be irreducible if it is not reduced by any 

proper a von Neumann subalgebra. 
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                                                        CHAPTER   2 

                                              LITERATURE REVIEW 

2.0   Introduction 

In this chapter we discussed the development of noncommutative 𝐿𝑝 -spaces, conditional 

expectations, quantum dynamical semigroups and quantum entanglement. Segal developed 

a noncommutative theory of integration in which the measure is required to be unitarily 

invariant and hence central.  This is an extension of classical 𝐿𝑝 -spaces. We present other 

types of such extensions in this chapter. A noncommutative extension of the theory of 

conditional expectations by Umegaki (1954), together with the notions of the generalized 

conditional expectations developed by Accardi and Cecchini (1982)  is also discussed. 

Conditional expectation is necessary for a formal study of quantum stochastic dynamics for 

spin system on a lattice. We give a brief account of quantum stochastic dynamics and 

quantum entanglement, together with a few related results respectively.   
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2.1   Noncommutative 𝑳𝒑-spaces 

 In 1953, Irving Segal initiated and developed the theory of noncommutative 𝐿𝑝 - spaces for 

a semifinite von Neumann algebra ℳ having a faithful normal semifinite trace 𝜏. He 

defined the noncommutative  𝐿𝑝 − spaces as follows;  

Definition 2.1 

 For a pair  ℳ, 𝜏 , where ℳ  is a semifinite von Neumann algebra together with a faithful 

normal semifinite trace 𝜏 defined on ℳ, let  𝐿1 𝜏  be the space of integrable operators, this 

is a  Banach space of closed, densely defined ( in general unbounded) linear operators on ℌ 

affiliated with ℳ,  the  norm    𝑥 1 = 𝑙𝑢𝑏
 𝑠 ≤1

𝜏 𝑠𝑥 ,   𝑠 ∈ ℳ,  is  called the  𝐿1-norm. The 

collection of all square integrable operators 𝐿2 𝜏    is the Banach space defined by  the set      

           𝐿2 𝜏  = 𝑥 ∈ ℳ ∶   𝑥 2 < ∞ ,   with   the  𝐿2-norm    𝑥 2 = 𝜏  𝑥 2 
1

2 .  . 

For 1≤ 𝑝 < ∞, we have the Banach space of pth- integrable operators defined by the set        

                                              𝐿𝑝 𝜏 =  𝑥 ∈ ℳ ∶   𝑥 𝑝 ∈ 𝐿1 𝜏  ,   

 with the 𝐿𝑝 − norm   𝑥 𝑝 = 𝜏  𝑥 𝑝 
1

𝑝 ,   for  𝑝 = ∞, we  have     𝑥 ∞ =  𝑥 ,   and   

𝐿∞ , 𝜏  is identified with  ℳ. 

Much later, after a decade and half, Nelson (1974) realized a simplified approach to the 

construction of the Segal spaces, this construction is based on Stinespring‟s notion of 

convergence in measure of measurable operators. Yeadon (1974), in his paper on 

noncommutative 𝐿𝑝 −spaces, defined the spaces concretely as spaces of unbounded 

operators.  With the celebrated theory of Tomita –Takesaki, Haagerup (1979),   developed  

𝐿𝑝  -spaces on the cross product von Neumann algebra  ℳ. We have the following:   

Definition 2.2 

Let 𝑅(ℳ, 𝜍𝑡
𝜑

) denote the cross product of ℳ with the modular automorphism group of  𝜑, 
that is the von Neumann algebra acting in 𝐿2(ℝ; ℌ) ⋍ 𝐿2(ℝ) ⊗ ℌ  and generated by the 

operators 𝜋 𝑥 , 𝑥 ∈ ℳ and 𝜆 𝑠 , 𝑠 ∈ ℝ, where 

 𝜋 𝑥 𝜉  𝑡 = 𝜍−𝑡
𝜑  𝑥 𝜉(𝑡)  

 𝜆 𝑠 𝜉 = 𝜉(𝑡 − 𝑠) ,    for  𝜉 ∈ 𝐿2(ℝ; ℌ). 

Denote by (휃𝑠)𝑠∈ℝ the dual action of ℝ on 𝑅 ℳ, 𝜍𝑡
𝜑
  defined by 

휃𝑠 𝜋 𝑥  =  𝜋 𝑥   

휃𝑠 𝜆 𝑠  =  𝑒𝑖𝑠𝑡𝜆 𝑠 .  
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There is a canonical normal faithful semifinite trace 𝜏 on 𝑅 ℳ, 𝜍𝑡
𝜑
  satisfying                   

𝜏 ∘  휃𝑠 =  𝑒−𝑠𝜏. If 𝜙 is a normal weight on ℳ, we denote by 𝜙  the corresponding dual 

weight on 𝑅 ℳ, 𝜍𝑡
𝜑
 . Let 𝜙  be the generalized positive operator satisfying 𝜙 = 𝜏 𝜙 ∙ . 

Then 𝜆 𝑡 = 𝜑
𝑖𝑡 ,  for  𝑡 ∈ ℝ. 

Put  𝑡𝑟 𝜙 = 𝜙(𝐼). 

Denote by ℳ  the algebra of 𝜏- measurable operators associated with 𝑅 ℳ, 𝜍𝑡
𝜑
  equipped 

with the measure topology. An affiliated operator  h is called a 𝜏- measurable operator if its 

domain is 𝜏- dense, i.e ∀𝛿 > 0 ∃𝑃 ∈ ℳ 𝑝𝑟𝑜𝑗 : 𝑃ℌ ⊆ 𝐷  𝑎𝑛𝑑  𝜏 𝐼 − 𝑃 ≤ 𝛿, where ℳ 𝑝𝑟𝑜𝑗  

is the lattice of projections in ℳ . 

The  𝐿𝑝  spaces of Haagerup are defined by  𝐿𝑝(ℳ) =  𝑥 ∈ ℳ : ∀𝑠 ∈ ℝ, 휃𝑠(𝑥) = 𝑒−𝑠 𝑝 𝑥  ,  

𝑝 ∈  1, ∞ ,  with norm    𝑥 𝑝 = 𝑡𝑟( 𝑥 𝑝)
1

𝑝  and  𝑥 ∈ 𝐿𝑝 ℳ . Then                        

𝐿1
+(ℳ) =  𝜙 : 𝜙 ∈ ℳ∗

+    , and  𝐿∞ ℳ = 𝜋 ℳ ⋍  ℳ, with norm   𝑥 ∞ . 

The Haagerup 𝐿𝑝  -space has application in the general description of dynamics of infinite 

quantum systems. 

Trunov (1979), studied the Segal space and extended it to the 𝐿𝑝 −spaces of bilinear forms 

using the representation of a faithful normal state 𝜑, that is, 𝜑 𝑥 = 𝜏 𝑥. 𝜑 = 𝜏 𝜑𝑥 ,  

𝑥 ∈ ℳ, where  𝜑 ≥ 0 is a uniquely determined nonsingular self-adjoint operator in  𝐿1 𝜏 . 

For 𝑥 ∈ ℳ  and  1 ≤ 𝑝 < ∞ ,we have   𝜑

1

2𝑝 . 𝑥. 𝜑

1

2𝑝 ∈ 𝐿𝑝(𝜏), where 𝐿𝑝(𝜏) is the Segal     

𝐿𝑝 − space. We have the following; 

Definition 2.3 

 For each  1 ≤ 𝑝 < ∞   let the function,     

                   𝑥 →  𝑥 𝐿𝑝 (𝜑) = 𝜏   𝜑

1

2𝑝 . 𝑥. 𝜑

1

2𝑝  

𝑝

 

1 𝑝 

    

be  defined on ℳ, and   write  𝑥 ∞ =  𝑥  , 𝑥 ∈ ℳ. 

Remark 2.1 

This mapping 𝑥 →  𝑥 𝑝  does not depend on the choice of the faithful normal semi-finite 

trace 𝜏 and is a norm on ℳ.   

Trunov then applies the Tomita-Takesaki theory of modular Hilbert algebras to define his 

functional  𝛾 𝑥 ∈ ℳ∗ that is, the canonical embedding  𝛾: ℳ → ℳ∗  determined by the 

state 𝜑, for each 𝑥 ∈ ℳ, the functional  𝛾 𝑥 ∈ ℳ∗ is defined by the equation  
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 𝛾 𝑥 𝑦 =  𝐽𝜋(𝑦)∗𝐽𝑥 , 1    ,   𝑦 ∈ ℳ.  The mapping 𝛾 is a positive linear bijection of ℳ onto 

a dense subset of the space ℳ∗, for any  𝑥, 𝑦 ∈ ℳ, where  𝜋: ℳ → ℬ(ℌ) is defined  by 

𝜋 𝑥 𝑦 = 𝑥𝑦 , 𝑥, 𝑦 ∈ ℳ, is a faithful normal  ∗ −representation of ℳ induced by 𝜑 and J  is 

an antilinear isometry on  ℌ.   

Remark 2.2 

From the above definition we see that for 𝑥, 𝑦 ∈ ℳ 

   𝛾 𝑥 𝑦 = 𝜏  𝜑

1

2 . 𝑥. 𝜑

1

2  𝑦  ,         

and      𝑥 𝐿1 𝜑 =  𝛾 𝑥  = 𝜏  𝜑

1

2 . 𝑥. 𝜑

1

2  ,      with     𝐿1 𝜑 =  𝑥 ∈ ℳ:  𝑥 1 < ∞ . 

The inner product of the 𝐿2 𝜑   space is given by                                                                      

 𝑥, 𝑦  = 𝜏   𝜑

1

4 . 𝑦. 𝜑

1

4  

∗

  𝜑

1

4 . 𝑥. 𝜑

1

4      

   and the norm is given by 

 𝑥 2 = 𝜏   𝜑

1

4 . 𝑥. 𝜑

1

4  

∗

  𝜑

1

4 . 𝑥. 𝜑

1

4   

1

2

,      𝐿2 𝜑 =  𝑥 ∈ ℳ:  𝑥 2 < ∞  

Corollary 2.1     

If  1 ≤ 𝑝 < 𝑞 ≤ ∞, 𝑡𝑒𝑛  𝐿𝑞 𝜑 ⊂ 𝐿𝑝 𝜑 𝑎𝑛𝑑  𝑎 𝑝 ≤  𝑎 𝑞 . 

 𝑎 ∈ 𝐿𝑞 𝜑 . 

 Kosaki (1981) gave a construction using an injective map of  ℳ the von Neumann algebra 

into its predual ℳ* ,  that is,  𝑥 → 𝑥. 𝜑  and then applied the theory of complex interpolation 

spaces. In the same paper Kosaki showed that the spaces he constructed are isomorphic to 

the Haagerup spaces.  Terp (1981) studied the interpolation spaces between the von 

Neumann algebra ℳ and its predual  ℳ*.  Tikhonov (1982), constructed 𝐿𝑃  spaces with 

respect to a weight on a von Neumann algebra.  Zolotarev (1982) studied the 𝐿𝑝  spaces of 

Trunov and used the idea of Kosaki to give a construction of  𝐿𝑝 -spaces with respect to a 

state over a semifinite von   Neumann algebra.  
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2.2  Conditional Expectations 

The notion of conditional expectation was first extended to the noncommutative case by 

Umegaki (1954). In his extensive work, he showed the existence of a conditional 

expectation when the von Neumann algebra has a faithful normal tracial state 𝜏 .He stated 

the properties as follows. 

Theorem 2.1 (Umegaki, 1954) 

 Let ℳ be a von Neumann algebra and ℳ1 a von Neumann subalgebra of ℳ.  

 The    mapping     𝑥 ∈ ℳ → 𝐸(𝑥) ∈ ℳ1,     have the following properties: 

(i) 𝐸 𝛼𝑥 + 𝛽𝑦 = 𝛼E 𝑥 + 𝛽E 𝑦 ,       𝛼, 𝛽 ∈ ℂ  𝑎𝑛𝑑 𝑥, 𝑦 ∈ ℳ 

(ii) 𝑥 ≥ 0   ⇒   E(𝑥) ≥ 0,                                 𝑥 ∈ ℳ 

(iii)𝑥 ≥ 0  𝑎𝑛𝑑 E 𝑥 = 0    𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑥 = 0,      𝑥 ∈ ℳ 

(iv)  𝐸(𝑥) ≤  𝑥 ,                                            𝑥 ∈ ℳ 

(vii) E(𝑥)∗E 𝑥 ≤ E 𝑥∗𝑥 ,                                𝑥 ∈ ℳ 

      (viii)E E 𝑥 𝑦 = E 𝑥E 𝑦  = E 𝑥 E(𝑦),     with  𝑥, 𝑦 ∈ ℳ 

     (ix)  If  𝑥𝑖  weakly strongly to 𝑥,   𝑥𝑖 ↗ 𝑥     implies that E(𝑥𝑖) converges weakly to E(𝑥)   

that   is   E(𝑥𝑖)  ↗   E(𝑥). 𝐸(𝑥)   is strongly and weakly continuous on the unit sphere of ℳ.  

    (x)   E 𝑥𝑦 = E(𝑦𝑥)   for         𝑥 ∈ 𝐿1 ℳ      𝑦 ∈ ℳ1
′ ∩ ℳ    

     (xi) 𝜏 𝑥𝐸 y  = 𝜏(E 𝑥 y) ,        𝜏 is a faithful normal tracial state.  

On the other hand, Tomiyama(1957) showed that each projection of norm one of a 𝐶∗ 

algebra onto its 𝐶∗  subalgebra has  most of the properties of a conditional expectation 

stated as follows: 

Theorem 2.2  (Tomiyama,1957)   

Let 𝒜 be a C* algebra with a unit and ℬ  a   C* subalgebra of 𝒜.If 𝑃 is a projection of 

norm one from ℳ onto 𝒩, then 

(i) 𝑥 ≥ 0   ⇒   𝑃 𝑥 ≥ 0,            𝑥 ∈ 𝒜 

(ii) 𝑃  𝑎𝑥𝑏  = 𝑎𝑃 𝑥 𝑏,         𝑥 ∈ 𝒜       𝑎, 𝑏 ∈ ℬ     

(iii) 𝑃(𝑥∗)𝑃(𝑥) ≤ 𝑃(𝑥∗𝑥),            𝑥 ∈ 𝒜 
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(iv)     𝑃(𝑥∗) = 𝑃(𝑥)∗,                    𝑥 ∈ 𝒜 

The theory of conditional expectations developed by Umegaki depends on the existence of 

tracial states and hence is not applicable to von Neumann algebras of type III.  Takesaki 

(1971) gave the necessary and sufficient conditions for the existence of conditional 

expectations that are characterized  as projections of norm one. His version of proof uses 

the modular algebra developed by himself and Tomita in 1970.   His fundamental result is, 

Theorem 2.3 (Takesaki, 1971) 

Let ℳ be a von Neumann algebra, 𝜑  a faithful normal semifinite weight on ℳ+, and  𝒩 

be a von Neumann subalgebra  of ℳ on which 𝜑/𝒩 = 𝜑   is a semifinite weight. Then the 

following two statements are equivalent: 

(i)  𝒩 is invariant under the modular automorphism group 𝜍𝑡  associated with 𝜑 .   

(ii)       There exists a   𝜍 − 𝑤𝑒𝑎𝑘𝑙𝑦 continuous faithful projection 𝐸  of norm one from ℳ 

onto   𝒩 such that       𝜑  𝑥 = 𝜑 ∘ 𝐸 𝑥 ,    ∀ 𝑥 ∈ 𝑚𝜑 .  

 where  𝑚𝜑  is a self adjoint  sub algebra of ℳ. 

The projection 𝐸 of norm one of  ℳ onto 𝒩 is called the conditional expectation of ℳ 

onto 𝒩 with respect to 𝜑. The conditional expectation 𝐸 of  ℳ onto  𝒩 with respect to  𝜑 

is also determined by      𝜑 𝑥∗𝑦𝑧 = 𝜑  (𝑥∗𝐸 𝑦 𝑧 ),    𝑥, 𝑧 ∈ 𝑚𝜑  ∩ 𝒩,   𝑦 ∈ ℳ. 

with the following properties; 

i. 𝐸(𝑥∗𝑥) ≥ 0                          𝑥 ∈ ℳ  

ii. 𝐸  𝑎𝑥𝑏  = 𝑎𝐸 𝑥 𝑏              𝑎, 𝑏 ∈ 𝒩𝑎𝑛𝑑 𝑥 ∈ ℳ 

iii. 𝐸(𝑥∗)𝐸(𝑥) ≤ 𝐸(𝑥∗𝑥)            𝑥 ∈ ℳ. 

He gave the form of the conditional expectation as follows: 

                                    𝐸 𝑥 = 𝜋𝒩
−1(𝑃𝜋ℳ(𝑥) 𝑃),          𝑥 ∈ ℳ,                                     

where 𝜋𝑀  (resp., 𝜋𝑁) is the isomorphism of ℳ(resp., 𝒩) onto the left von Neumann 

algebra 𝔏 𝔘  of 𝔘 (resp., the left von Neumann algebra 𝔏 𝔅  of  𝔅). 

The result of Takesaki was  independently proved by Golodez (1972) .   

It was observed that for questions in the theory of quantum stochastic process, the 

characterization of conditional expectation as projections was inadequate, because for a 

general von Neumann algebra, a normal faithful norm one projection with those properties 
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described by Umegaki rarely exists. Accardi and Cecchini (1982) constructed a conditional 

expectation that always exist. This conditional expectation known as the generalized 

conditional expectation is no longer a projection. The form is given by, 

                                          𝐸 𝑥 = 𝑈∗𝑥𝑈,                           𝑥 ∈ ℳ                         

 where U is a  partial isometry from the Hilbert space ℌ of ℳ into the Hilbert space  𝒦 of 

𝒩. 

Theorem  2.4 (Accardi and Cecchini, 1982) 

Let ℳ , 𝒩 be von Neumann algebras with   𝒩 ⊆ ℳ and let 𝜑 be a faithful normal 

semifinite weight on  ℳ+ whose restriction 𝜑0 on 𝒩+ is semifinite. Let 𝔘 ⊇ 𝔅  be the 

achieved generalized Hilbert algebras with completion  ℌ , 𝒦, associated to ℳ, 𝜑 and 

𝒩, 𝜑0 respectively: Let 𝐽𝔘  ,   𝐽𝔅 be the corresponding conjugation operators called the 

Tomita involutions and  𝑃 the orthogonal projection from ℌ onto  𝒦. Then the map 

                  𝑎 ∈ 𝔘 ⟶ 𝜋0
−1 𝐽𝔅  

𝑃 𝐽𝒰  𝜋 𝑎 𝐽𝒰  𝐽𝔅𝑃 ∈ 𝔅                                               

is  well defined and extends to a faithful normal completely positive identity preserving 

map satisfying  𝜑 𝑚 = 𝜑0 𝐸 𝑚  ;   𝜑 𝑚 < ∞;        𝑚 ∈ ℳ+ 
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2.3   Quantum Dynamical Semigroups 

 Lindblad (1976) gave the first complete characterization of the infinitesimal generators of 

quantum dynamical semigroups. He assumed the following axioms. 

Let  ℳ be a von Neumann algebra, a quantum dynamical semigroup  𝑃𝑡 𝑡≥0 is a one 

parameter family of maps of ℳ into itself satisfying: 

(i) 𝑃𝑡   is positive    

(ii) 𝑃𝑡 1 = 1  

(iii) 𝑃𝑠 . 𝑃𝑡 = 𝑃𝑠+𝑡       

(iv) 𝑙𝑖𝑚𝑡↓0 𝑃𝑡 − 𝐼 = 0  

(v)𝑃𝑡=𝑒𝑡ℒ 

(vi) 𝑙𝑖𝑚𝑡↓0 ℒ − 𝑡−1 𝑃𝑡 − 𝐼  = 0 

(vii) ℒ is ultraweakly continuous. 

 The form of the infinitesimal generator of quantum dynamical semigroup is given by       

                                   ℒ 𝑥 = 𝜓 𝑥 −
1

2
 𝜓 𝐼 , 𝑥 + 𝑖 𝐻, 𝑥 ,   

 where  𝜓 is a completely positive map.  

 

 

We collect some results on quantum dynamical semigroups. 

Definition 2.4 (Lindblad,1976) 

 A bounded map ℒ: ℳ → ℳ satisfying the following properties; 

i. ℒ 1 = 0, 

ii. ℒ 𝑥∗ = ℒ(𝑥)∗    ∀   𝑥 ∈ ℳ and  

iii. ℒ𝑛 𝑥∗𝑦 − ℒ𝑛 𝑥∗ 𝑦 − 𝑥∗ℒ𝑛 𝑦 ≥ 0,        ∀  𝑥 ∈ 𝑀𝑛(ℳ) 

 is said to be completely dissipative, where ℒ𝑛 =  ℒ ⊗ 𝐼𝑛  and 𝐼𝑛   the 𝑛 × 𝑛 identity matrix. 

Theorem 2.5 (Lindblad, 1976) 
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If ℒ  a bounded map on ℳ into ℳ  is a generator of the semigroup 𝑃𝑡 = 𝑒𝑡ℒ, then the 

semigroup 𝑃𝑡  is a completely positive map on ℳ. And  𝑃𝑡 1 = 1  if and only if  ℒ is  

completely dissipative. 

Theorem 2.6 (Lindblad, 1976) 

ℒ is completely dissipative if and only if it is of the form  

 ℒ 𝑥 =   𝑉𝑗
∗𝑥𝑉𝑗 −

1

2
 𝑉𝑗

∗𝑉𝑗 , 𝑥  𝑗 + 𝑖[𝐻, 𝑥], where 𝑉𝑗 ,  𝑉𝑗
∗𝑉𝑗 ∈ ℬ(ℌ), where 𝐻 is a self-

adjoint operator in ℬ(ℌ) and  𝑉𝑗  is a bounded linear operator on ℌ  

 

 

Theorem 2.7 ( Evans, 1976) 

Let 𝒜 be a C* algebra and 𝑒𝑡ℒ  a strongly continuous one parameter semigroup of positive 

maps on 𝒜 such that  

(i) D(ℒ) is a subalgebra of  𝒜 

(ii) ℒ 𝑥∗𝑥 − 𝑥∗ℒ 𝑥 − ℒ 𝑥 ∗𝑥 ≥ 0   , ∀  𝑥 ∈ 𝐷(ℒ) 

then   𝑒𝑡ℒ 𝑥∗𝑥 ≥ 𝑒𝑡ℒ 𝑥∗ 𝑒𝑡ℒ 𝑥 ,    ∀ 𝑥 ∈ 𝒜, 𝑡 > 0. 

 Evans (1976) studied the irreducible ergodic properties of dynamical semigroups with 

Lindblad-type generators with particular reference to locally completely positive maps, that 

is those maps 𝜑 satisfying the Kadison-Schwarz inequality, defined formally as follows  

                                   𝜑 𝑥∗𝑥 ≥ 𝜑 𝑥 ∗ 𝜑 𝑥 ,   ∀ 𝑥 ∈  𝒜.  

In that paper, Evans, showed that a dynamical semigroup of locally completely positive 

maps on a von Neumann  algebra is irreducible if and only if the largest  von Neumann 

algebra in the fixed point set  is trivial.  

Theorem 2.8 (Evans,1976) 

Let  𝑃𝑡 𝑡≥0 be a dynamical semigroup of locally completely positive maps on a  von 

Neumann algebra ℳ. Then 

(i) The set  𝑥 ∈ ℳ: 𝑃𝑡 𝑥
∗𝑥 = 𝑥∗𝑥, 𝑃𝑡 𝑥 = 𝑥    is a weakly closed subalgebra of 

ℳ. 

(ii) The  von Neumann subalgebra 𝑝ℳ𝑝 reduces  𝑃𝑡  if and only if  
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 𝑃𝑡 𝑦𝑝 = 𝑃𝑡 𝑦 𝑝  for all positive  𝑡, 𝑎𝑛𝑑 𝑦 ∈ ℳ, where 𝑝 is a projection in ℳ. 

(iii) 𝑃𝑡  is irreducible if and only if  the set of fixed points 

 ℳ 𝑇 =  𝑥 ∈ ℳ:  𝑃𝑡 𝑥 = 𝑥    ∀𝑡 ≥ 0  consist of  scalars.  

Frigerio (1977) derived the equivalence between irreducibility and the uniqueness of the 

equilibrium state. He gave a sufficient condition for approach to equilibrium. Frigerio 

investigation is restricted to the class of dynamical semigroups possessing a faithful normal 

stationary state.  

Theorem 2.9 (Frigerio, 1978) 

Let  𝑃𝑡 𝑡≥0 𝑏𝑒 a dynamical semigroup of a von Neumann algebra ℳ with a faithful normal 

stationary state 𝜓, then there exists a unique 𝑃𝑡  –invariant normal conditional expectation   

𝐸: ℳ → ℳ 𝑇     defined by    𝐸 𝑥 = 𝑤∗ − lim𝜆→0 𝜆 ∫ 𝑑𝑡𝑒−𝜆𝑡∞

0
𝑃𝑡(𝑥)  ,  𝑥 ∈ ℳ, 

where ℳ 𝑇  is the fixed point set of 𝑃𝑡  which is also a von Neumann  subalgebra of ℳ. 

Theorem 2.10 (Frigerio,1978)  

A state  𝜑 ∈ ℳ∗ is  𝑃𝑡  -invariant and majorized by a scalar multiple of 𝜓  if and only if it is 

of the form  𝜑 𝑥 = 𝜓 𝑦 −1(𝐽𝑦Ω, 𝑥Ω ), for some positive 𝑦 ∈ ℳ 𝑇 , 𝐽 being an 

antiunitary involution on ℌ ,such that  𝐽Ω = Ω  ,  𝐽ℳ𝐽 = ℳ ′ . 

Christensen (1978) showed that any generator of a norm continuous semigroup of 

completely positive normal maps on a von Neumann ℳ can be decomposed in the 

following theorem: 

Theorem 2.11 (Christensen, 1978) 

Let  𝑃𝑡 𝑡≥0 be a  uniformly continuous semigroup of completely normal maps on a von 

Neumann algebra ℳ acting on a Hilbert space ℌ.  Then there exist an 𝑥 ∈ ℬ(ℌ) and a 

completely positive normal map  𝜓: ℳ ⟶ ℬ(ℌ) such that the generator ℒ of  𝑃𝑡  has the 

form                                   ℒ 𝑚 = 𝜓 𝑚 + 𝑥∗ 𝑚 + 𝑚𝑥,      𝑚 ∈ ℳ.   

 

Theorem 2.12 ( Majewski and Zegarlinski ,1996) 

Suppose    𝜕𝑋𝛾𝑋+𝑗   < 𝛼𝑒−𝑀𝑑(𝑘 ,𝑗 ), with some positive constants 𝑀, 𝛼 and a metric 𝑑, then 

the infinite volume stochastic dynamics 𝑃𝑡
𝑋 = 𝑒𝑡ℒ𝑋

 is well defined. Moreover the 

semigroup 𝑃𝑡
𝑋  is strongly ergodic in the sense that there is a unique  𝑃𝑡

𝑋- invariant state 𝜓 

for which we have      𝑃𝑡
𝑋𝑓 − 𝜓𝑓 ≤ 2𝑒−𝑚𝑡   𝜕𝑗 𝑓 𝑗∈ℤ𝑑  

with some 𝑚 > 0 and   𝜕𝑗 𝑓 ≡ 𝑓 − 𝑇𝑟𝑗𝑓. 
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 Another approach of constructing stochastic dynamics using Dirichlet forms was 

considered in (Cipriani, et al., 2000). 

 

 

2.4   Quantum Entanglement  

 Quantum entanglement is a possible property of a quantum mechanical state of a system  

of two or more objects in which the quantum states of the constituting objects are linked 

together so that one object can no longer be adequately described without full mention  

of its counterpart even though the individual objects are  spatially separated.  

Definition 2.5 

Suppose there are two noninteracting systems 𝐴 and 𝐵, with states 𝜑𝐴 , 𝜑𝐵 and Hilbert 

spaces ℌ𝐴  ,ℌ𝐵 respectively. Let ℌ  be the Hilbert space of the composite system given by 

ℌ = ℌ𝐴  ⊗ℌ𝐵 . Then any state of the composite system that cannot be cast into the form                 

𝜑 =  𝑃𝑖𝑖 (𝜑𝐴 ⊗  𝜑𝐵)   will be called entangled, where 𝑃𝑖  is a projection.  

In 1964 John Bell showed that quantum entangled systems are systems correlated in a 

way that classical  systems cannot. The fundamental question in quantum entanglement 

theory is, which states are entangled and which are not. This question is not trivial. The  

simplest is the case of pure bipartite states. Peres (1996) stated the condition for separable 

states for continuous variables  of two harmonic oscillators. The condition for separable 

states was discovered  independently  by Simon (Horodecki, etal.,  2007). 

 However our understanding of mixed state entanglement is much less complete and  most  

proven results are restricted to situations where the constituents parts   are quantum two 

 level systems. Studies on various aspects of entanglement have been carried out by   

several  authors  in (Li ,etal 2008),  (Paratharasthy,2004),(Peres,1996) to mention a  few. 
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                                                               CHAPTER 3  

                                     NONCOMMUTATIVE LP –SPACES   AND  

FINITE VOLUME QUANTUM STOCHASTIC DYNAMICS  

3.0    Introduction 

 In this chapter a noncommutative 𝐿𝑝 -spaces over a von Neumann algebra involving 

operators of the form  𝜌n
𝛼(𝑡)

. 𝜌n
𝛼(𝑡)

 is defined. We give a formulation on how such operators 

are realized. To get a nontrivial analogue of classical stochastic dynamics, we consider a 

quantum generalization of conditional expectation as was done in Majewski and 

Zegarlinski (1996). We define and state the properties of the generalized conditional 

expectation   𝐸𝑋 ,Λ .  The generator ℒ𝑋 ,Λ  of the finite volume quantum stochastic dynamics 

on a finite set 𝑋 ⊆ Λ, is defined with respect to the map 𝐸𝑋 ,Λ   and is of the form  

                                              ℒΛ ,𝑋(. ) = 𝐸𝑋 ,Λ .  −
1

2
 𝐸𝑋,Λ 𝐼 , .   . 

 To have a dynamics that describes irreversible processes like dissipation, we proceed as 

follows,  let  𝑋 + 𝒋   be  a translate of the set 𝑋 by a vector 𝒋 ∈ ℤ𝑑  ,  the generator  for a  

finite volume quantum stochastic dynamics for spin systems is defined as a self adjoint  

operator  ℒ𝑋,Λ =  ℒΛ ,𝑋+𝒋𝒋∈Λ  , such that the  infinite sum converges  for  𝑋 ⊆ Λ. Then    the 

corresponding finite volume stochastic dynamics for spins systems is defined as  

  𝑃𝑡
𝑋 ,Λ = 𝑒𝑡ℒ𝑋 ,Λ

. 

 

3.1     Quasilocal von Neumann Algebra and Non Commutative LP –Spaces 

In this section the operators of the form  𝜌n
𝛼(𝑡)

. 𝜌n
𝛼(𝑡)

 are defined, they constitute the 

elements of a von Neumann algebra  ℳ0 . This will be made clear   in the   following:    

Let ℳ be a von Neumann algebra and  𝜌 a closed positive self adjoint operator affiliated to 

ℳ.  Let  𝑒  be a projection on the Hilbert space ℌ such that  𝑒𝜌 ⊂ 𝜌𝑒  and  𝜌𝑒   is a positive 

bounded everywhere –defined operator on ℌ, we say that  𝑒 is a bounding projection for 𝜌 . 
Now let  𝑒𝑛  be an increasing sequence of projections each of which is bounding for 𝜌 and 

 𝑒𝑛 = 𝐼∞
𝑛=1 , we say that   𝑒𝑛  is a bounding sequence for  𝜌 and  𝜌𝑒𝑛  is a positive bounded 

everywhere –defined operator on  ℌ. (Kadison and Ringrose, 1983).  Let  𝜌𝑒𝑛  considered as 

a bounded operator  be denoted  by  𝜌𝑛   and its‟  spectrum by 𝑠𝑝 𝜌𝑛 .  Let 𝐶 𝑠𝑝 𝜌𝑛    be 

the space of all continuous real valued functions on 𝑠𝑝 𝜌𝑛  and let ℬ(ℌ)+ be the set of 

positive operators in ℬ ℌ .  Using functional calculus ,we introduce the operator 𝜌𝑛
𝑎  in  

ℬ(ℌ)+ for 𝑎 ∈ ℝ+ as follows;  Let   𝑓𝑎 ∈ 𝐶 𝑠𝑝 𝜌𝑛    be defined   by  𝑓𝑎 𝑠 = 𝑠𝑎  ,     

𝑠 ∈ 𝑠𝑝 𝜌𝑛 . With  𝜌𝑛
𝑎   define  as  𝑓𝑎 𝜌𝑛  for real values of  𝑎.  
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Thus                                            𝑓𝑎 𝜌𝑛 = 𝜌𝑛
𝑎   ∈ ℬ(ℌ)+ .  

  Replace  𝑎 ∈ ℝ+ with a positive   real-valued function 𝛼(𝑡) on the closed interval   [0,1]  

such that  0 ≤ 𝛼(𝑡) ≤
1

2
 , thus we  have,   

                                            𝑓𝛼(𝑡) 𝜌𝑛 = 𝜌𝑛
𝛼(𝑡)

∈ ℬ(ℌ)+. 

Remark:  Note in particular, 𝛼(𝑡) on [0,1] can be defined as    𝛼 𝑡 =
1−𝑡

2
 , for 𝑡 ∈  0,1 . 

 For a self-adjoint operator  𝑥 ∈ ℳ,  let   𝑥. 𝜌𝑛
𝛼(𝑡)

: 𝑥 ∈ ℳ, 𝜌𝑛
𝛼(𝑡)

∈ ℬ(ℌ)+   be the set of 

strong product of bounded operators on  ℌ, this is a *-algebra when  endowed with the 

operations of sum, product and involution defined as follows, 

                           𝑥. 𝜌𝑛
𝛼(𝑡)

+ 𝑦. 𝜌𝑛
𝛼(𝑡)

=  𝑥 + 𝑦 . 𝜌𝑛
𝛼 𝑡 ,               𝑥 + 𝑦 ∈ ℳ  

                          𝑥. 𝜌𝑛
𝛼(𝑡)

  𝑦. 𝜌𝑛
𝛼(𝑡)

 =  𝑥. 𝑦 . 𝜌𝑛
𝛼(𝑡)

,                    𝑥. 𝑦 ∈ ℳ  

                                        𝑥. 𝜌𝑛
𝛼(𝑡)

 
∗

= 𝑥∗. 𝜌𝑛
𝛼(𝑡)

,                           𝑥∗ ∈ ℳ  

for  𝑥, 𝑦 ∈ ℳ  and  𝜌𝑛
𝛼 𝑡 ∈ ℬ ℌ +, then the set   𝑥. 𝜌𝑛

𝛼(𝑡)
: 𝑥 ∈ ℳ     is clearly a                          

*- subalgebra of ℬ ℌ . Denoting the strong product   𝑥. 𝜌𝑛
𝛼 𝑡 

 by  𝑥   and the set by  ℳ ,  we 

have 

                     ℳ =  𝑥 ∶  𝑥. 𝜌𝑛
𝛼(𝑡)

= 𝑥 ,   𝑥 ∈ ℳ , 𝜌𝑛
𝛼(𝑡)

∈ ℬ(ℌ)+ ,  

𝑥   is a strong product of bounded operators on ℌ and is of the form   𝜌𝑛
𝛼(𝑡)

. 𝑥. 𝜌𝑛
𝛼(𝑡)

.  

This is given by the following:    

           𝜌𝑛
𝛼(𝑡)

𝑥. 𝜌𝑛
𝛼(𝑡)

=  1. 𝜌𝑛
𝛼(𝑡)

  𝑥. 𝜌𝑛
𝛼(𝑡)

 =  1𝑥 . 𝜌𝑛
𝛼 𝑡 = 𝑥. 𝜌𝑛

𝛼 𝑡 =  𝑥  ∈ ℳ  

 This   expression of  𝑥   implied that 𝑥  “commute” with  𝜌𝑛
𝛼(𝑡)

, this given by the following, 

                𝜌𝑛
𝛼 𝑡 . 𝑥 = 𝜌𝑛

𝛼 𝑡 .  𝑥. 𝜌𝑛
𝛼 𝑡  =  𝐼. 𝜌𝑛

𝛼 𝑡  .  𝑥. 𝜌𝑛
𝛼 𝑡     
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                                                            =  𝐼. 𝑥 . 𝜌𝑛
𝛼 𝑡 

  

                                                              =  𝑥. 𝐼 . 𝜌𝑛
𝛼 𝑡 

 =  𝑥. 𝜌𝑛
𝛼(𝑡)

  𝐼. 𝜌𝑛
𝛼(𝑡)

 = 𝑥 . 𝜌𝑛
𝛼(𝑡)

 . 

The product   𝜌𝑛
𝛼(𝑡)

𝑥. 𝜌𝑛
𝛼(𝑡)

 is also self-adjoint, that is   

𝑥 ∗ =   𝜌𝑛
𝛼 𝑡 𝑥. 𝜌𝑛

𝛼 𝑡  
∗

=  𝑥. 𝜌𝑛
𝛼 𝑡  

∗

𝜌𝑛
𝛼 𝑡 = 𝜌𝑛

𝛼 𝑡 𝑥∗. 𝜌𝑛
𝛼 𝑡 = 𝑥∗. 𝜌𝑛

𝛼 𝑡 = 𝑥. 𝜌𝑛
𝛼 𝑡 = 𝑥                                                                                          

since 𝑥 and 𝜌𝑛
𝛼(𝑡)

are assumed to be self-adjoint. 

The set ℳ  is strongly closed, to see this, consider the net   𝑥 𝑖 ⊂ ℳ  , if the net  𝑥𝑖 ⊂ ℳ  

converges strongly to 𝑥, then  the net  𝑥 𝑖 = 𝑥𝑖  𝜌𝑛
𝛼 𝑡 

  converges strongly to 𝑥 = 𝑥𝜌𝑛
𝛼 𝑡 . 

Thus for 𝜉 ∈ ℌ,  we  have 

lim𝑖 (𝑥 − 𝑥 𝑖)𝜉 = lim𝑖  𝑥 − 𝑥𝑖 𝜌𝑛
𝛼 𝑡 𝜉 ≤ lim𝑖  𝑥 − 𝑥𝑖 𝜉  𝜌𝑛

𝛼 𝑡 𝜉 → 0 , 

hence   ℳ  is strongly closed and hence weakly closed  since any strongly convergent 

sequence  𝑥𝑖  in ℳ, is also weakly convergent. Thus  ℳ   is a unital weakly closed *- 

subalgebra of ℬ ℌ   hence a von Neumann algebra. 

Now let  ℤ𝑑 , 𝑑 ≥ 1 be the 𝑑 -dimensional lattice, whose sites are occupied by spin- 
1

2
  

particles. One associates with each point 𝒋 = (𝑗1, 𝑗2, … . 𝑗𝑑) ∈ ℤ𝑑   a Hilbert space ℌ 𝒋  and 

with each finite subset Λ ⊂ ℤ𝑑   the tensor product space   ℌΛ = ℌ 𝒋 𝒋∈Λ
⊗

. The self-adjoint 

operators at site 𝒋 = (𝑗1, 𝑗2, … . 𝑗𝑑) ∈ ℤ𝑑  are elements of the point algebra  ℳ  𝒋 . The von 

Neumann algebra ℳ  𝒋   is isomorphic to a    2 × 2  matrix   algebra   ℳ2(ℂ). The algebra 

of self-adjoint operators localized to a finite region  Λ ⊂ ℤ𝑑 ,  defined by  ℳΛ = ℳ  𝒋 𝒋∈Λ
⊗ ,  is 

then the full matrix  algebra ℳ2 Λ   ℂ . Let  ℱ be the set of all  finite subsets of ℤ𝑑  ordered 

by inclusion, and let Λ1, Λ2 ∈ ℱ be two disjoint finite regions, that  is   Λ1 ∩  Λ2 = ∅.  Then 

ℌΛ1∪ Λ2
=  ℌΛ1

⊗ ℌ Λ2
 , and  we write  ℳΛ1∪ Λ2

= ℳΛ1
⊗   ℳΛ 2

  for the matrix algebra. 

 ℳΛ1
 is isomorphic to the matrix   subalgebra ℳΛ1

⊗  𝐼 Λ2
  of ℳΛ1∪ Λ2

 ,where 𝐼 Λ2
 denotes 

the identity on  ℌ Λ2
 . Identifying  ℳΛ1

 and ℳΛ1
⊗  𝐼 Λ2

  one concludes that the algebra 

 ℳΛ Λ∈ℱ  form an increasing family of matrix algebras, whose union  ℳΛΛ∈ℱ  is a normed 

*-algebra, which is incomplete because ℤ𝑑  is infinite. The norm closure  

  ℳΛΛ∈ℱ 
              

= ℳ0   is a quasilocal von Neumann algebra (Bratteli and Robinson, 1979). 
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We  have the following definitions for the lattice. 

Definition: 3.1.1 (interaction) 

An interaction Φ is defined as a function from the finite subsets  X ⊂ ℤ𝑑  into the self 

adjoint elements of ℳ0 such that  Φ(X) ∈ ℳ X  . Each Φ(X) represents the energy of 

interaction of the set of all particles in the finite subset   X.   In a spin system the particles 

are considered to be fixed at the lattice sites and hence the total energy of interaction in a 

subset  Λ consists of the interaction energy of all the subsystems. This total energy is 

defined to be the Hamiltonian   𝐻Φ(Λ)  associated with Λ.  

Explicitly  𝐻Φ Λ =  Φ(X)X⊆Λ  , where   𝐻Φ Λ    is a self-adjoint element of ℳΛ . 

 

 

 

 

Definition: 3.1.2(metric) 

The metric on the lattice ℤ𝑑  is defined by        𝑑 𝒍, 𝒌 = max𝑞=1,2,…𝑑  𝑙𝑞 − 𝑘𝑞   ,    

for the vectors  𝒍 =  𝑙1, 𝑙2 … 𝑙𝑑 ,   𝒌 = (𝑘1, 𝑘2, … . 𝑘𝑑) ∈ ℤ𝑑  , and  for the coordinates we 

have     𝑑 𝑙1, 𝑘1 =  𝑙1 − 𝑘1  .This induces the lexicographic order on ℤ𝑑  ,for any integers  

𝑚 ≥ 𝑛 ⇒   𝑑 𝑙𝑚 , 𝑘1 ≥ 𝑑 𝑙𝑛 , 𝑘1 . 

Definition: 3.1.3 

If  ℤ𝑑  is equipped with a metric 𝑑(.  , . ) then, we say  ℤ𝑑  is homogeneous, if the metric has 

the following two properties;  

 (i)  𝑑(𝒋 , 𝒌) ≥ 1 for all  𝒋 , 𝒌 ∈ ℤ𝑑 .  

(ii) For each 𝑟 ≥ 1 there is at most a finite number 𝑁𝑟  of points 𝑘  with 𝑑(𝒋 , 𝒌) ≤ 𝑟  

uniformly for  𝒋 ∈ ℤ𝑑 . 

Definition:  3.1.4 

An interaction Φ is defined to have a finite range if there exists a metric   𝑑Φ ≥ 1  such that  

Φ X = 0 whenever   𝐷 𝑋 = 𝑑(𝒋, 𝒌) >𝒋,𝒌∈𝑋
𝑠𝑢𝑝 𝑑Φ ,   where  𝐷 𝑋  is the diameter of the 

finite set 𝑋. The minimum possible value of  𝑑Φ  is called the range of  Φ and there is no 

mutual interaction between particles whose separation is greater than this range. 
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Definition:3.1.5  (van Hove limit) (Robinson And Ruelle,1967) 

Let Λ ⊂ ℤ𝑑  be a bounded open set, i.e, a finite set. If  𝒋 = (𝑗1, 𝑗2, … . 𝑗𝑑) ∈ ℤ𝑑  with 

 𝑗𝑖 > 0,  we define Λ(𝒋) as the parallelepiped with edges of length  𝑗𝑖 − 1: 

                              Λ(𝒋) =  𝒌 ∈ ℤ𝑑 : 0 ≤ 𝑘𝑖 ≤ 𝑗𝑖 , 𝑓𝑜𝑟  𝑖 = 1, . … 𝑑 .  

The translates  Λ𝒏 =  Λ(𝒋) + 𝒏𝒋   of Λ(𝒋) by  vectors  𝒏𝒋 =  𝑛1𝑗1, 𝑛2𝑗2, … . . 𝑛𝑑 𝑗𝑑 ,  with  

𝒏 ∈ ℤ𝑑  form a partition 𝒫𝒋 of  ℤ𝑑 . We say that the sets tend to infinity in the sense of van 

Hove and we write Λ(𝒋) → ∞ if for every partition 𝒫𝒋 

lim
Λ(𝒋)→∞

𝑛Λ  
+ (𝒋)

𝑛Λ
−(𝒋)

= 1 

where 𝑛Λ  
+ (𝒋) is the number of sets of the partition  𝒫𝒋 which have non-empty intersection 

with  Λ(𝒋) and  𝑛Λ
−(𝒋) is the number of sets of this partition which are contained in Λ(𝒋). 

Definition 3.1.6 

For any given finite set  𝑋 ⊆ Λ ∈ ℱ,  ℳ0 = ℳ 𝑋  ⨂ℳ 𝑋𝑐 . A normalized partial trace on  ℳ0 

is a completely positive map 𝑇𝑟𝑋 : ℳ0 → ℳ 𝑋𝑐   satisfying the following conditions; 

(i) 𝑇𝑟𝑋 𝑥 ∗ 𝑥  ≥ 0 

(ii) 𝑇𝑟𝑋 1 = 1 

(iii) 𝑇𝑟𝑋 𝑇𝑟𝑋  𝑥  = 𝑇𝑟𝑋 𝑥   

(iv) 𝑇𝑟𝑋 𝑥 𝑦  = 𝑇𝑟𝑋 𝑦 𝑥  ,   𝑥 , 𝑦 ∈ ℳ0. 

(v) 𝑇𝑟𝑋 𝑔 𝑥 𝑓  =  𝑔 𝑇𝑟𝑋(𝑥 )𝑓  ,  𝑥 ∈ ℳ0 and  , 𝑔 , 𝑓 ∈  ℳ𝑋𝑐  

We define the partial trace 𝑇𝑟𝑗  at the point  𝑗 ∈ ℤd   on the von Neumann algebra ℳΛ .   

Since the point algebra  ℳ  𝒋  generates  ℳΛ  , we have     ℳΛ = ℳ  𝒋  ⨂ ℳ  𝐣 c . 

Definition 3.1.7 

A normalized partial trace 𝑇𝑟𝒋  on ℳΛ  is a completely positive map 𝑇𝑟𝒋 ∶ ℳΛ  → ℳ  𝐣 c   

satisfying the following conditions for  𝑥 ∈ ℳΛ , 

(i) 𝑇𝑟𝒋 𝑥 
∗ 𝑥  ≥ 0       
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(ii) 𝑇𝑟𝒋 1 = 1 

(iii) 𝑇𝑟𝒋 𝑇𝑟𝒋 𝑥  = 𝑇𝑟𝒋 𝑥   

(iv) 𝑇𝑟𝒋 𝑥 𝑦  = 𝑇𝑟𝒋 𝑦 𝑥  ,   𝑥 , 𝑦 ∈ ℳΛ  

(v) 𝑇𝑟𝒋 𝑔 . 𝑥 . 𝑓  =  𝑔 . 𝑇𝑟𝒋(𝑥 ). 𝑓  ,   𝑥 ∈ ℳΛ  and  𝑔 , 𝑓 ∈  ℳ  j c .  

Remark 3.1 

We recall that a positivity and unit preserving   map for which (v) holds is called a 

conditional expectation and is a projection from condition (iii). Let   𝑇𝑟 ≡ 𝑙𝑖𝑚ℱ𝑜
𝑇𝑟Λ   be the 

normalised trace on ℳ. Then we have    𝑇𝑟 (𝑇𝑟𝑋 𝑓 ∗ 𝑔 ) =   𝑇𝑟 (𝑓 
∗𝑇𝑟𝑋 𝑔     )  . The 𝑙𝑖𝑚ℱ𝑜

 is 

defined in the sense of van Hove convergence of Λ, i.e the convention that  Λ → ∞, 
indicates Λ eventually contains all finite subsets of ℤd .  

 

 We defined  𝐿𝑝  -spaces over the algebra ℳ0 based on the 𝐿𝑝  -spaces of Trunov (1978).  

Let  𝜏 be a faithful normal semifinite trace on  ℳ0. The set of positive nonsingular self-

adjoint operators with a finite trace is given by     ∈ ℳ0: 𝜏   < ∞   with norm      

   
1

= 𝜏      , we denoted this set by 𝐿1 ℳ0 . Now we have from Segal (1953), the 

representation on ℳ0 defined by 

                                           𝜑 𝑥  = 𝜏(𝑥 .  )  ,               𝑥 ∈ ℳ0  ,   ∈ 𝐿1(ℳ0)  

where  𝜑 is a faithful normal state  on ℳ0.  

Thus,                 𝜑 𝑥  = 𝜏 𝑥 .   = 𝜏  . 𝑥  = 𝜏   
1

2 . 𝑥 .  
1

2 .   

This representation enables one to define for each  1 ≤ 𝑝 < ∞  a norm   .  𝑝  on  ℳ0 . 

For   ∈ 𝐿1 ℳ0 , we have the norm 

                  𝑥  𝑝 =      𝜏   
1

2𝑝 . 𝑥 .  
1

2𝑝  
𝑝

 

1

𝑝

=  𝜏   
1

2𝑝 .   𝜌𝑛
𝛼(𝑡)

𝑥. 𝜌𝑛
𝛼(𝑡)

 .  
1

2𝑝  
𝑝

 

1

𝑝

,       

 the set  𝐿𝑝 ℳ0 =   𝑥 ∈ ℳ0:    𝑥  𝑝 < ∞       is a Banach space of pth-power integrable 

operators in ℳ0 . We set    𝐿∞(ℳ0) = ℳ0  and the predual  ℳ∗ = 𝐿1 ℳ0  
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Remark 3.2    

We have the basic properties for  𝐿𝑝  spaces, for 1 ≤ 𝑝 ≤ ∞   and      1 ≤ 𝑞 ≤ ∞  such that      
1

𝑝
+

1

𝑞
= 1. 

i.  𝐿∞ ℳ0 ⊂ 𝐿𝑞 ℳ0 ⊂ 𝐿𝑝 ℳ0 ⊂ 𝐿1 ℳ0    and     𝑥  𝑝 ≤  𝑥  𝑞    for   

 𝑥  ∈  𝐿𝑞(ℳ0),   and 𝑞 > 𝑝 > 1.    

ii. The state   𝜑 𝑥  = 𝜏( 𝑥 )  defines  the following scalar product     

   𝑥 , 𝑦  = 𝜑 𝑦 ∗𝑥  = 𝜏   
1

2𝑦 ∗  
1

2  𝑥  = 𝜏    
1

4  𝑦 ∗  
1

4      
1

4  𝑥   
1

4    . 

  where  the Hilbert space ℌ is the completion of  ℳ0  with respect to this scalar product 

 . , .  . 
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3.2    Finite Volume Quantum Stochastic Dynamics  For Spins System 

To get a nontrivial analogue of classical stochastic dynamics for spin systems on lattice, we 

need to consider a quantum generalization of the conditional expectation as was done in 

Majewski and Zegarlinski (1996). We begin with a definition of the generalized conditional 

expectation 𝐸𝑋 ,Λ  on the operators of the form  𝑥 = 𝜌𝑛
𝛼(𝑡)𝑥 𝜌𝑛

𝛼(𝑡) ∈ ℳ0  for a finite set 𝑋 ⊆ Λ.        
Let    𝐸𝑋 ,Λ : ℳ0 ⟶ ℳ0  be a map defined by, 

                     𝐸𝑋 ,Λ 𝑥  = 𝑇𝑟𝑋 𝛾𝑋,Λ
∗   𝑥   𝛾𝑋,Λ  ,                𝛾𝑋,Λ ∈ ℳ0                           (3.2.1) 

where,            𝛾𝑋,Λ =  
1

2 𝑇𝑟𝑋  
−

1

2 
  ,  

𝛾𝑋,Λ
∗

 

=  𝑇𝑟𝑋  
−

1

2   
1

2     

We have the properties of  𝐸𝑋 ,Λ   in the following proposition. 

Proposition 3.2.1 

   𝐸𝑋 ,Λ  is  a completely positive, unit preserving and  *- invariant map on ℳ0. If  𝐸𝑋 ,Λ  is of 

norm one then  𝐸𝑋,Λ  satisfies the Kadison-Schwarz inequality and is bounded. The extended 

map 𝐸𝑋 ,Λ  onto 𝐿2 ℳ0 , is symmetric with respect to the scalar product on 𝐿2 ℳ0 .   

These properties  are formally outline as follows:  

(i) 𝐸𝑋 ,Λ 𝑥  ≥ 0,                     𝑥 ∈ ℳ0                                                                      

(ii) 𝐸𝑋 ,Λ 1 = 1                                                                               

(iii)  𝐸𝑋 ,Λ 𝑥   
∗

= 𝐸𝑋,Λ 𝑥  ∗ ,       

(iv) The map 𝐸𝑋 ,Λ  satisfies the Kadison-Schwarz inequality,            

                   𝐸𝑋 ,Λ 𝑥  ∗𝐸𝑋,Λ 𝑥  ≤ 𝐸𝑋,Λ 𝑥 ∗𝑥    

(v) The map 𝐸𝑋 ,Λ  is bounded with respect to the norm  .     on ℳ0,   

                               𝐸𝑋 ,Λ 𝑥   ≤  𝑥   ,                 𝑥 ∈ ℳ0.                                                       

(vi)  𝐸𝑋 ,Λ  is symmetric with respect to the scalar product  defined on ℌ,  

                    𝐸𝑋 ,Λ 𝑥  , 𝑦  =  𝑥  ,  𝐸𝑋 ,Λ 𝑦    .  

Proof:  
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(i) Let   𝑥 = 𝑥 
1

2  . 𝑥 
1

2        , 𝑥 ≥ 0      then 

   𝐸𝑋 ,Λ 𝑥  = 𝑇𝑟𝑋  𝛾𝑋,Λ
∗  𝑥 

1

2   𝑥 
1

2   𝛾𝑋,Λ  

                          = 𝑇𝑟𝑋   𝑥 
1

2𝛾𝑋,Λ 
∗

  𝑥 
1

2𝛾𝑋,Λ    

                        = 𝑇𝑟𝑋    𝑥 
1

2𝛾𝑋,Λ 
∗

  𝑥 
1

2𝛾𝑋,Λ  ≥ 0  

since  𝑇𝑟𝑋  is a completely positive map. 

(ii) From     𝐸𝑋,Λ 𝑥  = 𝑇𝑟𝑋 𝛾𝑋,Λ
∗  𝑥  𝛾𝑋,Λ     

we have,     𝐸𝑋 ,Λ 1 = 𝑇𝑟𝑋 𝛾𝑋,Λ
∗   𝛾𝑋,Λ  = 𝑇𝑟𝑋   𝑇𝑟𝑋  

−
1

2  
1

2 
1

2 𝑇𝑟𝑋  
−

1

2       

                                                    =     𝑇𝑟𝑋   𝑇𝑟𝑋  
−

1

2   𝑇𝑟𝑋  
−

1

2  

                                                      =      𝑇𝑟𝑋  
−

1

2 𝑇𝑟𝑋( ) 𝑇𝑟𝑋  
−

1

2 = 1     

    

(iii)                                 𝐸𝑋 ,Λ 𝑥   
∗

= 𝑇𝑟𝑋 𝛾𝑋,Λ
∗  𝑥  𝛾𝑋,Λ 

∗
 

                                                         = 𝑇𝑟𝑋   𝑥  𝛾𝑋,Λ 
∗
𝛾𝑋,Λ

∗∗   

                                                           = 𝑇𝑟𝑋 𝛾𝑋,Λ
∗ 𝑥 ∗ 𝛾𝑋,Λ

∗∗   

                                                          = 𝑇𝑟𝑋 𝛾𝑋,Λ
∗ 𝑥 ∗  𝛾𝑋,Λ = 𝐸𝑋 ,Λ 𝑥 ∗  

 

(iv) From theorem 1.4.7 in chapter one, 𝐸𝑋,Λ  has the form  𝐸𝑋 ,Λ 𝑥  = 𝑉∗𝜋 𝑥   𝑉, 

since  𝐸𝑋 ,Λ  is completely positive,  hence we have,  

                               𝐸𝑋 ,Λ 𝑥  ∗𝐸𝑋,Λ 𝑥  =  𝑉∗𝜋 𝑥  ∗𝑉𝑉∗𝜋 𝑥  𝑉 
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≤  𝑉 2𝑉∗𝜋(𝑥 ∗𝑥 )  𝑉 

                                                                ≤  𝑉 2𝐸𝑋,Λ(𝑥 ∗𝑥 ) ,  

from corollary 3.6 Takesaki (1979) we have that     𝑉 2 ≤  𝐸𝑋 ,Λ  

thus,                                      𝐸𝑋,Λ 𝑥  ∗𝐸𝑋 ,Λ 𝑥  ≤  𝐸𝑋 ,Λ  𝐸𝑋,Λ(𝑥 ∗𝑥 )   

                                           𝐸𝑋 ,Λ 𝑥  ∗𝐸𝑋,Λ 𝑥      ≤ 𝐸𝑋,Λ 𝑥 ∗ 𝑥   . 

 

 

 

(v) Note by complete positivity of the map 𝐸𝑋 ,Λ  we have, 

                         𝐸𝑋 ,Λ 𝑥  ∗𝐸𝑋,Λ 𝑥  ≤  𝐸𝑋,Λ  𝐸𝑋 ,Λ   𝑥 ∗𝑥    

                                                         ≤  𝐸𝑋,Λ  𝑇𝑟𝑋 𝛾𝑋,Λ
∗   𝑥 ∗ 𝑥   𝛾𝑋,Λ  

                                                        ≤  𝐸𝑋,Λ    𝑥  2 𝑇𝑟𝑋 𝛾𝑋,Λ
∗  𝛾𝑋,Λ  

     since   𝑇𝑟𝑋 𝛾𝑋,Λ
∗  𝛾𝑋,Λ = 𝐸𝑋 ,Λ 1 = 1,     

                                   𝐸𝑋 ,Λ 𝑥  ∗𝐸𝑋,Λ 𝑥   ≤  𝐸𝑋,Λ    𝑥  2 

                                              𝐸𝑋 ,Λ 𝑥   
2

≤   𝐸𝑋 ,Λ  𝑥  2  

                                               𝐸𝑋 ,Λ 𝑥   
2

≤   𝑥  2  

                                                 𝐸𝑋 ,Λ 𝑥   ≤   𝑥      

 

( vi )        𝐸𝑋 ,Λ 𝑥  , 𝑦  =  𝑇𝑟𝑋 𝛾𝑋,Λ
∗  𝑥  𝛾𝑋,Λ , 𝑦    =  𝛾𝑋,Λ

∗   𝑥   𝛾𝑋,Λ ,  𝑇𝑟𝑋  𝑦     

                                               =    𝑥   𝛾𝑋,Λ , 𝛾𝑋,Λ𝑇𝑟𝑋  𝑦    

                                               =   𝛾𝑋,Λ
∗ 𝑇𝑟𝑋  𝑥   , 𝛾𝑋,Λ

∗  𝑦      

                                              =   𝛾𝑋,Λ  𝑦 ∗ 𝛾𝑋,Λ
∗ 𝑇𝑟𝑋  𝑥  , 1     

                                              =     𝑇𝑟𝑋  𝑥  ,  𝛾𝑋,Λ
∗  𝑦  𝛾𝑋,Λ     
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                                              =  𝑥  , 𝑇𝑟𝑋 𝛾𝑋,Λ
∗  𝑦  𝛾𝑋,Λ    

                                              =  𝑥   ,  𝐸𝑋 ,Λ 𝑦      

 

 

3.2.1   The Lindblad-type Generator  

To have a dynamics that describes irreversible processes like dissipation, we will need          

 an operator  for a finite set 𝑋 ⊆ Λ   to be  the map    ℒ𝑋 ,Λ : ℳ0 ⟶ ℳ0 ,     defined    by     

                                    ℒ𝑋 ,Λ   𝑥  = 𝐸𝑋 ,Λ 𝑥  −
1

2
 𝐸𝑋,Λ 1 , 𝑥                                          (3.2.2) 

 called the generator of the dynamics.  Hence we have the following proposition.  

Proposition 3.2.2 

The generator  ℒ𝑋 ,Λ  of the finite volume stochastic dynamics for spin system defined by 

equation (3.2.2), annihilates the identity map, and is a  *-invariant, dissipative, bounded 

map on ℳ0, such that, the extension of the map onto the Hilbert space 𝐿2 ℳ0  is 

symmetric with respect to the scalar product on 𝐿2 ℳ0 . 

 

Formally, we outline the properties as follows: 

(i) ℒ𝑋 ,Λ   1 = 0 

(ii) ℒ𝑋 ,Λ   𝑥  ∗ =   ℒ𝑋 ,Λ   𝑥   
∗

                              

(iii) ℒ𝑋 ,Λ   𝑥  ∗ 𝑥   − ℒ𝑋 ,Λ   𝑥  ∗ 𝑥 −  𝑥 ∗ℒ𝑋 ,Λ   𝑥  ≥ 0                                                      

(vi)        ℒ𝑋 ,Λ 𝑥  , 𝑦  =  𝑥  , ℒ𝑋 ,Λ 𝑦         

    Proof: 

(i) 

ℒ𝑋 ,Λ   1 = ℒ𝑋,Λ   1   = 𝐸𝑋 ,Λ 1  −
1

2
 𝐸𝑋 ,Λ 1 , 1  

                                                        = 𝐸𝑋 ,Λ 1  −
1

2
 𝐸𝑋 ,Λ 1 . 1 + 1. 𝐸𝑋,Λ 1        
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                                                        = 𝐸𝑋 ,Λ 1  − 𝐸𝑋,Λ 1 = 0                                                                                                                                                   

(ii) 

 ℒ𝑋 ,Λ   𝑥   
∗

 =   𝐸𝑋 ,Λ 𝑥  −
1

2
 𝐸𝑋,Λ 1 ,  𝑥    

∗

  

                                                      =  𝐸𝑋,Λ 𝑥  −  𝑥   
∗

 

                                                    = 𝐸𝑋 ,Λ 𝑥  ∗ −  𝑥  ∗                                                            

                                                     =   ℒ𝑋 ,Λ   𝑥  ∗ 

(iii) 

Note that we have 

                               ℒ𝑋 ,Λ   𝑥  ∗ 𝑥   =   𝐸𝑋 ,Λ   𝑥  ∗ 𝑥    − 𝑥 ∗𝑥   

                                      ℒ𝑋 ,Λ   𝑥  ∗  𝑥  =    𝐸𝑋,Λ 𝑥  ∗ 𝑥  − 𝑥 ∗𝑥   

thus we have, 

ℒ𝑋 ,Λ   𝑥  ∗ 𝑥   − ℒ𝑋 ,Λ   𝑥  ∗ 𝑥    −𝑥  ∗ℒ𝑋 ,Λ 𝑥      

                                    =   𝐸𝑋 ,Λ  𝑥 ∗𝑥  −  𝑥 ∗𝑥   −     𝐸𝑋,Λ 𝑥  ∗ 𝑥 −  𝑥 ∗𝑥   −𝑥 ∗  𝐸𝑋,Λ 𝑥  − 𝑥    

                                        = 𝐸𝑋 ,Λ  𝑥 ∗𝑥  −  𝑥 ∗𝑥  −    𝐸𝑋,Λ(𝑥 )∗ 𝑥   + 𝑥 ∗𝑥 −𝑥 ∗  𝐸𝑋,Λ 𝑥      + 𝑥 ∗𝑥   

the second term and fourth term cancelled out, and we have, 

                                = 𝐸𝑋,Λ  𝑥 ∗𝑥  −     𝐸𝑋,Λ 𝑥  ∗ 𝑥 −𝑥 ∗  𝐸𝑋,Λ 𝑥    +  𝑥 ∗𝑥                     (**) 

adding   the zero  term   𝐸𝑋,Λ 𝑥  ∗ 𝐸𝑋 ,Λ 𝑥  −  𝐸𝑋 ,Λ 𝑥  ∗ 𝐸𝑋,Λ 𝑥  = 0    into equation  (**)  

𝐸𝑋 ,Λ   𝑥  ∗ 𝑥    − 𝐸𝑋 ,Λ 𝑥  ∗ 𝐸𝑋,Λ 𝑥  +  𝐸𝑋,Λ 𝑥  ∗ 𝐸𝑋,Λ 𝑥  −𝑥 ∗  𝐸𝑋 ,Λ 𝑥    −    𝐸𝑋,Λ 𝑥  ∗ 𝑥   

+ 𝑥 ∗𝑥      =  𝐸𝑋,Λ   𝑥  ∗ 𝑥    − 𝐸𝑋,Λ 𝑥  ∗ 𝐸𝑋 ,Λ 𝑥   +  𝐸𝑋,Λ 𝑥  − 𝑥  
2
  

 

 

by the Kadison -Schwarz inequality the  term in the bracket is nonnegative, that is, 

                                      𝐸𝑋 ,Λ  𝑥 ∗𝑥  – 𝐸𝑋,Λ 𝑥  ∗ 𝐸𝑋 ,Λ 𝑥  ≥ 0  
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and also  the  term     𝐸𝑋,Λ 𝑥  −  𝑥  
2
    is also nonnegative,      

hence,     ℒ𝑋 ,Λ  𝑥 ∗𝑥  − ℒ𝑋,Λ  𝑥 ∗ 𝑥 −  𝑥 ∗ℒ𝑋 ,Λ 𝑥   

                                                  = 𝐸𝑋 ,Λ   𝑥  ∗ 𝑥   − 𝐸𝑋 ,Λ 𝑥  ∗ 𝐸𝑋,Λ 𝑥  +   𝐸𝑋 ,Λ 𝑥  − 𝑥  
2
  ≥ 0     

this implies that         ℒ𝑋 ,Λ( 𝑥 ∗𝑥 ) − ℒ𝑋 ,Λ(𝑥 ∗)𝑥 − 𝑥 ∗ℒ𝑋 ,Λ 𝑥  ≥ 0     

(iv) 

  ℒ𝑋 ,Λ 𝑥  , 𝑦    =    𝐸𝑋 ,Λ 𝑥  − 𝑥  , 𝑦   =   𝐸𝑋 ,Λ 𝑥  , 𝑦  −  𝑥 , 𝑦                   

                                                                     =  𝑥 ,  𝐸𝑋 ,Λ 𝑦   −  𝑥 , 𝑦     

                                                                      =  𝑥 ,  𝐸𝑋 ,Λ 𝑦  − 𝑦  =  𝑥 , ℒ𝑋,Λ(𝑦 )    

 

Consider a bounded symmetric Markov elementary generator ℒ𝑋+𝒋 , where 𝑋 + 𝒋  is a 

translate of the set 𝑋 by a vector 𝒋 ∈ ℤ𝑑 . We define the generator of the quantum dynamical 

semigroup for a finite volume as a self- adjoint operator ℒ𝑋,Λ =  ℒΛ ,𝑋+𝒋𝑗∈Λ  
 
on  ℳ0 ,  with 

𝑋 ⊆ Λ  a finite set of ℤ𝑑 .  Let   𝑃𝑡
𝑋,Λ = 𝑒𝑡ℒ𝑋 ,Λ

  be the corresponding finite volume 

dynamics. 

Proposition 3.2.3  

The finite volume stochastic dynamics for spin system defined by  𝑃𝑡
𝑋,Λ = 𝑒𝑡ℒ𝑋 ,Λ

 with  

generator  ℒ𝑋,Λ =  ℒΛ ,𝑋+𝒋𝒋∈Λ   satisfying    ℒΛ ,𝑋+𝒋 𝒋∈Λ < ∞, is a positive, unit-preserving 

map on ℳ0 such that the extended map is  𝐿2 − symmetric with respect to the inner 

product and  contractive with respect to the 𝐿𝑝 ℳ0  norm.  

We outline formally these properties as follows; 

(i) 𝑃𝑡
𝑋 ,Λ(1) = 1  

(ii)   𝑃𝑡
𝑋,Λ 𝑥  , 𝑦  =  𝑥 , 𝑃𝑡

𝑋 ,Λ 𝑦    ,     𝑥 , 𝑦  ∈ 𝐿2 ℳ0  

(iii)  𝑃𝑡
𝑋,Λ𝑥  

𝐿𝑝  ℳ0 
≤  𝑥  𝐿𝑝  ℳ0  ,      𝑥  ∈ 𝐿𝑝 ℳ0  

(iv)  𝜑Λ  𝑃𝑡
𝑋,Λ 𝑥   =  𝜑Λ 𝑥   ,             𝑥  ∈ ℳ0. 

Proof:  
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(i) Using the Taylor expansion of the exponential we write the dynamics as 

follows. 

                𝑃𝑡
𝑋 ,Λ 1 = 𝑒𝑡ℒ𝑋 ,Λ

(1)  

                  𝑃𝑡
𝑋 ,Λ 1 = 1 +  𝑡ℒ𝑋,Λ 1 +

𝑡2ℒ𝑋 ,Λ  ℒ𝑋 ,Λ (1) 

2
+ ⋯  

             since   ℒ𝑋,Λ 1 = 0,  we have  all the remaining terms to be zero 

             hence ,        𝑃𝑡
𝑋 ,Λ 1 = 1  

(ii)           Now      ℒ𝑋,Λ  ∫ 𝑑𝑠𝑃𝑠
𝑋,Λ𝑡

0
 =  𝑃𝑡

𝑋,Λ − 𝑃0
𝑋 ,Λ

             

              (𝑃𝑡
𝑋,Λ − 𝑃0

𝑋 ,Λ)𝑥 ,  𝑦    =  ℒ𝑋,Λ  ∫ 𝑑𝑠𝑃𝑠
𝑋 ,Λ𝑡

0
 𝑥 , 𝑦     

                                                   =  𝑥 , ℒ𝑋,Λ  ∫ 𝑑𝑠𝑃𝑠
𝑋,Λ𝑡

0
 

∗

𝑦     

                                                    =  𝑥 , ℒ𝑋,Λ  ∫ 𝑑𝑠𝑃𝑠
𝑋,Λ𝑡

0
 𝑦      

                   (𝑃𝑡
𝑋,Λ − 𝑃0

𝑋 ,Λ)𝑥 ,  𝑦   =  𝑥 , (𝑃𝑡
𝑋,Λ − 𝑃0

𝑋,Λ)𝑦      

hence ,                    𝑃𝑡
𝑋 ,Λ  𝑥  , 𝑦  =  𝑥 , 𝑃𝑡

𝑋,Λ(𝑦 )    

(iii)    For contractivity of the semi-group, we have from Olkiewicz and Zegarlinski (1999) 

the following definition of the tangential functional. If  𝑞 ∈  1, ∞ ,  then for any  𝑥 ∈

𝐿𝑞
+ ℳ0 ,  there exists  a unique   𝜙𝑝  𝑥  ∈  𝐿𝑝

+(ℳ0)    with      
1

𝑝
+

1

𝑞
= 1  defined by   

 𝜙𝑝  𝑥  =
 

−
1

2𝑝   
1

2𝑞  𝑥    
1

2𝑞 

𝑞
𝑝

 
−

1
2𝑝

  𝑥  𝑞
𝑞−2   , and  𝜙𝑝 0 = 0 for    𝑥 = 0, 

 with  the following properties;  

(a)   𝑥  𝐿𝑞 ℳ0 
2 =  𝜙𝑝  𝑥  ,  𝑥   ,    𝑥 ∈ 𝐿𝑞

+ ℳ0 ,  and    .  , .     is the duality pairing 

 (b)  𝜙𝑝  𝑥   
𝐿𝑝  ℳ0 

=   𝑥  𝐿𝑞 ℳ0  

(c) 𝜙𝑝   𝑥  𝑞 =  𝜙𝑝( 𝑥 ) 
𝑝
 ,   where     𝑥  𝑞 =  

−
1

2𝑞    
1

2𝑞  𝑥  
1

2𝑞   
−

1

2𝑞     

Proof  
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From   Olkiewicz and Zegarlinski (1999) the contractivity of 𝑃𝑡
𝑋,Λ

 for arbitrary   ,1p  

follows from the interpolation theorem of Riesz-Thorin, because 𝐿∞ ℳ0  is dense in each 

𝐿𝑃
+ ℳ0 ,  hence the extension of 𝑃𝑡

𝑋,Λ
 onto pL  is positive and this extension is 2L  

symmetric.  Now let   𝑥 ,  𝑦 ∈ 𝐿𝑝 ℳ0 ,  such that  𝜙𝑞  𝑦  =  𝜙𝑞  𝑥  , we have from property 

(a)                                                  𝑦  𝐿𝑝  ℳ0 
2 =  𝜙𝑞  𝑦  ,  𝑦     

                                                     𝑦  𝐿𝑝  ℳ0 
2 ≤   𝜙𝑞  𝑦   

𝐿𝑞 ℳ0 
   𝑦  𝐿𝑝  ℳ0   

                                                     𝑦  𝐿𝑝  ℳ0 ≤   𝜙𝑞  𝑦   
𝐿𝑞 ℳ0 

   

                                                     𝑦  𝐿𝑝  ℳ0 ≤   𝜙𝑞  𝑥   
𝐿𝑞 ℳ0 

    

replacing   𝑦  with  𝑃𝑡
𝑋 ,Λ( 𝑥 )  and using property  (b),  we have,  

            𝑃𝑡
𝑋,Λ( 𝑥 ) 

𝐿𝑝  ℳ0 
≤  𝜙𝑞  𝑥   

𝐿𝑞 ℳ0 
=   𝑥  𝐿𝑝  ℳ0  

            𝑃𝑡
𝑋,Λ( 𝑥 ) 

𝐿𝑝  ℳ0 
≤   𝑥  𝐿𝑝  ℳ0 . 

(iv) 

𝜑 𝑃𝑡
𝑋,Λ  𝑥    =  1, 𝑃𝑡

𝑋 ,Λ  𝑥   =  𝑃𝑡
𝑋 ,Λ(1),   𝑥      =   1,  𝑥  =  𝜑Λ  𝑥     

 

                                                      CHAPTER 4 

             INFINITE VOLUME   QUANTUM   STOCHASTIC  DYNAMICS 

4.0     Introduction 

In this chapter we  construct the  infinite volume  stochastic dynamics for spin system 

directly as the  limit of the finite volume stochastic dynamics for spin system and we show 

that it has an exponential decay to equilibrium and is strongly ergodic, taking into 

consideration the problem of  convergence. We proceed as follows: Let the closure of a pre-

Markov elementary generator defined an elementary generator ℒ𝑋+𝑗  𝑥  = 𝐸𝑋+𝑗  𝑥  − 𝑥 , 

where   𝑋 ⊂ Λ is a finite set and 𝐸𝑋+𝑗  is a 2-positive unit preserving map such that     

𝐸𝑋+𝑗   ℳΛ ⊆   ℳΛc +j .  

We defined a finite volume generator ℒ𝑋,Λ   as follows   ℒ𝑋,Λ =   ℒ Λ ,𝑋+𝒋𝒋∈Λ  , such that, 

  ℒ Λ ,𝑋+𝒋 𝒋∈Λ < ∞. The generator ℒ𝑋,Λ   is a well defined bounded operator on all the 

algebra ℳ0 . We define also an infinite volume generator ℒ𝑋   formally by the same formula 

with Λ ≡ ℤ𝑑    that is ,    ℒ𝑋 =   ℒ 𝑋+𝒋𝒋∈ℤ𝑑    such  that    ℒ𝑋 < ∞. 
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For this to be defined on a large domain, we will require that the elementary generator  

ℒ𝑋+𝒋 satisfy the following regularity property (Majewski and Zegarlinski,1996). We start 

with the following definitions. 

 

 

Definition 4.1.1 

The discrete gradient 𝜕𝒋  𝑥   is defined by    𝜕𝒋  𝑥 =  𝑥 − 𝑇𝑟𝒋 𝑥  , for a   vector 𝒋 ∈ ℤ𝑑 . 

 This defines   a  seminorm    .     on ℳ0   given  by       𝑥    ≡    𝜕𝒋  𝑥  𝒋∈ℤ𝑑 .  

 Let the set of operators in ℳ0 with finite seminorm   .     be denoted by ℳ1 , that is, the 

set   ℳ1 =   𝑥 :   𝑥 ∈ ℳ0 ,    𝑥   < ∞   . 

Definition 4.1.2 

For any    𝑥 ∈ ℳ1   an elementary operator ℒ𝑋+𝒋  is called regular   if there is a positive 

constant  𝑏𝒋𝒌  with 𝒋, 𝒌 ∈ ℤ𝑑  such that  ℒ𝑋+𝒋 𝑥  ≤  𝑏𝒋𝒌 𝜕𝒋  𝑥  𝑘  and 𝑏𝒋𝒌 ∈ [0, ∞) , such 

that    𝑠𝑢𝑝𝒋  𝑏𝒋𝒌𝒌 < ∞ .  

Definition 4.1.3 

 The elementary generators ℒ𝑋+𝒋, 𝒋 ∈ ℤ𝑑 ,   satisfy the condition        

                            𝜕𝑘 , ℒ𝑋+𝒋  𝑥  ≤  𝑎𝒌𝒍
𝑋+𝑗 𝜕𝒍 𝑥  𝒍∈ℤ𝑑   

  if there is  a positive constant  𝑎𝒌𝒍
𝑋+𝒋

    𝒌, 𝒍 ∈ ℤ𝑑  such that
 
  
 

(i) 
1

 𝑋 
 𝑎𝒌𝒍

𝑋+𝒋
< ∞𝒌,𝒍∈ℤ𝑑          

(ii)     𝑎𝒌𝒍
𝑋+𝒋

≤ 𝜆 𝑋 < ∞ 𝒋:𝑋+𝒋∌𝒌,𝒍∈ℤ𝑑  

for any  𝑥 ∈ ℳ1 ,  𝜆 ∈  0,1  and   𝑋  is the cardinality of the finite set X. 

4.1   Infinite Volume Quantum Stochastic Dynamics for Spin System 

In this section we  show that  the infinite volume stochastic dynamics exists and   has 

exponential decay to equilibrium and is strongly ergodic . 

Theorem 4.1  
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Suppose the elementary generator ℒ𝑋+𝑗 , 𝑗 ∈ ℤ𝑑   is regular and satisfies the condition                                    

  𝜕𝑘 , ℒ𝑋+𝒋  𝑥  ≤  𝑎𝒌𝒍
𝑋+𝑗 𝜕𝒍 𝑥  𝒍∈ℤ𝑑    with    𝑎𝒌𝒍

𝑋+𝑗
< ∞𝒌,𝒍∈ℤ𝑑 .   If    𝑠𝑎𝒌𝒍𝒌,𝒍∈ℤ𝑑  < 1 , for   

0 < 𝑠 < 𝑡, where 𝑡 > 0 is fixed. Then the stochastic dynamics  𝑃𝑡
𝑋,Λ𝑛   sequence is Cauchy 

in the norm topology for the sets of increasing bounded regions  Λ𝑛   satisfying Λ𝑛+1 ⊃ Λ𝑛   

and  Λ𝑛 ≡ ℤ𝑑 . The limit exists as Λ𝑛 → ∞  and defines an infinite volume quantum 

stochastic dynamics 𝑃𝑡
𝑋  on ℳ0  .                                                    

Proof : 

For Λ𝑖 ∈ ℱ, 𝑖 = 1,2  and   𝑥 ∈ ℳ1, 

 we have 

𝑑

𝑑𝑠
 𝑃𝑠

Λ2 (𝑥 )  − 𝑃𝑠
Λ1 (𝑥 )  =

𝑑

𝑑𝑠
𝑃𝑠

Λ2 (𝑥 )  −
𝑑

𝑑𝑠
𝑃𝑠

Λ1 (𝑥 )  

                           = ℒ2𝑃𝑠
Λ2 (𝑥 )  − ℒ1𝑃𝑠

Λ1 (𝑥 )  

                              = ℒ2𝑃𝑠
Λ2 (𝑥 )  − ℒ2𝑃𝑠

Λ1 (𝑥 ) +ℒ2𝑃𝑠
Λ1 (𝑥 )  − ℒ1𝑃𝑠

Λ1 (𝑥 )     

                           = ℒ2𝑃𝑠
Λ2 (𝑥 )  − ℒ2𝑃𝑠

Λ1 (𝑥 )  +  ℒ2 − ℒ1 𝑃𝑠
Λ1 (𝑥 )                                                                               

hence  

𝑑

𝑑𝑠
𝑃𝑡−𝑠

Λ2  𝑃𝑠
Λ2 (𝑥 )  − 𝑃𝑠

Λ1 (𝑥 )  =
𝑑

𝑑𝑠
𝑃𝑡−𝑠

Λ2 𝑃𝑠
Λ2 (𝑥 )  −

𝑑

𝑑𝑠
𝑃𝑡−𝑠

Λ2 𝑃𝑠
Λ1 (𝑥 )   

                                  = −ℒ2𝑃𝑡−𝑠
Λ2 𝑃𝑠

Λ2 (𝑥 )  + 𝑃𝑡−𝑠
Λ2 ℒ2𝑃𝑠

Λ1 (𝑥 ) +ℒ2𝑃𝑡−𝑠
Λ2 𝑃𝑠

Λ1 (𝑥 )  − 𝑃𝑡−𝑠
Λ2 ℒ1𝑃𝑠

Λ1 (𝑥 )      

the first and the third term cancel out, we have 

      
𝑑

𝑑𝑠
𝑃𝑡−𝑠

Λ2  𝑃𝑠
Λ2 (𝑥 )  − 𝑃𝑠

Λ1 (𝑥 )  = 𝑃𝑡−𝑠
Λ2  ℒ2 − ℒ1 𝑃𝑠

Λ1 (𝑥 )                                  
 

To control the convergence of the sequence, we study the difference of consecutive 

elements acting on local elements as follows 

∫
𝑑

𝑑𝑠
𝑃𝑡−𝑠

Λ2  𝑃𝑠
Λ2 (𝑥 )  − 𝑃𝑠

Λ1 (𝑥 )  
𝑡

0
= ∫ 𝑑𝑠𝑃𝑡−𝑠

Λ2  ℒ2 − ℒ1 
𝑡

0
𝑃𝑠

Λ1 (𝑥 )   

𝑃𝑡
Λ2 (𝑥 )  − 𝑃𝑡

Λ1 (𝑥 )  = ∫ 𝑑𝑠𝑃𝑡−𝑠
Λ2  ℒ2 − ℒ1 

𝑡

0
𝑃𝑠

Λ1 (𝑥 )   

and taking the norm on both sides 

                      𝑃𝑡
Λ2 (𝑥 )  − 𝑃𝑡

Λ1 (𝑥 )  =  ∫ 𝑑𝑠𝑃𝑡−𝑠
Λ2  ℒ2 − ℒ1 

𝑡

0
𝑃𝑠

Λ1 (𝑥 )   . 

Using the contractivity property of the dynamics on the right hand side we have                                      

 𝑃𝑡
Λ2 (𝑥 )  − 𝑃𝑡

Λ1 (𝑥 )   ≤ ∫ 𝑑𝑠  ℒ2 − ℒ1 𝑃𝑠
Λ1 (𝑥 )  

𝑡

0
 

  

                                                (4.1) 
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We study carefully the expression  ℒ2 − ℒ1 𝑃𝑠
Λ1 (𝑥 ) .  The difference of two elementary 

Markov generators is  also an elementary Markov generator. It is sufficient to study the 

expression ℒ𝑋+𝒋𝑃𝑠
Λ1 (𝑥 ) . By regularity assumption we have 

      ℒ𝑋+𝒋𝑃𝑠
Λ1 (𝑥 )  ≤  𝑏𝒋𝑘 𝜕 𝒋𝑃𝑠

Λ1 (𝑥 )  𝑘                            
 

we study the term 𝜕𝑗 𝑃𝑠
Λ1𝑓Λ  using the differential form   

     
𝑑

 𝑑𝑠 
  𝜕𝒋𝑃𝑠

Λ1 (𝑥 ) =  𝜕𝒋
𝑑

𝑑𝑠 
 𝑃𝑠 

Λ1 (𝑥 ) = 𝜕𝒋ℒ1𝑃𝑠 
Λ1 (𝑥 )   

we have the following 

𝑑

𝑑𝑠 
 𝑃𝑠−𝑠 

Λ1  𝜕𝑗 𝑃𝑠 
Λ1 (𝑥 ) =  −ℒ1 𝑃𝑠−𝑠 

Λ1  𝜕𝒋𝑃𝑠 
Λ1 (𝑥 )   +  𝑃𝑠−𝑠 

Λ1  𝜕𝒋 ℒ1𝑃𝑠 
Λ1 (𝑥 )  

                                    = 𝑃𝑠−𝑠 
Λ1  𝜕𝒋 ℒ1𝑃𝑠 

Λ1 (𝑥 )   −  𝑃𝑠−𝑠 
Λ1  ℒ1𝜕𝑗 𝑃𝑠 

Λ1 (𝑥 )   

                                     = 𝑃𝑠−𝑠 
Λ1  (𝜕𝑗  ℒ1  −   ℒ1𝜕𝑗 )𝑃𝑠 

Λ1 (𝑥 )   

       
𝑑

𝑑𝑠 
 𝑃𝑠−𝑠 

Λ1  𝜕𝑗 𝑃𝑠 
Λ1 (𝑥 )  = 𝑃𝑠−𝑠 

Λ1  [𝜕𝑗  , ℒ1] 𝑃𝑠 
Λ1 (𝑥 )   

hence,  

  
𝑑

𝑑𝑠 
 𝑃𝑠−𝑠 

Λ1  𝜕𝑘𝑃𝑠 
Λ1 (𝑥 ) = 𝑃𝑠−𝑠 

Λ1  [𝜕𝑘  , ℒ1] 𝑃𝑠 
Λ1 (𝑥 )      

integrating, and using contractivity property of the Markov semi-group we have the 

following. 

∫
𝑑

𝑑𝑠 
 𝑃𝑠−𝑠 

Λ1  𝜕𝑘𝑃𝑠 
Λ1 (𝑥 ) 𝑑𝑠 

𝑠

0
= ∫ 𝑑𝑠 

𝑠

0
𝑃𝑠−𝑠 

Λ1  [𝜕𝑘  , ℒ1] 𝑃𝑠 
Λ1 (𝑥 )          

∫
𝑑

𝑑𝑠 
 𝑃𝑠−𝑠 

Λ1  𝜕𝑘𝑃𝑠 
Λ1 (𝑥 ) 𝑑𝑠 

𝑠

0
= ∫ 𝑑𝑠 

𝑠

0
𝑃𝑠−𝑠 

Λ1  [𝜕𝑘  , ℒ1] 𝑃𝑠 
Λ1 (𝑥 )    

𝑃0
Λ1 𝜕𝑘𝑃𝑠

Λ1 (𝑥 ) − 𝑃𝑠
Λ1 𝜕𝑘𝑃0

Λ1 (𝑥 ) = ∫ 𝑑𝑠 
𝑠

0
𝑃𝑠−𝑠 

Λ1  [𝜕𝑘  , ℒ1] 𝑃𝑠 
Λ1 (𝑥 )      

𝜕𝑘𝑃𝑠
Λ1 (𝑥 ) = 𝑃𝑠

Λ1 𝜕𝑘(𝑥 )  +  ∫ 𝑑𝑠 
𝑠

0
𝑃𝑠−𝑠 

Λ1  [𝜕𝑘  , ℒ1] 𝑃𝑠 
Λ1 (𝑥 )      

 𝜕𝑘𝑃𝑠
Λ1 (𝑥 ) ≤  𝜕𝑘(𝑥 ) +  ∫ 𝑑𝑠 

𝑠

0𝑖∈Λ1
  𝜕𝑘 , ℒ𝑋+𝑖 𝑃𝑠 

Λ1 (𝑥 )                                        (4.2) 



61 

 

from the  condition  

                              𝜕𝑘 , ℒ𝑋+𝑗  𝑃𝑠
Λ1 (𝑥 ) ≤  𝑎𝒌𝒍

𝑋+𝒋
 𝜕𝒍𝑃𝑠

Λ1 (𝑥 ) 𝒍∈ℤ𝑑 ,   

the right hand side becomes bounded by 

                          𝜕𝑘𝑃𝑠
Λ1 (𝑥 ) ≤  𝜕𝑘(𝑥 ) + ∫ 𝑑𝑠 

𝑠

0
     𝑎𝒌𝒍

𝑋+𝒋
 𝜕𝒌𝑃𝑠

Λ1 (𝑥 ) 𝒍∈ℤ𝑑  𝑖∈Λ1
.  

Since we have         

                              
𝑠𝑢𝑝

𝒌 ∈ ℤ𝑑  𝑎𝒌𝒍
𝑋+𝑗

=𝒌,𝒍∈ℤ𝑑   𝑎𝑘𝑙𝒌,𝒍∈ℤ𝑑  < ∞, 

 thus, 

                          𝜕𝒌𝑃𝑠
Λ1 (𝑥 ) ≤  𝜕𝒌(𝑥 ) + ∫ 𝑑𝑠 

𝑠

0
  𝑎𝒌𝒍  𝜕𝒌𝑃𝑠

Λ1 (𝑥 ) 𝒌,𝒍∈ℤ𝑑    

therefore,          𝜕𝒌𝑃𝑠
Λ1 (𝑥 ) − ∫ 𝑑𝑠 

𝑠

0
  𝑎𝑘𝑙   𝜕𝑘𝑃𝑠

Λ1 (𝑥 ) 𝒌,𝒍∈ℤ𝑑   ≤  𝜕𝑘(𝑥 )   

                        1 −  𝑎𝑘𝑙 ∫ 𝑑𝑠 
𝑠

0𝑘 ,𝑙∈ℤ𝑑     𝜕𝒌𝑃𝑠
Λ1 (𝑥 )  ≤  𝜕𝑘(𝑥 )                       

                        1 −   𝑠𝑎𝒌𝒍𝒌,𝒍∈ℤ𝑑    𝜕𝒌𝑃𝑠
Λ1 (𝑥 )  ≤  𝜕𝑘(𝑥 ) .       

Since     1 −   𝑠𝑎𝒌𝒍𝒌,𝒍∈ℤ𝑑       is positive, we can write 

                       𝜕𝒌𝑃𝑠
Λ1 (𝑥 )  ≤  1 −   𝑠𝑎𝒌𝒍𝒌,𝒍∈ℤ𝑑   

−1
 𝜕𝑘(𝑥 )    

    from the relation         
1

 1−𝑥 
≤  1 − 𝑥 ≤ 𝑒𝑥 .  

We have that,      𝜕𝒌𝑃𝑠
Λ1 (𝑥 )  ≤  1 −   𝑠𝑎𝒌𝒍𝒌,𝒍∈ℤ𝑑   

−1
 𝜕𝑘(𝑥 ) ≤ 𝑒

 𝑠𝑎𝒌𝒍𝒌,𝒍∈ℤ𝑑   𝜕𝑘(𝑥 )              

thus, (4.2)   becomes bounded by,      𝜕𝒌𝑃𝑠
Λ1 (𝑥 ) ≤ 𝑒

 𝑠𝑎𝒌𝒍𝒌,𝒍∈ℤ𝑑    𝜕𝑘(𝑥 )    

and therefore,  (4.1) is  bounded  by, 
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               𝑃𝑡
Λ2 (𝑥 ) − 𝑃𝑡

Λ1 (𝑥 )  ≤ ∫ 𝑑𝑠  ℒ2 − ℒ1 𝑃𝑠
Λ1 (𝑥 ) 

𝑡

0
 ≤ 𝑡  𝑏𝒋𝒌𝒌 𝑒

 𝑠𝑎𝒌𝒍𝒌,𝒍∈ℤ𝑑    𝜕𝑘(𝑥 )   

         hence we have the following bound 

               𝑃𝑡
Λ2 (𝑥 ) − 𝑃𝑡

Λ1 (𝑥 )   ≤ 𝑡   𝑏𝒋𝒌 𝑒𝑠𝑎𝒌𝒍   𝜕 𝒌(𝑥 ) 𝒌,𝒍𝒋∈Λ2∖Λ1
     

this   holds for any Λ2 ⊆ ℤ𝑑   containing a set Λ1 . 

The summability properties of the matrices 𝑏𝒋𝒌,  𝑎𝒌𝒍𝒌,𝒍∈ℤ𝑑  on the right hand and  norm 

continuity of the semigroup, lead us to conclude that the sequence of  semigroups on ℳ1 is 

Cauchy. This limit exists and is given by   𝑃𝑡
𝑋 = 𝑒𝑡ℒ𝑋

.     

We   therefore have that   𝑃𝑡
Λ𝑛 (𝑥 ) − 𝑃𝑡

𝑋(𝑥 )  → 0    as       Λ𝑛  → ∞,  

 

Theorem 4.2  

If   the condition    𝑎𝒌𝒍
𝑋+𝒋

< ∞ 𝒋:𝑋+𝒋∌𝒌,𝒍∈ℤ𝑑   is satisfied and  𝑃𝑡
𝑋,𝑘

 is a Markov semigroup 

with generator   ℒ𝑋,𝑘 = ℒ𝑋 −  ℒ𝑋+𝑗𝑗 :𝑋+𝑗∋𝑘 ,  for  𝒌 ∈ 𝑋 + 𝑗, then  the infinite volume 

quantum stochastic  dynamics  𝑃𝑡
𝑋   is strongly ergodic, that is,  

                                      𝑃𝑡
𝑋(𝑥 )   ≤ 𝑒−(1−𝜆) 𝑋 𝑡  𝑥    ,      with 𝜆 ∈  0,1 .  

Proof:   

Let 𝑃𝑡
𝑋  denote the semigroup corresponding to the generator   ℒ𝑋 =  ℒ𝑋+𝒋𝐽∈ℤ𝑑 ,  

where   ℒ𝑋+𝒋 (𝑥 ) = 𝐸𝑋+𝒋 (𝑥 ) − (𝑥 ).We note that  𝐸𝑋+𝑗   ℳΛ ⊆   ℳΛc +j  ,   and   

 𝜕𝑘ℒ𝑋+𝒋(𝑥 ) = 𝜕𝒌 𝐸𝑋+𝒋(𝑥 )  − (𝑥 )  =  −𝜕𝒌(𝑥 )  ,    for   𝒌 ∈ 𝑋 + 𝒋.  To show the 

exponential decay in the triple bar we need to study the term   𝜕𝑘𝑃𝑠
𝑋(𝑥 )    for all 𝑗 ∈ ℤ𝑑 .  

For  𝑃𝑡
𝑋,𝑘

 with the corresponding generator   ℒ𝑋,𝑘 = ℒ𝑋 −  ℒ𝑋+𝒋𝒋:𝑋+𝒋∋𝑘 , 𝒌 ∈ 𝑋 + 𝒋.  Let  

𝑠 ∈ [0, 𝑡), we have,     
𝑑

𝑑𝑠
 𝑃𝑡−𝑠

𝑋 ,𝑘 𝜕𝑘𝑃𝑠
𝑋(𝑥 )  =  𝑃𝑡−𝑠

𝑋,𝑘  [𝜕𝑘  , ℒ𝑋,𝑘]𝑃𝑠
𝑋 𝑥  ,   

multiplying both sides by   𝑒𝑠 𝑋 , where  𝑋  is the cardinality of the finite set  𝑋 ⊂ Λ ,   

 
𝑑

𝑑𝑠
 𝑒𝑠 𝑋 𝑃𝑡−𝑠

𝑋,𝑘  𝜕𝑘𝑃𝑠
𝑋(𝑥 )  =  𝑒𝑠 𝑋  𝑃𝑡−𝑠

𝑋,𝑘  [𝜕𝑘  , ℒ𝑋,𝑘] 𝑃𝑠
𝑋(𝑥 ) . 

Integrating this equation from 0 to t,    

  ∫
𝑑

𝑑𝑠
 𝑒𝑠 𝑋  𝑃𝑡−𝑠

𝑋 ,𝑘  𝜕𝑘𝑃𝑠
𝑋(𝑥 )  

𝑡

0
 𝑑𝑠 =  ∫ 𝑑𝑠 𝑒𝑠 𝑋  𝑃𝑡−𝑠

𝑋 ,𝑘  [𝜕𝑘  , ℒ𝑋,𝑘] 𝑃𝑠
𝑋(𝑥 ) 

𝑡

0
         

  𝑒𝑡 𝑋  𝑃0
𝑋 ,𝑘𝜕𝒌𝑃𝑡

𝑋(𝑥 )  − 𝑒0 𝑋  𝑃𝑡
𝑋 ,𝑘𝜕𝒌𝑃0

𝑋(𝑥 )  =  ∫ 𝑑𝑠 𝑒𝑠 𝑋  𝑃𝑡−𝑠
𝑋,𝑘  [𝜕𝒌 , ℒ𝑋,𝑘] 𝑃𝑠

𝑋(𝑥 ) 
𝑡

0
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  𝑒𝑡 𝑋  𝜕𝒌𝑃𝑡
𝑋(𝑥 )  −  𝑃𝑡

𝑋 ,𝑘𝜕𝒌(𝑥 )  =  ∫ 𝑑𝑠 𝑒𝑠 𝑋  𝑃𝑡−𝑠
𝑋 ,𝑘  [𝜕𝒌 , ℒ𝑋,𝑘] 𝑃𝑠

𝑋(𝑥 ) 
𝑡

0
          

  𝑒𝑡 𝑋  𝜕𝑘𝑃𝑡
𝑋(𝑥 )  =  𝑃𝑡

𝑋,𝑘𝜕𝒌(𝑥 )  +  ∫ 𝑑𝑠 𝑒𝑠 𝑋  𝑃𝑡−𝑠
𝑋 ,𝑘  [𝜕𝒌 , ℒ𝑋,𝑘] 𝑃𝑠

𝑋(𝑥 ) 
𝑡

0
        

multiplying  both sides by   𝑒−𝑡 𝑋 . 

 𝜕𝒌𝑃𝑡
𝑋(𝑥 )  =  𝑒−𝑡 𝑋 𝑃𝑡

𝑋,𝑘𝜕𝒌(𝑥 )  +  ∫ 𝑑𝑠 𝑒−(𝑡−𝑠) 𝑋  𝑃𝑡−𝑠
𝑋 ,𝑘  [𝜕𝒌 , ℒ𝑋,𝒌] 𝑃𝑠

𝑋 𝑥  .
𝑡

0
          

Using contraction property of the Markov semigroup 𝑃𝑡
𝑋,𝑘

 we have, 

    𝜕𝒌𝑃𝑡
𝑋(𝑥 ) ≤  𝑒−𝑡 𝑋  𝜕𝒌(𝑥 ) +   ∫ 𝑑𝑠 𝑒−(𝑡−𝑠) 𝑋   [𝜕𝒌 , ℒ𝑋,𝑘] 𝑃𝑠

𝑋(𝑥 )
𝑡

0
          

    𝜕𝒌𝑃𝑡
𝑋(𝑥 ) ≤  𝑒−𝑡 𝑋  𝜕𝒌(𝑥 ) +  ∫ 𝑑𝑠 𝑒−(𝑡−𝑠) 𝑋   [𝜕𝑘  , ℒ𝑋,𝑘] 𝑃𝑠

𝑋(𝑥 ) 
𝑡

0
         

we  note that  by definition   ℒ𝑋,𝑘 ≡  ℒ𝑋+𝑗𝑗 :𝑋+𝑗∌𝑘  . 

thus     𝜕𝒌𝑃𝑡
𝑋(𝑥 ) ≤  𝑒−𝑡 𝑋  𝜕𝒌(𝑥 ) +  ∫ 𝑑𝑠 𝑒−(𝑡−𝑠) 𝑋    [𝜕𝑘  , ℒ𝑋+𝒋] 𝑃𝑠

𝑋(𝑥 ) 𝒋:𝑋+𝒋∌𝑘
𝑡

0
  

 since from definition 4.1.3 condition (ii) we have,   

                     [𝜕𝒌 , ℒ𝑋+𝒋]𝑃𝑡
𝑋(𝑥 ) 𝒋:𝑋+𝒋∌𝑘 ≤     𝒋:𝑋+𝒋∌𝑘  𝑎𝑘𝑙

𝑋+𝑗 𝜕𝒌𝑃𝑡
𝑋(𝑥 )  𝒍∈ℤ𝑑   

where       
𝑠𝑢𝑝

𝑙 ∈ ℤ𝑑   𝑘  𝑎𝑘𝑙
𝑋+𝑗

≤ 𝜆 𝑋 𝑗 :𝑋+𝑗 ∌𝑘  < ∞ 

    𝜕𝒌𝑃𝑡
𝑋(𝑥 ) ≤  𝑒−𝑡 𝑋  𝜕𝒌(𝑥 ) +  ∫ 𝑑𝑠 𝑒−(𝑡−𝑠) 𝑋   𝑗 :𝑋+𝑗∌𝑘  𝑎𝑘𝑙

𝑋+𝑗  𝜕𝒌𝑃𝑡
𝑋(𝑥 )  𝑙∈ℤ𝑑

𝑡

0
   

    𝜕𝒌𝑃𝑡
𝑋(𝑥 ) ≤  𝑒−𝑡 𝑋  𝜕𝒌(𝑥 ) +  𝜆 𝑋 ∫ 𝑑𝑠 𝑒−(𝑡−𝑠) 𝑋   𝜕𝒌𝑃𝑡

𝑋(𝑥 ) 
𝑡

0
     

thus summing the inequalities over  𝒌 ∈ ℤ𝑑   we have , 

   𝑃𝑡
𝑋(𝑥 )  ≤  𝑒− 𝑋 𝑡  𝑥   +  𝜆 𝑋 ∫ 𝑑𝑠 𝑒−(𝑡−𝑠) 𝑋    𝑃𝑡

𝑋(𝑥 )  
𝑡

0
   

solving the inequality  we have, 

  𝑃𝑡
𝑋(𝑥 )  − 𝜆 𝑋  𝑒− 𝑋 𝑡 ∫ 𝑑𝑠 𝑒 𝑋 𝑠    𝑃𝑡

𝑋(𝑥 )  
𝑡

0
  ≤  𝑒−𝑡 𝑋   𝑥     

multiplying by   𝑒 𝑋 𝑡   and factoring   𝑃𝑡
𝑋(𝑥 )    we have, 

  𝑒 𝑋 𝑡 − 𝜆 𝑋 ∫  𝑒 𝑋 𝑠𝑑𝑠
𝑡

0
    𝑃𝑡

𝑋(𝑥 )    ≤    𝑥     

hence  writing   𝑒 𝑋 𝑡 = 1 +  𝑋 ∫ 𝑑𝑠𝑒𝑠 𝑋 𝑡

0
  we have, 
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 1 +  𝑋 ∫ 𝑑𝑠𝑒 𝑋 𝑠𝑡

0
− 𝜆 𝑋 ∫  𝑑𝑠 𝑒 𝑋 𝑠𝑡

0
    𝑃𝑡

𝑋(𝑥 )    ≤    𝑥     

collecting  the terms in the bracket, we have, 

 1 + (1 − 𝜆) 𝑋 ∫  𝑑𝑠 𝑒 𝑋 𝑠𝑡

0
    𝑃𝑡

𝑋(𝑥 )    ≤    𝑥     

we observed that for   𝜆 ∈ (0,1)  we have the relation   ∫ 𝑑𝑠𝑒(1−𝜆) 𝑋 𝑠𝑡

0
≤   ∫ 𝑑𝑠𝑒 𝑋 𝑠𝑡

0
 

hence,   1 + (1 − 𝜆) 𝑋 ∫  𝑑𝑠 𝑒(1−𝜆) 𝑋 𝑠𝑡

0
 ≤  1 + (1 − 𝜆) 𝑋 ∫  𝑑𝑠 𝑒 𝑋 𝑠𝑡

0
    

 we have    1 + (1 − 𝜆) 𝑋 ∫  𝑑𝑠 𝑒(1−𝜆) 𝑋 𝑠𝑡

0
   𝑃𝑡

𝑋(𝑥 )   ≤    𝑥      

  now since              𝑒 1−𝜆  𝑋 𝑡 = 1 +  1 − 𝜆  𝑋 ∫  𝑑𝑠 𝑒 1−𝜆  𝑋 𝑠𝑡

0
  

 we have,          𝑒 1−𝜆  𝑋 𝑡    𝑃𝑡
𝑋(𝑥 )    ≤    𝑥                

                               𝑃𝑡
𝑋(𝑥 )    ≤  𝑒−(1−𝜆) 𝑋 𝑡  𝑥      

 

Theorem 4.3  

 The semi-group  𝑃𝑡
𝑋 𝑡≥0 is strongly ergodic in the sense that there is a unique  𝑃𝑡

𝑋 𝑡≥0 - 

invariant locally normal state 𝜑Λ   for which we have        

                                       𝑃𝑡
𝑋(𝑥 ) − 𝜑Λ(𝑥 )  ≤ 2𝑒−(1−𝜆) 𝑋 𝑡  𝑥    . 

Proof 

To show the strong ergodicity property of the dynamics  𝑃𝑡
𝑋 , we have the following  

formulation. We note that by the weak compactness of the space of state on  ℳΛ  and the 

fact that the dynamics 𝑃𝑡
𝑋  has a Feller property, the set of invariant states with respect to the 

dynamics is non-empty. Let 𝜑Λ  be such an invariant locally normal state, 

then                          𝑃𝑡
𝑋(𝑥 ) − 𝜑Λ(𝑥 )  =  𝑃𝑡

𝑋(𝑥 ) − 𝜑Λ(𝑃𝑡
𝑋(𝑥 ))    

now we consider the tensor  product algebra of  ℳΛ  by itself, and, from (Takesaki,1979), 

we have the completely positive map    휃 ∶ ℳΛ ⊗  ℳΛ  ⟶   ℳΛ   

 such   that if    𝑥 Λ1
, 𝑥 Λ2

∈ ℳΛ   we have,      휃 𝑥 Λ1
⊗ 𝑥 Λ2

 = 𝜑Λ(𝑥 Λ1
)𝑥 Λ2

 .  

We note that        휃 𝑃𝑡
𝑋(𝑥 ) ⊗ 𝐼 = 𝜑Λ 𝑃𝑡

𝑋(𝑥 ) 𝐼 = 𝜑Λ 𝑃𝑡
𝑋(𝑥 )   

                               휃 𝐼 ⊗ 𝑃𝑡
𝑋(𝑥 ) = 𝜑Λ 𝐼 𝑃𝑡

𝑋(𝑥 ) =  𝑃𝑡
𝑋(𝑥 ) ,     
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   since   𝜑Λ ∘ 𝑃𝑡
𝑋 = 𝜑Λ   we have,  

 𝑃𝑡
𝑋(𝑥 ) − 𝜑Λ(𝑥 ) =  𝑃𝑡

𝑋(𝑥 ) − 𝜑Λ(𝑃𝑡
𝑋(𝑥 ))   

                           =  휃 𝐼 ⊗ 𝑃𝑡
𝑋(𝑥 ) − 휃 𝑃𝑡

𝑋(𝑥 ) ⊗ 𝐼    

                           ≤  휃(𝐼 ⊗ 𝑃𝑡
𝑋(𝑥 ) − 𝑃𝑡

𝑋(𝑥 ) ⊗ 𝐼)   

                             ≤  𝐼 ⊗ 𝑃𝑡
𝑋(𝑥 ) − 𝑃𝑡

𝑋(𝑥 ) ⊗ 𝐼 .  

 With this formulation in mind, we may express 𝑃𝑡
𝑋(𝑥 )  as follows: 

𝑃𝑡
𝑋(𝑥 ) = 𝑃𝑡

𝑋(𝑥 ) + 𝑇𝑟𝑗1
𝑃𝑡

𝑋(𝑥 ) −  𝑇𝑟𝑗1
𝑃𝑡

𝑋(𝑥 ) +  𝑇𝑟𝑗2
𝑃𝑡

𝑋(𝑥 ) −  𝑇𝑟𝑗2
 𝑃𝑡

𝑋(𝑥 ) +   𝑇𝑟𝑗3
𝑃𝑡

𝑋(𝑥 )  

               − 𝑇𝑟𝑗3
 𝑃𝑡

𝑋(𝑥 ) +𝑇𝑟𝑗4
𝑃𝑡

𝑋(𝑥 )  −   𝑇𝑟𝑗4
𝑃𝑡

𝑋(𝑥 ) +  …  + 𝑇𝑟𝑗𝑛
𝑃𝑡

𝑋(𝑥 ) − 𝑇𝑟𝑗𝑛
𝑃𝑡

𝑋(𝑥 ) 

thus let    𝑗𝑛 𝑛∈ℕ ⊂ ℤ𝑑  be a sequence with lexicographic ordering such that for each  

𝑗𝑖 ∈ Λ𝑖  and  Λ𝑖−1 ⊂ Λ𝑖  we have  𝑗𝑖−1 ≤ 𝑗𝑖  . Since the partial traces 𝑇𝑟𝑗 𝑖−1  and 𝑇𝑟𝑗 𝑖
  are 

projections with the ordering 𝑇𝑟𝑗1
≤ 𝑇𝑟𝑗2

  we have the relation    

                          𝑇𝑟𝑗 𝑖
𝑇𝑟𝑗 𝑖−1

= 𝑇𝑟𝑗 𝑖−1
𝑇𝑟𝑗 𝑖

= 𝑇𝑟𝑗 𝑖−1
,   

hence we  rewrite the zero terms as follows 

𝑃𝑡
𝑋(𝑥 ) =  𝑃𝑡

𝑋(𝑥 ) +  𝑇𝑟𝑗1
𝑃𝑡

𝑋(𝑥 ) −  𝑇𝑟𝑗1
𝑇𝑟𝑗2

𝑃𝑡
𝑋(𝑥 ) + 𝑇𝑟𝑗2

𝑃𝑡
𝑋(𝑥 ) −   𝑇𝑟𝑗2

𝑇𝑟𝑗3
𝑃𝑡

𝑋(𝑥 )   

                 +𝑇𝑟𝑗3
𝑃𝑡

𝑋(𝑥 )   –𝑇𝑟𝑗3
𝑇𝑟𝑗4

𝑃𝑡
𝑋(𝑥 )  …     +𝑇𝑟𝑗𝑛

𝑃𝑡
𝑋 𝑥  − 𝑇𝑟𝑗𝑛

𝑇𝑟𝑗𝑛+1
𝑃𝑡

𝑋 𝑥  .    

 𝑃𝑡
𝑋(𝑥 ) =  𝑃𝑡

𝑋(𝑥 ) − 𝑇𝑟𝑗1
𝑃𝑡

𝑋(𝑥 ) + 𝑇𝑟𝑗1
𝑃𝑡

𝑋(𝑥 )  +  𝑇𝑟𝑗1
(𝑃𝑡

𝑋(𝑥 ) −  𝑇𝑟𝑗2
𝑃𝑡

𝑋(𝑥 ))  

       + 𝑇𝑟𝑗2
  𝑃𝑡

𝑋 𝑥  −   𝑇𝑟𝑗3
𝑃𝑡

𝑋 𝑥   + 𝑇𝑟𝑗3
  𝑃𝑡

𝑋 𝑥  –𝑇𝑟𝑗4
𝑃𝑡

𝑋 𝑥     

      +𝑇𝑟𝑗4
(𝑃𝑡

𝑋(𝑥 ) − 𝑇𝑟𝑗5
𝑃𝑡

𝑋(𝑥 )) …      +𝑇𝑟𝑗𝑛
(𝑃𝑡

𝑋(𝑥 ) − 𝑇𝑟𝑗𝑛 +1
𝑃𝑡

𝑋(𝑥 ))     

hence from         𝜕𝑗1
𝑃𝑡

𝑋(𝑥 ) = 𝑃𝑡
𝑋(𝑥 ) − 𝑇𝑟𝑗1

𝑃𝑡
𝑋(𝑥 ) ,  

 we have       𝑃𝑡
𝑋(𝑥 ) =  𝜕𝑗1

𝑃𝑡
𝑋(𝑥 )  +   𝑇𝑟 𝑗1 ,𝑗2,𝑗3 ,.…𝑗𝑛   𝑃𝑡

𝑋(𝑥 ) −  𝑇𝑟𝑗𝑛+1
𝑃𝑡

𝑋(𝑥 ) 𝑛∈ℕ   

  note that the summation is finite because ,  

 𝑇𝑟𝑗𝑛
(𝑃𝑡

𝑋(𝑥 ) − 𝑇𝑟𝑗𝑛+1
𝑃𝑡

𝑋(𝑥 )) =  𝑇𝑟𝑗𝑛
𝑃𝑡

𝑋(𝑥 ) − 𝑇𝑟𝑗𝑛
𝑇𝑟𝑗𝑛+1

𝑃𝑡
𝑋(𝑥 ) 

                                               =  𝑇𝑟𝑗𝑛
𝑃𝑡

𝑋(𝑥 ) − 𝑇𝑟𝑗𝑛
𝑃𝑡

𝑋(𝑥 ) = 0   for 𝑛 ∈ ℕ.  
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 Thus we have 

      𝑇𝑟 𝑗1 ,𝑗2,𝑗3 ,.…𝑗𝑛   𝑃𝑡
𝑋 𝑥  −  𝑇𝑟𝑗𝑛+1

𝑃𝑡
𝑋 𝑥    𝑛∈ℕ  =    𝑇𝑟 𝑗1…𝑗𝑛  𝜕𝑗𝑛 +1

𝑃𝑡
𝑋(𝑥 ) 𝑛∈ℕ < ∞ 

therefore we can write    𝐼 ⊗ 𝑃𝑡
𝑋 𝑥  =  𝜕𝑗1

𝑃𝑡
𝑋 𝑥   +  𝑇𝑟 𝑗1…𝑗𝑛  𝜕𝑗𝑛 +1

𝑃𝑡
𝑋 𝑥  𝑛∈ℕ         

and also we have   𝑃𝑡
𝑋 𝑥  ⊗ 𝐼 =  𝑇𝑟 𝑗1…𝑗𝑛  𝜕𝑗𝑛 +1

𝑃𝑡
𝑋 𝑥  𝑛∈ℕ − 𝜕𝑗1

𝑃𝑡
𝑋 𝑥    

Hence   𝑃𝑡
𝑋 𝑥  − 𝜑Λ 𝑥    ≤   𝐼 ⊗ 𝑃𝑡

𝑋 𝑥   −  𝑃𝑡
𝑋 𝑥  ⊗ 𝐼    

≤   𝜕𝑗1
𝑃𝑡

𝑋 𝑥   +  𝑇𝑟 𝑗1…𝑗𝑛  𝜕𝑗𝑛 +1
𝑃𝑡

𝑋 𝑥  𝑛∈ℕ  −   𝑇𝑟 𝑗1…𝑗𝑛  𝜕𝑗𝑛 +1
𝑃𝑡

𝑋 𝑥  𝑛∈ℕ − 𝜕𝑗1
𝑃𝑡

𝑋 𝑥      

≤ 2 𝜕𝑗1
𝑃𝑡

𝑋 𝑥   =2  𝑃𝑡
𝑋 𝑥       

therefore we have           𝑃𝑡
𝑋 𝑥  − 𝜑Λ 𝑥   ≤ 2  𝑃𝑡

𝑋 𝑥    ≤ 2 𝑒−(1−𝜆) 𝑋 𝑡   𝑥    
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  CHAPTER FIVE                                          

       QUANTUM   ENTANGLEMENT OF TWO HARMONIC OSCILLATORS                                           

   5.0 Introduction 

Entangled quantum states are characterized by non local correlations that cannot be 

described by classical mechanics. Such correlations play an important role in quantum 

information science (Its etal., 2008). Quantum information is indispensable for the 

description and performance of tasks such as teleportation, super dense coding, quantum 

cryptography and quantum computation (Nielsen and Chuang, 2000). It is therefore 

essential to be able to generate, detect and quantify entanglement. In its full generality this 

is still an open problem (Its et al, 2008). Entanglement has also given new insight for 

understanding many physical phenomenon like super-radiance and superconductivity. In 

particular, understanding the role of entanglement in the existing methods of simulation of 

quantum spins systems allowed for significant improvement of the method, as well as 

understanding their limitations (Horodecki et al, 2007). 

In this chapter, we use the Lindblad theory of open quantum systems to derive the equation 

of motion and the Simon-Peres type equation in terms of the variance and covariance of the  

coordinates   𝑞𝑥 , 𝑞𝑦  and momenta  𝑝𝑥 , 𝑝𝑦  operators, of two harmonic oscillators  interacting 

with an environment. 
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5.1   The Lindbladian Operator  

Within the theory of quantum open systems, we consider the bounded Lindblad-type   

generator of a dynamical semigroup Φ𝑡  defined by, 

                           ℒ 𝑓 =  2(𝑉𝑗  𝑓 𝑉𝑗
∗

𝑗   ) −   𝑉𝑗
∗𝑉𝑗  𝑓 −  𝑓 𝑉𝑗

∗𝑉𝑗  ,        𝑓 ∈ ℌ                                                  

where 𝑉𝑗  , 𝑉𝑗
∗   are operators defined on a Hilbert space ℌ, are called the jump operators. 

Physically these operators represent the interaction of the open system with the 

environment and can be chosen freely. 

 A simple condition imposed to the operators 𝑉𝑗  , 𝑉𝑗
∗  is that they are functions of the basic 

observables of the one dimensional quantum mechanical system 𝑝, 𝑞 (with                 
 𝑝, 𝑞 = − 𝑞, 𝑝 ⊂ 𝑖𝐼, where 𝐼 is the identity operator on ℌ and  𝑝, 𝑝 =  𝑞, 𝑞 = 0 , here 

we assume that ℏ = 1) . This condition allow the obtained model to be exactly solvable. A 

precise version of this condition is that the linear space spanned by the noncommutative 

polynomials in 𝑝, 𝑞  are invariant under the action of the completely dissipative mapping ℒ.  
This condition implies that 𝑉𝑗  are at most the first degree polynomials in 𝑝, 𝑞 (Isar, etal., 

1994).We assume that  for two  Harmonic oscillators defined by the canonical observables 

of coordinates  𝑞𝑥 , 𝑞𝑦  and momenta 𝑝𝑥 , 𝑝𝑦 ,the operator  𝑉𝑗   generate four linearly 

independent operators. This is because the operators 𝑞𝑥 , 𝑞𝑦  ,𝑝𝑥 , 𝑝𝑦   give a basis (Sandulescu 

and Scutaru,1987)  which we define as follows, 

  𝑉𝑗 = 𝑎𝑗𝑥 𝑝𝑥 + 𝑎𝑗𝑦 𝑝𝑦 + 𝑏𝑗𝑥 𝑞𝑥 + 𝑏𝑗𝑦 𝑞𝑦    and  𝑉𝑗
∗= 𝑎𝑗𝑥

∗ 𝑝𝑥 + 𝑎𝑗𝑦
∗ 𝑝𝑦 + 𝑏𝑗𝑥

∗ 𝑞𝑥 + 𝑏𝑗𝑦
∗ 𝑞𝑦 ,      

 𝑗 = 1,2,3,4  Where  𝑎𝑗𝑥 ,𝑏𝑗𝑥  , 𝑎𝑗𝑦  , 𝑏𝑗𝑦   are complex numbers and  𝑎𝑗𝑥
∗   𝑎𝑗𝑦

∗  , 𝑏𝑗𝑥
∗ , 𝑏𝑗𝑦

∗    their 

corresponding  complex conjugates. Now for  𝑗 = 1,2,3,4  we derive the coordinate form 

for the Lindbladian operator by  substituting  the following equations 

𝑉𝑗
∗𝑉𝑗 𝑓 = (𝑎𝑗𝑥

∗ 𝑎𝑗𝑥 )𝑝𝑥
2𝑓+(𝑎𝑗𝑦

∗ 𝑎𝑗𝑦 )𝑝𝑦
2𝑓+(𝑏𝑗𝑥

∗ 𝑏𝑗𝑥 )𝑞𝑥
2𝑓+(𝑏𝑗𝑦

∗ 𝑏𝑗𝑦 )𝑞𝑦
2𝑓+(𝑎𝑗𝑥

∗ 𝑏𝑗𝑥 )𝑝𝑥𝑞𝑥𝑓 

         + 𝑏𝑗𝑥
∗ 𝑎𝑗𝑥  𝑞𝑥𝑝𝑥𝑓+ 𝑎𝑗𝑦

∗ 𝑏𝑗𝑦  𝑝𝑦𝑞𝑦𝑓+ 𝑏𝑗𝑦
∗ 𝑎𝑗𝑦  𝑞𝑦𝑝𝑦𝑓+ 𝑎𝑗𝑥

∗ 𝑏𝑗𝑦  𝑝𝑥𝑞𝑦𝑓+ 𝑏𝑗𝑦
∗ 𝑎𝑗𝑥  𝑞𝑦𝑝𝑥𝑓 

         + 𝑏𝑗𝑥
∗ 𝑎𝑗𝑦  𝑞𝑥𝑝𝑦𝑓+ 𝑎𝑗𝑦

∗ 𝑏𝑗𝑥  𝑝𝑦𝑞𝑥𝑓+ 𝑎𝑗𝑥
∗ 𝑎𝑗𝑦  𝑝𝑥𝑝𝑦𝑓+ 𝑎𝑗𝑦

∗ 𝑎𝑗𝑥  𝑝𝑦𝑝𝑥𝑓+ 𝑏𝑗𝑥
∗ 𝑏𝑗𝑦  𝑞𝑥𝑞𝑦𝑓 

         + (𝑏𝑗𝑦
∗ 𝑏𝑗𝑥 )𝑞𝑦𝑞𝑥𝑓. 

𝑓𝑉𝑗
∗𝑉𝑗 = (𝑎𝑗𝑥

∗ 𝑎𝑗𝑥 )𝑓𝑝𝑥
2+(𝑎𝑗𝑦

∗ 𝑎𝑗𝑦 )𝑓𝑝𝑦
2+(𝑏𝑗𝑥

∗ 𝑏𝑗𝑥 )𝑓𝑞𝑥
2+(𝑏𝑗𝑦

∗ 𝑏𝑗𝑦 )𝑓𝑞𝑦
2+(𝑎𝑗𝑥

∗ 𝑏𝑗𝑥 )𝑓𝑝𝑥𝑞𝑥  

         + 𝑏𝑗𝑥
∗ 𝑎𝑗𝑥  𝑓𝑞𝑥𝑝𝑥+ 𝑎𝑗𝑦

∗ 𝑏𝑗𝑦  𝑓𝑝𝑦𝑞𝑦+ 𝑏𝑗𝑦
∗ 𝑎𝑗𝑦  𝑓𝑞𝑦𝑝𝑦+ 𝑎𝑗𝑥

∗ 𝑏𝑗𝑦  𝑓𝑝𝑥𝑞𝑦+ 𝑏𝑗𝑦
∗ 𝑎𝑗𝑥  𝑓𝑞𝑦𝑝𝑥  

         + 𝑏𝑗𝑥
∗ 𝑎𝑗𝑦  𝑓𝑞𝑥𝑝𝑦+ 𝑎𝑗𝑦

∗ 𝑏𝑗𝑥  𝑓𝑝𝑦𝑞𝑥+ 𝑎𝑗𝑥
∗ 𝑎𝑗𝑦  𝑓𝑝𝑥𝑝𝑦+ 𝑎𝑗𝑦

∗ 𝑎𝑗𝑥  𝑓𝑝𝑦𝑝𝑥+ 𝑏𝑗𝑥
∗ 𝑏𝑗𝑦  𝑓𝑞𝑥𝑞𝑦  

         + (𝑏𝑗𝑦
∗ 𝑏𝑗𝑥 )𝑓𝑞𝑦𝑞𝑥  . 

𝑉𝑗
∗𝑓𝑉𝑗 =  (𝑎𝑗𝑥

∗ 𝑎𝑗𝑥 )𝑝𝑥𝑓𝑝𝑥+(𝑎𝑗𝑦
∗ 𝑎𝑗𝑦 )𝑝𝑦𝑓𝑝𝑦+(𝑏𝑗𝑥

∗ 𝑏𝑗𝑥 )𝑞𝑥𝑓𝑞𝑥+(𝑏𝑗𝑦
∗ 𝑏𝑗𝑦 )𝑞𝑦𝑓𝑞𝑦  
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         + 𝑎𝑗𝑥
∗ 𝑏𝑗𝑥  𝑝𝑥𝑓𝑞𝑥+ 𝑏𝑗𝑥

∗ 𝑎𝑗𝑥  𝑞𝑥𝑓𝑝𝑥+ 𝑎𝑗𝑦
∗ 𝑏𝑗𝑦  𝑝𝑦𝑓𝑞𝑦+ 𝑏𝑗𝑦

∗ 𝑎𝑗𝑦  𝑞𝑦𝑓𝑝𝑦+ 𝑎𝑗𝑥
∗ 𝑏𝑗𝑦  𝑝𝑥𝑓𝑞𝑦  

        + 𝑏𝑗𝑦
∗ 𝑎𝑗𝑥  𝑞𝑦𝑓𝑝𝑥  + 𝑏𝑗𝑥

∗ 𝑎𝑗𝑦  𝑞𝑥𝑓𝑝𝑦+ 𝑎𝑗𝑦
∗ 𝑏𝑗𝑥  𝑝𝑦𝑓𝑞𝑥+ 𝑎𝑗𝑥

∗ 𝑎𝑗𝑦  𝑝𝑥𝑓𝑝𝑦+ 𝑎𝑗𝑦
∗ 𝑎𝑗𝑥  𝑝𝑦𝑓𝑝𝑥  

       + 𝑏𝑗𝑥
∗ 𝑏𝑗𝑦  𝑞𝑥𝑓𝑞𝑦   + (𝑏𝑗𝑦

∗ 𝑏𝑗𝑥 )𝑞𝑦𝑓𝑞𝑥  . 

into the operator  

                                    ℒ 𝑓 =  2𝑉𝑗 𝑓𝑉𝑗
∗ − 𝑉𝑗

∗𝑉𝑗
4
𝑗 𝑓 − 𝑓𝑉𝑗

∗𝑉𝑗      

For     𝑗 = 1,2,3,4  

ℒ 𝑓 =  (𝑎𝑥
∗𝑎𝑥)(2𝑝𝑥𝑓𝑝𝑥 − 𝑝𝑥

2𝑓 −𝑓𝑝𝑥
2) + (𝑎𝑦

∗ 𝑎𝑦)(2𝑝𝑦𝑓𝑝𝑦 − 𝑝𝑦
2𝑓 − 𝑓𝑝𝑦

2) 

          +(𝑏𝑥
∗𝑏𝑥) 2𝑞𝑥𝑓𝑞𝑥 − 𝑞𝑥

2𝑓 − 𝑓𝑞𝑥
2 + (𝑏𝑦

∗𝑏𝑦 )(2𝑞𝑦𝑓𝑞𝑦 − 𝑞𝑦
2𝑓 − 𝑓𝑞𝑦

2)  

        + 𝑎 𝑥
∗𝑏𝑥  2𝑝𝑥𝑓𝑞𝑥 − 𝑝𝑥𝑞𝑥𝑓 − 𝑓𝑝𝑥𝑞𝑥 +  𝑏𝑥

∗𝑎𝑥 ( 2 𝑞𝑥𝑓𝑝𝑥 − 𝑞𝑥𝑝𝑥𝑓 − 𝑓 𝑞𝑥𝑝𝑥)  

       +  𝑎𝑦
∗ 𝑏𝑦 (2𝑝𝑦𝑓𝑞𝑦 − 𝑝𝑦𝑞𝑦𝑓 − 𝑓𝑝𝑦𝑞𝑦) +  𝑏𝑦

∗𝑎𝑦 (2𝑞𝑦𝑓𝑝𝑦 − 𝑞𝑦𝑝𝑦𝑓 − 𝑓𝑞𝑦𝑝𝑦)  

       + 𝑎𝑥
∗𝑏𝑦  (2𝑝𝑥𝑓𝑞𝑦 − 𝑝𝑥𝑞𝑦𝑓 − 𝑓𝑝𝑥𝑞𝑦) + 𝑏𝑦

∗𝑎𝑥 (2𝑞𝑦𝑓𝑝𝑥 − 𝑞𝑦𝑝𝑥𝑓 − 𝑓𝑞𝑦𝑝𝑥) 

      + 𝑏𝑥
∗𝑎𝑦  2𝑞𝑥𝑓𝑝𝑦 − 𝑞𝑥𝑝𝑦𝑓 − 𝑓𝑞𝑥𝑝𝑦  + 𝑎𝑦

∗ 𝑏𝑥 (2𝑝𝑦𝑓𝑞𝑥 − 𝑝𝑦𝑞𝑥𝑓 − 𝑓𝑝𝑦𝑞𝑥) 

      + 𝑎𝑥
∗𝑎𝑦 (2𝑝𝑥𝑓𝑝𝑦 − 𝑝𝑥𝑝𝑦𝑓 − 𝑓𝑝𝑥𝑝𝑦) +  𝑎𝑦

∗ 𝑎𝑥 (2𝑝𝑦𝑓𝑝𝑥 − 𝑝𝑦𝑝𝑥𝑓 − 𝑓𝑝𝑦𝑝𝑥)  

     + 𝑏𝑥
∗𝑏𝑦 (2𝑞𝑥𝑓𝑞𝑦 − 𝑞𝑥𝑞𝑦𝑓 − 𝑓𝑞𝑥𝑞𝑦) +  𝑏𝑦

∗𝑏𝑥 (2𝑞𝑦𝑓𝑞𝑥 −  𝑞𝑦𝑞𝑥𝑓 − 𝑓𝑞𝑦𝑞𝑥) 

 

 

 

 

We have  

ℒ 𝑓 =  (𝑎𝑥
∗𝑎𝑥) 𝑝𝑥 𝑓, 𝑝𝑥 −  𝑓, 𝑝𝑥 𝑝𝑥 + (𝑎𝑦

∗ 𝑎𝑦)(𝑝𝑦 𝑓, 𝑝𝑦  − [𝑓, 𝑝𝑦 ]𝑝𝑦) 

            +(𝑏𝑥
∗𝑏𝑥) 𝑞𝑥 𝑓, 𝑞𝑥 −  𝑓, 𝑞𝑥 𝑞𝑥 + (𝑏𝑦

∗𝑏𝑦)(𝑞𝑦  𝑓, 𝑞𝑦  − [𝑓, 𝑞𝑦 ]𝑞𝑦)  

           + 𝑎 𝑥
∗𝑏𝑥  𝑝𝑥[𝑓, 𝑞𝑥] − [𝑓, 𝑝𝑥]𝑞𝑥 +  𝑏𝑥

∗𝑎𝑥 (𝑞𝑥 𝑓, 𝑝𝑥 −  [𝑓, 𝑞𝑥]𝑝𝑥)  

            + 𝑎𝑦
∗ 𝑏𝑦 (𝑝𝑦[𝑓, 𝑞𝑦 ] − [𝑓, 𝑝𝑦 ]𝑞𝑦) +  𝑏𝑦

∗𝑎𝑦 (𝑞𝑦[𝑓, 𝑝𝑦 ] − [𝑓, 𝑞𝑦 ]𝑝𝑦)  

           + 𝑎𝑥
∗𝑏𝑦 (𝑝𝑥[𝑓, 𝑞𝑦 ] − [𝑓, 𝑝𝑥]𝑞𝑦) + 𝑏𝑦

∗𝑎𝑥 (𝑞𝑦[𝑓, 𝑝𝑥] − [𝑓, 𝑞𝑦 ]𝑝𝑥) 
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           + 𝑏𝑥
∗𝑎𝑦  𝑞𝑥 𝑓, 𝑝𝑦  − [𝑓, 𝑞𝑥]𝑝𝑦  + 𝑎𝑦

∗ 𝑏𝑥 (𝑝𝑦[𝑓, 𝑞𝑥] − [𝑓, 𝑝𝑦 ]𝑞𝑥) 

           + 𝑎𝑥
∗𝑎𝑦 (𝑝𝑥[𝑓, 𝑝𝑦 ] − [𝑓, 𝑝𝑥]𝑝𝑦) +  𝑎𝑦

∗ 𝑎𝑥 (𝑝𝑦 [𝑓, 𝑝𝑥] − [𝑓, 𝑝𝑦 ]𝑝𝑥)  

           + 𝑏𝑥
∗𝑏𝑦 (𝑞𝑥[𝑓, 𝑞𝑦 ] − [𝑓, 𝑞𝑥]𝑞𝑦) +  𝑏𝑦

∗𝑏𝑥 (𝑞𝑦 [𝑓, 𝑞𝑥] − [𝑓, 𝑞𝑦 ]𝑞𝑥) 

hence, the fact that ℒ is a generator of a dynamical semigroup implies the positivity of the 

following matrix whose entries are,  

                                     

 

 
 

(𝑎𝑗𝑥
∗ 𝑎𝑗𝑥 )  𝑎𝑗𝑥

∗ 𝑏𝑗𝑥  

 𝑏𝑗𝑥
∗ 𝑎𝑗𝑥  (𝑏𝑗𝑥

∗ 𝑏𝑗𝑥 )

 𝑎𝑗𝑥
∗ 𝑎𝑗𝑦   𝑎𝑗𝑥

∗ 𝑏𝑗𝑦  

 𝑏𝑗𝑥
∗ 𝑎𝑗𝑦   𝑏𝑗𝑥

∗ 𝑏𝑗𝑦  

 𝑎𝑗𝑦
∗ 𝑎𝑗𝑥   𝑎𝑗𝑦

∗ 𝑏𝑗𝑥  

 𝑏𝑗𝑦
∗ 𝑎𝑗𝑥   𝑏𝑗𝑦

∗ 𝑏𝑗𝑥  

(𝑎𝑗𝑦
∗ 𝑎𝑗𝑦 )  𝑎𝑗𝑦

∗ 𝑏𝑗𝑦  

 𝑏𝑗𝑦
∗ 𝑎𝑗𝑦  (𝑏𝑗𝑦

∗ 𝑏𝑗𝑦 ) 

 
 

   

   𝑗 = 1,2,3,4.  For   simplicity we use the following notations,  

 

𝐷𝑞𝑥𝑞𝑦
= 𝑅𝑒 𝑎𝑗𝑥

∗ 𝑎𝑗𝑦   =   𝐷𝑞𝑦𝑞𝑥
= 𝑅𝑒 𝑎𝑗𝑦

∗ 𝑎𝑗𝑥    

𝐷𝑝𝑥𝑝𝑦
= 𝑅𝑒 𝑏𝑗𝑥

∗ 𝑏𝑗𝑦   =  𝐷𝑝𝑥𝑝𝑦
= 𝑅𝑒 𝑏𝑗𝑦

∗ 𝑏𝑗𝑥   , 

𝐷𝑝𝑥𝑞𝑦
= −𝑅𝑒 𝑏𝑗𝑥

∗ 𝑎𝑗𝑦  = −𝑅𝑒 𝑎𝑗𝑦
∗ 𝑏𝑗𝑥  = 𝐷𝑞𝑦𝑝𝑥

  

𝐷𝑝𝑦𝑞𝑥
= −𝑅𝑒 𝑏𝑗𝑦

∗ 𝑎𝑗𝑥  = −𝑅𝑒 𝑎𝑗𝑥
∗ 𝑏𝑗𝑦  = 𝐷𝑞𝑥𝑝𝑦

  

𝐷𝑝𝑥𝑞𝑥
= −𝑅𝑒 𝑏𝑗𝑥

∗ 𝑎𝑗𝑥  = −𝑅𝑒 𝑎𝑗𝑥
∗ 𝑏𝑗𝑥  = 𝐷𝑞𝑥𝑝𝑥

  

𝐷𝑝𝑦𝑞𝑦
= −𝑅𝑒 𝑏𝑗𝑦

∗ 𝑎𝑗𝑦  = −𝑅𝑒 𝑎𝑗𝑦
∗ 𝑏𝑗𝑦   = 𝐷𝑞𝑦 𝑝𝑦

  

 𝐷𝑞𝑥𝑞𝑥
= (𝑎𝑗𝑥

∗ 𝑎𝑗𝑥 ) = 𝐷𝑞𝑦𝑞𝑦
= (𝑎𝑗𝑦

∗ 𝑎𝑗𝑦 ) 

𝐷𝑝𝑥𝑝𝑥
= (𝑏𝑗𝑥

∗ 𝑏𝑗𝑥 ) = 𝐷𝑝𝑦𝑝𝑦
= (𝑏𝑗𝑦

∗ 𝑏𝑗𝑦 )  

For the imaginary part we use the following 

𝜆 = −𝑖𝑚(𝑎𝑗𝑥
∗ 𝑏𝑗𝑥 )  =  −𝑖𝑚(𝑎𝑗𝑦

∗ 𝑏𝑗𝑦 ) = −𝑖𝑚 𝑎𝑗𝑥
∗ 𝑏𝑗𝑦  = −𝑖𝑚 𝑎𝑗𝑦

∗ 𝑏𝑗𝑥   

 𝜆 = 𝑖𝑚 𝑏𝑗𝑦
∗ 𝑎𝑗𝑦   = 𝑖𝑚(𝑏𝑗𝑥

∗ 𝑎𝑗𝑥 ) = 𝑖𝑚 𝑏𝑗𝑥
∗ 𝑎𝑗𝑦  = 𝑖𝑚 𝑏𝑗𝑦

∗ 𝑎𝑗𝑥   

Hence for simplicity the matrix takes the following form 
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 𝐷𝑞𝑥𝑞𝑥
−𝐷𝑝𝑥𝑞𝑥

− 𝑖𝜆

−𝐷𝑝𝑥𝑞𝑥
+ 𝑖𝜆 𝐷𝑝𝑥𝑝𝑥

𝐷𝑞𝑥𝑞𝑦
−𝐷𝑞𝑥𝑝𝑦

−𝐷𝑞𝑦𝑝𝑥
𝐷𝑝𝑥𝑝𝑦

𝐷𝑞𝑥𝑞𝑦
−𝐷𝑞𝑦𝑝𝑥

−𝐷𝑞𝑥𝑝𝑦
𝐷𝑝𝑥𝑝𝑦

𝐷𝑞𝑦𝑞𝑦
−𝐷𝑞𝑦𝑝𝑦

− 𝑖𝜆

−𝐷𝑞𝑦𝑝𝑦
+ 𝑖𝜆 𝐷𝑝𝑦𝑝𝑦  

 
 

  ,                                        

where 𝐷  and  𝜆  are real quantities.  

The matrix can be conveniently written as   
𝐶1 𝐶3

𝐶3
𝑇 𝐶2

  in terms of a 2×2 matrices with  

 𝐶1 = 𝐶1
𝑇 , 𝐶2 = 𝐶2

𝑇   the constants satisfy the condition   𝐷𝑞𝑞 > 0 , 𝐷𝑝𝑝 > 0 , 𝐷𝑝𝑞 > 0 such  

that for example, we write one of the conditions obtained from the positivity of the matrix  

 𝐷𝑞𝑞  𝐷𝑝𝑝 −  𝐷𝑝𝑞
2 > 𝜆 , this inequality and the corresponding ones derived from the matrix 

are constraints imposed on the fact that Φ𝑡  is a dynamical semigroup. 

hence we have, 

ℒ 𝑓 =   𝐷𝑞𝑥𝑞𝑥
 𝑝𝑥 𝑓, 𝑝𝑥 −  𝑓, 𝑝𝑥 𝑝𝑥 + 𝐷𝑞𝑦𝑞𝑦

(𝑝𝑦  𝑓, 𝑝𝑦  − [𝑓, 𝑝𝑦 ]𝑝𝑦) 

             +𝐷𝑝𝑥𝑝𝑥
 𝑞𝑥 𝑓, 𝑞𝑥 −  𝑓, 𝑞𝑥 𝑞𝑥 + 𝐷𝑝𝑦𝑝𝑦

(𝑞𝑦  𝑓, 𝑞𝑦  − [𝑓, 𝑞𝑦 ]𝑞𝑦)  

            −𝐷𝑝𝑥𝑞𝑥
− 𝑖𝜆 𝑝𝑥[𝑓, 𝑞𝑥] − [𝑓, 𝑝𝑥]𝑞𝑥 −𝐷𝑝𝑥𝑞𝑥

+ 𝑖𝜆(𝑞𝑥 𝑓, 𝑝𝑥 −  [𝑓, 𝑞𝑥]𝑝𝑥)  

            −𝐷𝑞𝑦𝑝𝑦
− 𝑖𝜆(𝑝𝑦 [𝑓, 𝑞𝑦 ] − [𝑓, 𝑝𝑦 ]𝑞𝑦)−𝐷𝑞𝑦𝑝𝑦

+ 𝑖𝜆(𝑞𝑦 [𝑓, 𝑝𝑦 ] − [𝑓, 𝑞𝑦 ]𝑝𝑦)  

             −𝐷𝑞𝑥𝑝𝑦
(𝑝𝑥[𝑓, 𝑞𝑦 ] − [𝑓, 𝑝𝑥]𝑞𝑦) −𝐷𝑞𝑥𝑝𝑦

(𝑞𝑦[𝑓, 𝑝𝑥] − [𝑓, 𝑞𝑦 ]𝑝𝑥) 

             −𝐷𝑞𝑦𝑝𝑥
  𝑞𝑥 𝑓, 𝑝𝑦  − [𝑓, 𝑞𝑥]𝑝𝑦  −𝐷𝑞𝑦𝑝𝑥

(𝑝𝑦[𝑓, 𝑞𝑥] − [𝑓, 𝑝𝑦 ]𝑞𝑥) 

             +𝐷𝑞𝑥𝑞𝑦
(𝑝𝑥[𝑓, 𝑝𝑦 ] − [𝑓, 𝑝𝑥]𝑝𝑦) + 𝐷𝑞𝑥𝑞𝑦

(𝑝𝑦[𝑓, 𝑝𝑥] − [𝑓, 𝑝𝑦 ]𝑝𝑥)  

             +𝐷𝑝𝑥𝑝𝑦
(𝑞𝑥[𝑓, 𝑞𝑦 ] − [𝑓, 𝑞𝑥]𝑞𝑦) + 𝐷𝑝𝑥𝑝𝑦

(𝑞𝑦 [𝑓, 𝑞𝑥] − [𝑓, 𝑞𝑦 ]𝑞𝑥) 

The Lindbladian operator in terms of the coordinates and momenta is then given by, 

ℒ 𝑓 =  −𝑖𝜆 𝑝𝑥[𝑓, 𝑞𝑥] +  [𝑓, 𝑞𝑥]𝑝𝑥) + 𝑖𝜆([𝑓, 𝑝𝑥]𝑞𝑥 + 𝑞𝑥 𝑓, 𝑝𝑥                 

                −𝑖𝜆 𝑝𝑦 [𝑓, 𝑞𝑦  + [𝑓, 𝑞𝑦 ]𝑝𝑦) +𝑖𝜆([𝑓, 𝑝𝑦 ]𝑞𝑦 + 𝑞𝑦 [𝑓, 𝑝𝑦 ]) 

                 + 𝐷𝑞𝑥𝑞𝑥
 [𝑝𝑥 ,  𝑓, 𝑝𝑥 ] + 𝐷𝑞𝑦𝑞𝑦

([𝑝𝑦 ,  𝑓, 𝑝𝑦  ]) +  𝐷𝑝𝑥𝑝𝑥
  𝑞𝑥 ,  𝑓, 𝑞𝑥    

                 +𝐷𝑝𝑦𝑝𝑦
([𝑞𝑦 ,  𝑓, 𝑞𝑦  )   −𝐷𝑝𝑥𝑞𝑥

([𝑝𝑥 , [𝑓, 𝑞𝑥]] + [𝑞𝑥 ,  𝑓, 𝑝𝑥 ])   

               −𝐷𝑞𝑦𝑝𝑦
 [𝑝𝑦 , [𝑓, 𝑞𝑦  ] + [𝑞𝑦 , [𝑓, 𝑝𝑦 ]]) −𝐷𝑞𝑥𝑝𝑦

([𝑝𝑥 ,  𝑓, 𝑞𝑦  ] +[𝑞𝑦 , [𝑓, 𝑝𝑥]])   
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                 −𝐷𝑞𝑦𝑝𝑥
 ([𝑞𝑥 ,  𝑓, 𝑝𝑦  ] +[𝑝𝑦 ,  𝑓, 𝑞𝑥 ]) +𝐷𝑞𝑥𝑞𝑦

([𝑝𝑥 𝑓, 𝑝𝑦  ] + [𝑝𝑦 ,  𝑓, 𝑝𝑥 ])      

                  +𝐷𝑝𝑥𝑝𝑦
([𝑞𝑥 ,  𝑓, 𝑞𝑦  ] + [𝑞𝑦 , [𝑓, 𝑞𝑥]])  
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5.2   Time- dependent Equations For  𝑝2, 𝑞2 and   𝑝𝑞. 

To get the dependence on time for the variance and covariance of the coordinate and 

momentum we consider the following equation, 

ℒ 𝑓 = −𝑖𝜆 𝑝 𝑓, 𝑞 + [𝑓, 𝑞]𝑝) + 𝑖𝜆( 𝑓, 𝑝 𝑞 + 𝑞 𝑓, 𝑝  − 𝑖𝜆 𝑝[𝑓, 𝑞 + [𝑓, 𝑞]𝑝) 

                 +𝑖𝜆( 𝑓, 𝑝 𝑞 + 𝑞[𝑓, 𝑝]))   +2 𝐷𝑞𝑞  [𝑝,  𝑓, 𝑝 ] + 2 𝐷𝑝𝑝  [𝑞,  𝑓, 𝑞 ]  

                 −2𝐷𝑝𝑞 ( 𝑝,  𝑓, 𝑞  +  𝑞,  𝑓, 𝑝  )  −2𝐷𝑞𝑝  [𝑝,  𝑓, 𝑞  + [𝑞,  𝑓, 𝑝 ])   

                  +𝐷𝑞𝑞 ([𝑝,  𝑓, 𝑝 ] + [𝑝,  𝑓, 𝑝 ])  +𝐷𝑝𝑝 ([𝑞,  𝑓, 𝑞 ] + [𝑞,  𝑓, 𝑞 ]) 

We substitute  𝑝2  in our equation, and noting that the following commutation relation 

holds    𝑝2, 𝑞 = 𝑝 𝑝, 𝑞 +  𝑝, 𝑞 𝑝      𝑝2 , 𝑝𝑞 = 𝑝 𝑝 𝑝, 𝑞 +  𝑝, 𝑞 𝑝 ,   and      𝑝2, 𝑝 = 0   

we have  

ℒ 𝑝2 = −𝑖𝜆 𝑝 𝑝2, 𝑞 + [𝑝2 , 𝑞]𝑝) + 𝑖𝜆( 𝑝2, 𝑝 𝑞 + 𝑞 𝑝2, 𝑝  − 𝑖𝜆 𝑝[𝑝2, 𝑞 + [𝑝2, 𝑞]𝑝) 

                 +𝑖𝜆( 𝑝2, 𝑝 𝑞 + 𝑞[𝑝2, 𝑝]))   +2 𝐷𝑞𝑞  [𝑝,  𝑝2, 𝑝 ] + 2 𝐷𝑝𝑝  [𝑞,  𝑝2, 𝑞 ]  

                 −2𝐷𝑝𝑞( 𝑝,  𝑝2, 𝑞  +  𝑞,  𝑝2, 𝑝  )  −2𝐷𝑞𝑝  [𝑝,  𝑝2, 𝑞  + [𝑞,  𝑝2, 𝑝 ])   

                  +𝐷𝑞𝑞 ([𝑝,  𝑝2, 𝑝 ] + [𝑝,  𝑝2 , 𝑝 ])  +𝐷𝑝𝑝 ([𝑞,  𝑝2, 𝑞 ] + [𝑞,  𝑝2, 𝑞 ]) 

 

 

ℒ 𝑝2 = −2𝑖𝜆 𝑝 𝑝2, 𝑞 ) + 2𝑖𝜆(𝑞 𝑝2, 𝑝  − 2𝑖𝜆[𝑝2, 𝑞]𝑝) 

              +4 𝐷𝑝𝑝  [𝑞,  𝑝2, 𝑞 ] −2𝐷𝑝𝑞 ( 𝑝,  𝑝2, 𝑞  )  −2𝐷𝑞𝑝  [𝑝,  𝑝2, 𝑞  )    

ℒ 𝑝2 = −2𝑖𝜆 𝑝(𝑝 𝑝, 𝑞 +  𝑝, 𝑞 𝑝 − 2𝑖𝜆(𝑝 𝑝, 𝑞 +  𝑝, 𝑞 𝑝)𝑝) 

                  +4 𝐷𝑝𝑝  [𝑞, (𝑝 𝑝, 𝑞 +  𝑝, 𝑞 𝑝)] −2𝐷𝑝𝑞 ( 𝑝, (𝑝 𝑝, 𝑞 +  𝑝, 𝑞 𝑝) )    

                  −2𝐷𝑞𝑝  [𝑝, (𝑝 𝑝, 𝑞 +  𝑝, 𝑞 𝑝) )    

ℒ 𝑝2 = −2𝑖𝜆 𝑝(𝑝𝑖 + 𝑖𝑝 − 2𝑖𝜆(𝑝𝑖 + 𝑖𝑝)𝑝 + 4 𝐷𝑝𝑝  [𝑞, (𝑝𝑖 + 𝑖𝑝)] −2𝐷𝑝𝑞 ( 𝑝, (𝑝𝑖 + 𝑖𝑝) )      

             −2𝐷𝑞𝑝  [𝑝, (𝑝𝑖 + 𝑖𝑝) )     

hence we have                              ℒ 𝑝2 = 8𝜆𝑝2  −8 𝐷𝑝𝑝     

For 𝑞2 we note that that the following commutation relation holds   𝑞2, 𝑝 = 𝑞 𝑞, 𝑝 +
 𝑞, 𝑝 𝑞 ,     𝑞2, 𝑝𝑞 =  𝑞 𝑞, 𝑝 +  𝑞, 𝑝 𝑞 𝑞       𝑞2, 𝑞 = 0 
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we have,   

ℒ 𝑞2 = −𝑖𝜆 𝑝 𝑞2, 𝑞 + [𝑞2, 𝑞]𝑝) + 𝑖𝜆( 𝑞2, 𝑝 𝑞 + 𝑞 𝑞2, 𝑝  − 𝑖𝜆 𝑝[𝑞2, 𝑞 + [𝑞2, 𝑞]𝑝) 

                 +𝑖𝜆( 𝑞2, 𝑝 𝑞 + 𝑞[𝑞2 , 𝑝]))   +2 𝐷𝑞𝑞  [𝑝,  𝑞2, 𝑝 ] + 2 𝐷𝑝𝑝  [𝑞,  𝑞2, 𝑞 ]  

                 −2𝐷𝑝𝑞 ( 𝑝,  𝑞2, 𝑞  +  𝑞,  𝑞2, 𝑝  )  −2𝐷𝑞𝑝  [𝑝,  𝑞2, 𝑞  + [𝑞,  𝑞2, 𝑝 ])   

                  +𝐷𝑞𝑞 ([𝑝,  𝑞2, 𝑝 ] + [𝑝,  𝑞2, 𝑝 ])  +𝐷𝑝𝑝 ([𝑞,  𝑞2, 𝑞 ] + [𝑞,  𝑞2, 𝑞 ]) 

ℒ 𝑞2 = 𝑖𝜆  𝑞2, 𝑝 𝑞 + 𝑞 𝑞2, 𝑝  + 𝑖𝜆( 𝑞2, 𝑝 𝑞 + 𝑞[𝑞2, 𝑝]))   +2 𝐷𝑞𝑞  [𝑝,  𝑞2, 𝑝 ]  

                 −2𝐷𝑝𝑞 ( 𝑞,  𝑞2, 𝑝  )  −2𝐷𝑞𝑝 ([𝑞,  𝑞2, 𝑝 ])   

                  +𝐷𝑞𝑞 ([𝑝,  𝑞2, 𝑝 ] + [𝑝,  𝑞2, 𝑝 ])   

 

ℒ 𝑞2 =  𝑖𝜆 (𝑞 𝑞, 𝑝 +  𝑞, 𝑝 𝑞 )𝑞 + 𝑞(𝑞 𝑞, 𝑝 +  𝑞, 𝑝 𝑞 )  

                 +𝑖𝜆  𝑞 𝑞, 𝑝 +  𝑞, 𝑝 𝑞  𝑞 + 𝑞 𝑞 𝑞, 𝑝 +  𝑞, 𝑝 𝑞    

                +2 𝐷𝑞𝑞  [𝑝, (𝑞 𝑞, 𝑝 +  𝑞, 𝑝 𝑞 )]  −2𝐷𝑝𝑞 ( 𝑞, (𝑞 𝑞, 𝑝 +  𝑞, 𝑝 𝑞 ) )    

              −2𝐷𝑞𝑝   𝑞,  𝑞 𝑞, 𝑝 +  𝑞, 𝑝 𝑞         

              +𝐷𝑞𝑞 ([𝑝, (𝑞 𝑞, 𝑝 +  𝑞, 𝑝 𝑞 )]  +[𝑝, (𝑞 𝑞, 𝑝 +  𝑞, 𝑝 𝑞 )])   

 

ℒ 𝑞2 = 𝑖𝜆 (𝑞𝑖 + 𝑖𝑞 )𝑞 + 𝑞(𝑞𝑖 + 𝑖𝑞 )  +𝑖𝜆((𝑞𝑖 + 𝑖𝑞 )𝑞 + 𝑞(𝑞𝑖 + 𝑖𝑞 ))  

                 +2 𝐷𝑞𝑞  [𝑝, (𝑞𝑖 + 𝑖𝑞 )]   −2𝐷𝑝𝑞 ( 𝑞, (𝑞𝑖 + 𝑖𝑞 ) ) −2𝐷𝑞𝑝 ([𝑞, (𝑞𝑖 + 𝑖𝑞 )])   

                  +𝐷𝑞𝑞 ([𝑝, (𝑞𝑖 + 𝑖𝑞 )] + [𝑝, (𝑞𝑖 + 𝑖𝑞 )])   

 

 

ℒ 𝑞2 = 𝑖𝜆 4𝑖𝑞2   +𝑖𝜆(4𝑖𝑞2)   +4𝑖 𝐷𝑞𝑞  [𝑝, 𝑞 ]   −4𝑖𝐷𝑝𝑞 ( 𝑞, 𝑞  )  −4𝑖𝐷𝑞𝑝 ([𝑞, 𝑞 ])   

              +2𝐷𝑞𝑞 ([𝑝, 2𝑖𝑞 ])   

hence   we have     ℒ 𝑞2 = −8𝜆𝑞2 −8 𝐷𝑞𝑞 .  
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For 𝑝𝑞 + 𝑞𝑝   we note that the relation       𝑝𝑞, 𝑝 = 𝑝 𝑞, 𝑝 ,   𝑝𝑞, 𝑞 =  𝑝, 𝑞 𝑞,  holds. 

Hence we have,     

ℒ 𝑓 = −𝑖𝜆 𝑝 𝑓, 𝑞 + [𝑓, 𝑞]𝑝) + 𝑖𝜆( 𝑓, 𝑝 𝑞 + 𝑞 𝑓, 𝑝  − 𝑖𝜆 𝑝[𝑓, 𝑞 + [𝑓, 𝑞]𝑝) 

                 +𝑖𝜆( 𝑓, 𝑝 𝑞 + 𝑞[𝑓, 𝑝]))   +2 𝐷𝑞𝑞  [𝑝,  𝑓, 𝑝 ] + 2 𝐷𝑝𝑝  [𝑞,  𝑓, 𝑞 ]  

                 −2𝐷𝑝𝑞 ( 𝑝,  𝑓, 𝑞  +  𝑞,  𝑓, 𝑝  )  −2𝐷𝑞𝑝  [𝑝,  𝑓, 𝑞  + [𝑞,  𝑓, 𝑝 ])   

                  +𝐷𝑞𝑞 ([𝑝,  𝑓, 𝑝 ] + [𝑝,  𝑓, 𝑝 ])  +𝐷𝑝𝑝 ([𝑞,  𝑓, 𝑞 ] + [𝑞,  𝑓, 𝑞 ]) 

 

ℒ 𝑝𝑞 + 𝑞𝑝 = −𝑖𝜆 𝑝  𝑝𝑞 + 𝑞𝑝 , 𝑞 + [(𝑝𝑞 + 𝑞𝑝), 𝑞]𝑝)  

                          +𝑖𝜆(  𝑝𝑞 + 𝑞𝑝 , 𝑝 𝑞 + 𝑞  𝑝𝑞 + 𝑞𝑝 , 𝑝   

                         −𝑖𝜆 𝑝[(𝑝𝑞 + 𝑞𝑝), 𝑞 + [(𝑝𝑞 + 𝑞𝑝), 𝑞]𝑝) 

                       +𝑖𝜆(  𝑝𝑞 + 𝑞𝑝 , 𝑝 𝑞 + 𝑞[(𝑝𝑞 + 𝑞𝑝), 𝑝]))  

             +2 𝐷𝑞𝑞  [𝑝,  (𝑝𝑞 + 𝑞𝑝), 𝑝 ] + 2 𝐷𝑝𝑝  [𝑞,  (𝑝𝑞 + 𝑞𝑝), 𝑞 ]  

                 −2𝐷𝑝𝑞 ( 𝑝,  (𝑝𝑞 + 𝑞𝑝), 𝑞  +  𝑞,  (𝑝𝑞 + 𝑞𝑝), 𝑝  )  

                  −2𝐷𝑞𝑝  [𝑝,  (𝑝𝑞 + 𝑞𝑝), 𝑞  + [𝑞,  (𝑝𝑞 + 𝑞𝑝), 𝑝 ])   

                  +𝐷𝑞𝑞 ([𝑝,  (𝑝𝑞 + 𝑞𝑝), 𝑝 ] + [𝑝,  (𝑝𝑞 + 𝑞𝑝), 𝑝 ])   

                  +𝐷𝑝𝑝 ([𝑞,  (𝑝𝑞 + 𝑞𝑝), 𝑞 ] + [𝑞,  (𝑝𝑞 + 𝑞𝑝), 𝑞 ]) 

 

ℒ 𝑝𝑞 + 𝑞𝑝 = −𝑖𝜆 𝑝  𝑝, 𝑞 𝑞  + ( 𝑝, 𝑞 𝑞)𝑝) + 𝑖𝜆( 𝑝 𝑞, 𝑝] + [𝑞, 𝑝 𝑝 𝑞 

                +𝑞 𝑝 𝑞, 𝑝] + [𝑞, 𝑝 𝑝 ) −𝑖𝜆 𝑝  𝑝, 𝑞 𝑞 +   𝑝, 𝑞 𝑞  𝑝 + 𝑖𝜆 𝑝 𝑞, 𝑝 +  𝑞, 𝑝 𝑝 𝑞 

                +𝑞(𝑝 𝑞, 𝑝 +  𝑞, 𝑝 𝑝))  +2 𝐷𝑞𝑞  [𝑝, 𝑝 𝑞, 𝑝 +  𝑞, 𝑝 𝑝] + 2 𝐷𝑝𝑝  [𝑞,  𝑝, 𝑞 𝑞 ]  

    −2𝐷𝑝𝑞 ( 𝑝,  𝑝, 𝑞 𝑞 +  𝑞, 𝑝 𝑞, 𝑝 +  𝑞, 𝑝 𝑝 )−2𝐷𝑞𝑝  [𝑝,  𝑝, 𝑞 𝑞  + [𝑞, 𝑝 𝑞, 𝑝 +  𝑞, 𝑝 𝑝])              

+𝐷𝑞𝑞 ([𝑝, 𝑝 𝑞, 𝑝 ] + [𝑝, 𝑝 𝑞, 𝑝 +  𝑞, 𝑝 𝑝])  +𝐷𝑝𝑝 ([𝑞,  𝑝, 𝑞 𝑞 ] + [𝑞,  𝑝, 𝑞 𝑞 ]) 

 

ℒ 𝑝𝑞 + 𝑞𝑝 = −𝑖𝜆 𝑖𝑝𝑞 + 𝑖𝑞𝑝   +𝑖𝜆(2𝑖𝑝𝑞 + 2𝑖𝑞𝑝)  

                      −𝑖𝜆(𝑖𝑝𝑞 + 𝑖𝑞𝑝 )  +𝑖𝜆(2𝑖𝑝𝑞 + 2𝑖𝑞𝑝))  
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                      +2 𝐷𝑞𝑞  [𝑝, 2𝑖𝑝] + 2 𝐷𝑝𝑝  [𝑞, 𝑖𝑞 ]  

                    −2𝐷𝑝𝑞 ( 𝑝, 𝑖𝑞 +  𝑞, 2𝑖𝑝 )  −2𝐷𝑞𝑝  [𝑝, 𝑖𝑞  + [𝑞, 2𝑖𝑝])   

                    +𝐷𝑞𝑞 ([𝑝, 𝑝𝑖] + [𝑝, 2𝑖𝑝]) +𝐷𝑝𝑝 ([𝑞, 𝑖𝑞 ] + [𝑞, 𝑖𝑞 ]) 

 

ℒ 𝑝𝑞 + 𝑞𝑝 = 𝜆𝑝𝑞 + 𝜆𝑞𝑝 −2𝜆𝑝𝑞 − 2𝜆𝑞𝑝 +𝜆𝑝𝑞 + 𝜆𝑞𝑝   −2𝜆𝑝𝑞 − 2𝜆𝑞𝑝  

                      +2 𝐷𝑞𝑞  [𝑝, 2𝑖𝑝] + 2 𝐷𝑝𝑝  [𝑞, 𝑖𝑞 ]  

                    −2𝐷𝑝𝑞 ( 𝑝, 𝑖𝑞 +  𝑞, 2𝑖𝑝 )  −2𝐷𝑞𝑝  [𝑝, 𝑖𝑞  + [𝑞, 2𝑖𝑝])   

                    +𝐷𝑞𝑞 ([𝑝, 𝑝𝑖] + [𝑝, 2𝑖𝑝]) +𝐷𝑝𝑝 ([𝑞, 𝑖𝑞 ] + [𝑞, 𝑖𝑞 ]) 

ℒ 𝑝𝑞 + 𝑞𝑝 =  −2𝜆𝑝𝑞 − 2𝜆𝑞𝑝 −2𝐷𝑝𝑞 ( 𝑝, 𝑖𝑞 +  𝑞, 2𝑖𝑝 )  −2𝐷𝑞𝑝  [𝑝, 𝑖𝑞  + [𝑞, 2𝑖𝑝])   

ℒ 𝑝𝑞 + 𝑞𝑝 =  −2𝜆(𝑝𝑞 + 𝑞𝑝) −2𝐷𝑝𝑞 (𝑖 𝑝, 𝑞 + 2𝑖 𝑞, 𝑝 ) −2𝐷𝑞𝑝  𝑖[𝑝, 𝑞  + 2𝑖[𝑞, 𝑝])   

ℒ 𝑝𝑞 + 𝑞𝑝 =  −2𝜆(𝑝𝑞 + 𝑞𝑝) −6𝐷𝑝𝑞  −6𝐷𝑞𝑝    

Now since   𝐷𝑝𝑞 = 𝐷𝑞𝑝   we have the equation as 

ℒ 𝑝𝑞 + 𝑞𝑝 =  −2𝜆(𝑝𝑞 + 𝑞𝑝) −12𝐷𝑝𝑞    

Hence our three equations are the following 

ℒ 𝑝2 = 8𝜆𝑝2  −8 𝐷𝑝𝑝     

ℒ 𝑞2 = −8𝜆𝑞2 −8 𝐷𝑞𝑞   

ℒ 𝑝𝑞 + 𝑞𝑝 =  −2𝜆(𝑝𝑞 + 𝑞𝑝) −12𝐷𝑝𝑞    

From (Isar, etal.,   1994)  the following notations for the variance and covariance, in terms 

of the observables  𝑝2, 𝑞2 and 𝑝𝑞 is given by, 

𝜍𝑞𝑞  𝑡 = 𝑇𝑟 𝜌Φ𝑡 𝑞
2  − 𝑇𝑟 𝜌Φ𝑡 𝑞  

2
        

𝜍𝑝𝑝  𝑡 = 𝑇𝑟 𝜌Φ𝑡 𝑝
2  − 𝑇𝑟 𝜌Φ𝑡 𝑝  

2
  

𝜍𝑝𝑞  𝑡 =
1

2
𝑇𝑟 𝜌Φ𝑡 𝑝𝑞 + 𝑞𝑝    

where  𝑇𝑟 is the trace,  𝜌 is a density matrix and  Φ𝑡  a dynamical semigroup.   An important 

consequence of the solvability condition is that (𝑑 𝑑𝑡) 𝜍𝑞𝑞  𝑡 ,  (𝑑 𝑑𝑡) 𝜍𝑝𝑝  𝑡 , 
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(𝑑 𝑑𝑡) 𝜍𝑝𝑞  𝑡  are functions of  𝜍𝑞𝑞  𝑡 ,  𝜍𝑝𝑝  𝑡 , 𝜍𝑝𝑞  𝑡  Now since ℒ is the generator of the 

dynamical semigroup Φ𝑡  we  have the differential equations  in the following form 

𝑑𝜍𝑝𝑝  𝑡 

𝑑𝑡
= 𝑇𝑟 𝜌ℒ Φ𝑡(𝑝2     

𝑑𝜍𝑞𝑞 𝑡 

𝑑𝑡
= 𝑇𝑟 𝜌ℒ Φ𝑡(𝑞2    

𝑑𝜍𝑝𝑞  𝑡 

𝑑𝑡
=

1

2
𝑇𝑟 𝜌ℒ Φ𝑡(𝑝𝑞 + 𝑞𝑝     

The equation of motion for the variance and covariance is  

𝑑𝜍𝑝𝑝  𝑡 

𝑑𝑡
= 8𝜆𝑇𝑟 𝜌ℒ Φ𝑡(𝑝2   −8𝐷𝑝𝑝    

𝑑𝜍𝑞𝑞  𝑡 

𝑑𝑡
=   −8𝜆𝑇𝑟(𝜌ℒ Φ𝑡(𝑞2 ) − 8𝐷𝑞𝑞   

𝑑𝜍𝑝𝑞  𝑡 

𝑑𝑡
=  −2𝜆𝑇𝑟(𝜌ℒ(Φ𝑡(𝑞𝑝  +𝑝𝑞))   −12𝐷𝑝𝑞    

hence we have, the equations in the following form 

𝑑𝜍𝑝𝑝  𝑡 

𝑑𝑡
= 8𝜆𝜍𝑝𝑝  𝑡  −8𝐷𝑝𝑝    

𝑑𝜍𝑞𝑞  𝑡 

𝑑𝑡
=   −8𝜆𝜍𝑞𝑞  𝑡 − 8𝐷𝑞𝑞   

𝑑𝜍𝑝𝑞  𝑡 

𝑑𝑡
=  −2𝜆𝜍𝑝𝑞  𝑡   +12𝐷𝑝𝑞    

We solve the  three differential equations  above by using  the simple connection between 

their  asymptotic values and the diffusion coefficients given by 

 𝑋 ∞ =  −𝑅−1𝐷  in (Sandulescu and Scutaru,1987).    

The above equation in matrix form is,   
𝑑𝑋 (𝑡)

𝑑𝑡
= 𝑅𝑋 𝑡 + 𝐷   

where 

   
𝑑𝑋 (𝑡)

𝑑𝑡
=

 

 
 

𝑑𝜍𝑝𝑝  𝑡 

𝑑𝑡
𝑑𝜍𝑞𝑞  𝑡 

𝑑𝑡
𝑑𝜍𝑝𝑞  𝑡 

𝑑𝑡  

 
 

 ,  𝑅 =   
8𝜆 0 0
0 −8𝜆 0
0 0 −2𝜆

  ,  𝑋 𝑡 =  

𝜍𝑝𝑝 (𝑡)

𝜍𝑞𝑞 (𝑡)

𝜍𝑝𝑞 (𝑡)

 , 𝐷 =   

−8𝐷𝑝𝑝

−8𝐷𝑞𝑞

12𝐷𝑝𝑞

 ,  



78 

 

that is   

 

 
 

𝑑𝜍𝑝𝑝  𝑡 

𝑑𝑡
𝑑𝜍𝑞𝑞  𝑡 

𝑑𝑡
𝑑𝜍𝑝𝑞  𝑡 

𝑑𝑡  

 
 

=  
8𝜆 0 0
0 −8𝜆 0
0 0 −2𝜆

  

𝜍𝑝𝑝 (𝑡)

𝜍𝑞𝑞 (𝑡)

𝜍𝑝𝑞 (𝑡)

 +  

−8𝐷𝑝𝑝

−8𝐷𝑞𝑞

12𝐷𝑝𝑞

 ,    

we now use the relation    𝑋 ∞ =  −𝑅−1𝐷   to find the asymptotic values ,hence we  

have,         𝑅−1 =  
1

𝐷𝑒𝑡𝑅
  𝑅𝑎𝑑𝑗  

 
,                𝐷𝑒𝑡𝑅 = (8)(16)𝜆3, 

𝑅𝑎𝑑𝑗 =  
16𝜆2 0 0

0 −16𝜆2 0
0 0 64𝜆2

     
   

  𝑎𝑛𝑑   𝑅
−1

=
1

(8)(16)𝜆3   
16𝜆2 0 0

0 −16𝜆2 0
0 0 64𝜆2

   

from the simple relation  , we have the  asymptotic equations  given by , 

𝑋 ∞ =
1

16𝜆3   
2𝜆2 0 0

0 −2𝜆2 0
0 0 8𝜆2

  

−8𝐷𝑝𝑝

−8𝐷𝑞𝑞

12𝐷𝑝𝑞

 ,  where     𝑋 ∞ =  

𝜍𝑝𝑝 (∞)

𝜍𝑞𝑞 (∞)

𝜍𝑝𝑞 (∞)

      

 and we have the following asymptotic values for the variance and covariance 

𝜍𝑝𝑝 (∞) =
16𝜆2𝐷𝑝𝑝

16𝜆3  ,        𝜍𝑞𝑞  ∞ =
16𝜆2𝐷𝑞𝑞

16𝜆3     and           𝜍𝑝𝑞 (∞) =
8𝜆2𝐷𝑝𝑞

16𝜆3   

we have on simplifying 

𝜍𝑝𝑝 (∞) =
𝐷𝑝𝑝

𝜆
 ,       𝜍𝑞𝑞  ∞ =

𝐷𝑞𝑞

𝜆
       and      𝜍𝑝𝑞 (∞) =

𝐷𝑝𝑞

2𝜆
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5.3   Asymptotic   Entanglement  

Here we discuss the   entanglement of two independent oscillators interacting with the 

environment in the long time regime,  𝑡 → ∞ , 𝑢sing the Peres –Simon formula for  bipartite  

system (Isar,2008).   

𝑆 ≡ 𝑑𝑒𝑡𝐴 𝑑𝑒𝑡𝐵 −
1

4
 𝑑𝑒𝑡𝐴 + 𝑑𝑒𝑡𝐵 +  

1

4
−  𝑑𝑒𝑡𝐶  

2

− 𝑇𝑟 𝐴𝐽𝐶𝐽𝐵𝐽𝐶𝑇𝐽 .  

where the matrix  𝐽 =  
0 1

−1 0
  is called the  symplectic matrix  and 𝐴 , 𝐵, 𝐶  are  sub 

matrices  of the  4 × 4  real, symmetric and positive  matrix called the covariance matrix 

with block structure given  in (Isar,2008)  ,   by     𝜍 𝑡 ≡  
𝐴 𝐶
𝐶𝑇 𝐵

 .   This decomposition 

has a direct physical interpretation: the elements containing the diagonal contributions of 

𝜍 𝑡  represent diffusion and dissipation coefficients corresponding to the first, respectively 

the second, system in absence of the other, while the elements in 𝐶  represent environment 

generated couplings between the two ,initial independent oscillators. (Isar,2008). 

 

 

 

 

 

Proposition 5.3.1 

 Suppose the sub-matrices 𝐴 and 𝐵 are equal and symmetric then Peres-Simon type 

equation in terms of the variance and covariance of the coordinates and momenta  operators 

is given by     

𝑆 =  𝜍𝑞𝑥𝑞𝑥
𝜍𝑝𝑥𝑝𝑥

− 𝜍𝑞𝑥𝑝𝑥 ,
2  

2
−

1

2
 𝜍𝑞𝑥𝑞𝑥

𝜍𝑝𝑥𝑝𝑥
− 𝜍𝑞𝑥𝑝𝑥 ,

2   

     +  𝜍𝑞𝑥𝑝𝑦
𝜍𝑝𝑥𝑝𝑦

− 𝜍𝑞𝑦𝑝𝑥
2  

2

−
1

2
 𝜍𝑞𝑥𝑝𝑦

𝜍𝑝𝑥𝑞𝑦
− 𝜍𝑞𝑦𝑝𝑥

2  +   
1

4
 

2

  

    − (𝜍𝑞𝑥𝑝𝑥
2 + 𝜍𝑞𝑥𝑝𝑥

2 )(𝜍𝑞𝑥𝑞𝑦
2 + 𝜍𝑞𝑥𝑝𝑥

2 )   +  (𝜍𝑞𝑥𝑝𝑥
2 + 𝜍𝑞𝑥𝑝𝑥

2 )(𝜍𝑞𝑥𝑝𝑦
2 + 𝜍𝑞𝑥𝑝2

2 )   

Proof 

To derive the Peres-Simon type equation for the entanglement of a bipartite system, we 

assumed that the sub matrices A and B are equal and symmetric, then the Peres-Simon 
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formula becomes   𝑆 = 𝑑𝑒𝑡𝐴2 −
1

2
𝑑𝑒𝑡𝐴 +  

1

4
−  𝑑𝑒𝑡𝐶  

2

− 𝑇𝑟 𝐴𝐽𝐶𝐽 2.  we define the 

matrices  𝐴, 𝐶  as follows,  

          𝐴 =  
𝜍𝑞𝑥𝑞𝑥

𝜍𝑞𝑥𝑝𝑦

𝜍𝑞𝑥𝑝𝑥
𝜍𝑝𝑥𝑝𝑥

  𝑎𝑛𝑑       𝐶 =  
𝜍𝑞𝑥𝑞𝑦

𝜍𝑞𝑥𝑝𝑦

𝜍𝑞𝑦𝑝𝑥
𝜍𝑝𝑥𝑝𝑦

    

hence we have 

  𝑑𝑒𝑡𝐴2 −
1

2
𝑑𝑒𝑡𝐴 =  𝜍𝑞𝑥𝑞𝑥

𝜍𝑝𝑥𝑝𝑥
− 𝜍𝑞𝑥𝑝𝑥 ,

2  
2

−
1

2
 𝜍𝑞𝑥𝑞𝑥

𝜍𝑝𝑥𝑝𝑥
− 𝜍𝑞𝑥𝑝𝑥 ,

2   

  
1

4
−  𝑑𝑒𝑡𝐶  

2

=   𝜍𝑞𝑥𝑝𝑦
𝜍𝑝𝑥𝑝𝑦

− 𝜍𝑞𝑦𝑝𝑥
2  

2

−
1

2
 𝜍𝑞𝑥𝑝𝑦

𝜍𝑝𝑥𝑞𝑦
− 𝜍𝑞𝑦𝑝𝑥

2  +  
1

4
 

2

       

  and 

𝑡𝑟(𝐴𝐽𝐶𝐽)2 =  (𝜍𝑞𝑥𝑝𝑥
2 + 𝜍𝑞𝑥𝑝𝑥

2 )(𝜍𝑞𝑥𝑞𝑦
2 + 𝜍𝑞𝑥𝑝𝑥

2 )  +  (𝜍𝑞𝑥𝑝𝑥
2 + 𝜍𝑞𝑥𝑝𝑥

2 )(𝜍𝑞𝑥𝑝𝑦
2 + 𝜍𝑞𝑥𝑝2

2 )  

 this gives the Peres-Simon type equation in terms of the variance and covariance of the 

coordinates and momenta  operators. 

 𝑆 =  𝜍𝑞𝑥𝑞𝑥
𝜍𝑝𝑥𝑝𝑥

− 𝜍𝑞𝑥𝑝𝑥 ,
2  

2
−

1

2
 𝜍𝑞𝑥𝑞𝑥

𝜍𝑝𝑥𝑝𝑥
− 𝜍𝑞𝑥𝑝𝑥 ,

2   

   +  𝜍𝑞𝑥𝑝𝑦
𝜍𝑝𝑥𝑝𝑦

− 𝜍𝑞𝑦𝑝𝑥
2  

2

−
1

2
 𝜍𝑞𝑥𝑝𝑦

𝜍𝑝𝑥𝑞𝑦
− 𝜍𝑞𝑦𝑝𝑥

2  +   
1

4
 

2

  

 − (𝜍𝑞𝑥𝑝𝑥
2 + 𝜍𝑞𝑥𝑝𝑥

2 )(𝜍𝑞𝑥𝑞𝑦
2 + 𝜍𝑞𝑥𝑝𝑥

2 )  +   (𝜍𝑞𝑥𝑝𝑥
2 + 𝜍𝑞𝑥𝑝𝑥

2 )(𝜍𝑞𝑥𝑝𝑦
2 + 𝜍𝑞𝑥𝑝2

2 ) . 

The Peres-Simon type equation is then use to investigate in the long-time regime whether 

or not the two harmonic oscillators are entangled, by using the Lindbladian operator   

derived in section 5.1  hence we substitute    ℒ 𝑝𝑥𝑝𝑦 ,  ℒ 𝑞𝑥𝑞𝑦   ,    ℒ 𝑝𝑥𝑞𝑦 + 𝑞𝑥𝑝𝑦   and 

by direct calculation we  can evaluate  the equations of motions as we did in section 5.2 on 

solving the differential equation in the long term we get  the  entries for  matrix A  and 

entries for  matrix C.  

From (Isar, 2008) we know that if  𝑆 ≤ 0  then the bipartite systems are entangled in the 

long-time regime. 
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                                                      CHAPTER SIX 

SUMMARY AND CONCLUSION 

6.1   Summary 

 In the study of stochastic dynamics on spin  algebra, we made use of  the technique and 

argument developed by Zegarlinski and Majewski. We have been able to establish the 

existence of an infinite volume stochastic dynamics having an exponential decay to 

equilibrium and is strongly ergodic.  

Quantum entanglement represent the physical resource in quantum information science. 

Here we have considered the asymptotic entanglement of  an open quantum system based 

on  completely positive dynamical semigroups  (Isar, 2007).  

6.2  Conclusion  

The techniques of noncommutative 𝐿𝑝 - spaces in the construction  and analysis of quantum 

stochastic dynamics has been shown to be  useful, especially if the underlying  

configuration space is infinite dimensional. 

 One of the important problems in the theory of quantum  entanglement is the question of 

separability of states. We have shown the plausibility of investigating such questions, 

within the Lindblad theory of open quantum system.    
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