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CHAPTER ONE 

INTRODUCTION 

1.1 Background of the study 

Whenever multiple system variables may influence the outputs, response 

surface methodology (RSM) could be utilized in assessing the relationship between 

the dependent (response) and independent (input) variables as well as optimize the 

relevant processes (Mahsa et al., 201 2  and Dyauddeen et al., 2003). Response surface 

methodology (RSM) is a collection of mathematical and statistical techniques for 

emperical model building. By careful design of experiments, the objective of RSM is 

to optimize a response (output variable) of interest which is influenced by several 

independent variables (input variables), Montgomery (20 13). In this context, an 

experiment is a series of tests called runs in which changes are made to the input 

variables to understand the reasons for the changes in the output variable. In real life 

application of response surface methodology, the independent variable can be more 

than one. 

The relationship between a response variable of interest, y, and the k 

independent variables is usually described by a first-order response surface model, 

k 
y = f3o + /3, L x, + e ' 

l=l 
(1) 

where f3o and /3, are the coefficients (parameters) of the model, x, 's are the 

independent variables ande is the random error associated with the response variable 

such that the random error is normally and independently distributed with zero means 

d . 2 . ( 2) an vanance, ae ; that IS e-NID 0, ae . However, if curvature exists, the 

relationship between the response variable and the independent variables is more 

appropriately described by a second-order response model, 



(2) 

f h response surface model, other 

f3 f3 f3 and f3 are coefficients o t e 
where 0 , , , , '' 

. Expressed in matrix form, equation (2) 
components retain their original meanmgs. 

becomes 
(3) 

y = f3o + x'b + x'Bx + e , 

f /30 is a constant, x is a point in the design 

where y is the N x 1 vector o responses, 

d 
. b is a k x 1 vector of first-order (linear) regression 

space spanned by the estgn, 

. B · k k symmetric matrix whose 

coefficients and N is the number of destgn runs, ts a x 

main diagonal entries are the coefficients of the pure quadratic terms and the off-

diagonal entries are coefficients of one-half the mixed quadratic (interaction) terms, 

ande is the random error term associated with the response. There is a total of 

p = (k + 1 Xk + 2 )/2 model parameters to be estimated from the second-order response 

surface model which includes one constant, k first-order (linear) terms, k quadratic 

tenns and k(k - l)/2 interaction terms. The linear terms are the first-order components 

of the second-order model while the interaction terms are the cross-products of the 

second-order model. 

Designs for fitting second-order response surface models like that of equation 

(2) are called second-order response surface designs. However, a second-order 

response surface design is often chosen on the consideration of several criteria. 

Myers, Montgomery and Anderson-Cook (2009) and Anderson-Cook, Borror and 

Montgomery (2009) stated that good second-order designs should: 

• result in a good fit of the model to the data· , 

• provide sufficient information to allow for a test for model Jack of fit· , 
• allow models of increasing order to be constructed sequentially; 
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• provide an estimate of pure experimental error; 

• be insensitive (robust) to the presence of outliers in the data; 

• be robust to errors in control of design levels; 

• be cost effective, that is, do not require too many runs; 

• allow experiments to be performed in blocks; 

• provide a check on the homogenous variance assumption; and 

• provide a good distribution of the variance of the predicted responses 

throughout the design region. 

However Anderson-Cook et a! (2 009), not all the criteria are required or 

necessarily important in every RSM application. Some of the criteria listed above also 

present potential conflict with each other. For instance, one of the criteria suggests 

small experimental runs for cost effectiveness while another requires good 

distribution of the prediction variance. Studies have shown that often times, small 

design runs provide insufficient information for prediction variance evaluation (Li et 

a/., 2 009). 

Second-order models are used primarily for optimization and therefore, a 

model that performs well in response prediction is vital. This brings about the 

importance of the prediction variance highlighted in one of the criteria for adequate 

evaluation of design performance. Characterization of the prediction variance is very 

important in comparing competing designs. A good design will have minimum 

prediction variance distributed throughout the entire design space. 

At a point, x, in the design space, the prediction variance is 

(4) 

where, jXXj * 0, (xxt is the inverse of the information matrix of a second-order 

response surface design whose 
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design matrix is X and 



space expanded to model form by classifying the coordinates of the design points into 

linear, quadratic and mixed (interaction) components of the model. By multiplying 

equation (4) by N gives the scaled prediction variance (SPY), 

(5) 

Traditionally, dividing equation (5) by a2 eliminates the unknown parameter 

which makes it impossible to use the equation to access the prediction variance 

characteristics of a second-order response surface design. However, in the literature, 

some authors arbitrarily assume a2 =I in order to eliminate it (Onukogu, 1997). In 

industrial settings, some experimenters prefer the standardized or unsealed prediction 

variance (UPV) for design evaluation. The unsealed prediction variance is given by 

(6) 

The preference for UPV is because it provides the researcher the platform to assess 

the increase in precision (not influenced by the cost of experimentation, N) obtained 

from using larger designs by looking at the un-sealed prediction variance. Usually, 

experimenters determine the cost of experimentation in response surface exploration 

through the total number of runs, N, of the experiment. 

On the other hand, scaled prediction variance allows the practitioner to 

measure the variance of the predicted responses on a per observation basis, thereby 

penalizing larger designs over smaller ones (Atkinson & Donev, 1992 and Li et a/., 

20 09). By penalizing larger designs it means the prediction variance of such designs is 

expected to get bigger when it is scaled (multiplied by N). The rationale for scaling 

the prediction variance is to account for the cost of the design, represented byN> in 

comparing designs of various sizes. However, there is increasing awareness for the 
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use of the UPV in design evaluation. Goos (2009) and Piepel (2009) argue that larger 

designs often lead to smaller prediction variances and provide the experimenter with 

more useful information than unsealing the prediction variance. 

Among competing designs, the design(s) with the smallest and stable scaled or 

unsealed prediction variance is/are the most desirable. Stability is in the sense that 

there is small difference between the minimum and maximum SPY of a design. 

Many second-order response surface designs exist of which the central 

composite design (CCD) is one of them. The central composite design was developed 

by Box and Wilson (1951) and has remained the most popular and practically useful 

class of second-order response surface designs. The symmetry and flexibility offered 

by the structure of the design give substantial advantage in prediction variance 

characterization and parameter estimation. The CCD exists for k � 2 in both spherical 

and cuboidal regions, where k is the number of factors (independent variables of 

interest). According to Borkowski ( 1995), Li et al (2009) and Chigbu et al (2009), the 

structure of the CCD has three components: the factorial (cube) component which is 

at least a resolution V design, the star (axial) component at distance, a, from the 

centre of the design along each axis, and the centre point located at the centre of the 

design space. A resolution V design is a design in which two-factor interactions are 

aliased with three-factor interactions but no main effect or two-factor interaction is 

aliased with another main effect or two-factor interaction. That is, main effects and 

the two-factor interactions do not have other main effects and two-factor interactions 

as their aliases. Hence, for a resolution V design, the shortest word in the defining 

relation must have five letters. 

The cube or factorial component of the CCD has f = 2*-q full (q = 0) or 

fractional (q >0) factorial number of runs, where q is an integer. The number of runs 
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of the star component is 2k which is augmented with n0 centre points (the centre 

component). In other words, the CCO uses a total of N = f + 2k + n0 number of runs 

to estimate the p=(k+1Xk+2)/2 number of model parameters. The cube (factorial) 

component has coordinates of the form, (.x;, -X2• ... ,xk) = (±1, ± 1, ... , ± l); the star 

component has coordinates of the form, (.x;, . . .  , xk) =(±a, 0, 0, ... , o), . .. , (o, 0, .. . , ±a) 
while the centre is of the form, (.x;, . .. ,xk)=(O,O, ... ,O). The structure of a three-

factor CCO with one centre point is presented in Figure 1 for specific illustration. 

-1 

-1 

- 1  

- 1  

±O
a 

±
0
a � } star component 

0 0 ±a 
0 0 0} centre po int 

FIG.l: Illustration of Three-Factor CCO with n0 = 1 

The three components of the CCD play important but different roles in model 

parameter estimation. The at least resolution V full or fractional factorial component 

(the cube) contributes substantially to the estimation of the k linear terms and the 

k(k - 1  )/2 two-factor interaction terms of the second-order model. Only the factorial 

point contributes to the estimation of the interaction terms. The star component 

contributes to the estimation of the k quadratic terms of the second-order model. 

Without the star component, only the sum of the first-order terms can be estimated. 
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According to Montgomery (20 13), this variation of the CCD is used sometimes 

because it requires only three levels of each factor and it is difficult in practice to 

change factor levels. Figure 3 depicts the structure of a three-factor face-centered 

central composite design. 

2.2 Rotatability and prediction variance of designs
. 

Box and Hunter ( 1 957) introduced the concept of rotatability for second-order 

response surface designs. This is to ensure provision of good predictions throughout 

the entire design space. For the prediction to be good, it requires that the second-order 

response surface model should have a reasonably consistent and stable predicted 

responses at points of interest, x, in the design region (Montgomery, 20 13). 

Rotatability is a spherical property. The central composite design is made rotatable by 

choosing the axial distance to be a =  ifl, where f = 2k-q is the factorial run of the 

CCD. Therefore, the rotatable axial distance of the CCD depends on the number of 

points in the factorial component of the design. This axial distance ensures that the 

prediction variance, Var[Y(x)], is constant at all points that fall on the surface of a 

hypersphere centered at the origin, if the design is rotatable. According to Khuri and 

Mukhopadhyay (20 I 0), the advantage of this property is that the prediction variance 

remains unchanged under any rotation of the coordinate axes at the centre, (0, 0, . . .  , 

0). If optimization of ji(x) is desired on concentric hyperspheres (often called 

concentric balls), like the case in the application of ridge analysis, then it would be 

desirable for the design to be rotatable. This makes it easier to compare the values of 

ji(x) on a given hypersphere as all such values have the same variance. 

Dykstra ( 1960) extended the rotatable axial distance to accommodate the 

replication of the cube and star components of the CCD. He gave the rotatable alpha 
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FIG. 3 :  Structural Illustration of a Three-Factor Face-Centered CCD 
Montgomery (20 13) 
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FIG. 2: Structural Illustration of Three-Factor Spherical CCD 
Montgomery (20 13) 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Structural form of central composite design 

The distinct structures of the central composite designs are characterized by 

the choice of the axial distance. According to Li et a/. (2009), the axial distance 

defines the placement of the star points in response surface exploration using the CCD 

which consequently have substantial influence on the distribution of the design's 

prediction variance in the design region. Different axial distances have been proposed 

for different experimental purposes involving the ceo and each axial distance has 

specific effect on the structure and property of the CCD. 

The works of Box and Wilson (1951) brought to fore the concepts of spherical 

and cuboidal a for the CCD. The spherical alpha locates the star points at a distance 

of .Jk from the centre of the spherical design space, where k is a positive integer 

and represents the number of experimental factors. This places the star points and the 

factorial points on the surface of a sphere of radius, .Jk. The structural form of the 

resulting designs is presented in Figure 2. The spherical axial distance of the star 

points usually provide values that are not feasible for large number of experimental 

factors. For k = 20, for instance, a= 4.4 721 which is an impractical value 

considering the fact that the extreme values of the design are placed at -1 and +I. 

When the region of interest is cuboidal rather than spherical, Box and Wilson 

(1957) proposed that the axial distance should be a=l. This locates the star points at 

the centres of the faces of the cubes. Therefore, the CCD with this axial distance is 

popularly called the Face-centered central composite design or the Face-centered 

cube. 
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c. To compare the alternative axial distances with the existing axial distances using 0-

and G- efficiency criteria and graphical methods. 

d. To evaluate the alternative sets of axial distances with the partial replication of the 

CCD and the inscribed CCO. 

1.5 Significance of the study 

The axial distances, which are developed in this study account for moderate 

placement of the star points in the design region and provide stable prediction 

variance characteristics of the central composite designs in both the cuboidal and 

spherical design regions. With the alternative axial distances, the prediction variances 

of the central composite designs were able to discriminate, through graphical 

procedures, points in the design space that predict better than others and those that 

predict very poorly. 

In general, the alternative axial distances and the consequent design 

evaluations of the ceo provided more viable alternatives to the characterization of 

the prediction capabilities of the central composite designs in spherical and cuboidal 

regions. Most importantly, the outcomes are expected to be highly beneficial to 

researchers and industrialists who are seeking better alternatives for improving their 

industrial outputs. 

1.6 Scope of the study 

This study covers the second-order response surface design known as the 

central composite design. The study of the central composite design is restricted to 

assessing the prediction variance properties and prediction capabilities of the ceo 

with respect to the axial distances. The evaluations of the CCO are considered in the 

cuboidal and spherical regions only. 
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impracticable axial distances. For instance, if k = 10, then JlO = 3.1623and 

ifiO =5.6565, respectively, for the spherical and rotatable axial distances, which are 

not feasible values when compared relative to -1 and +1, extreme values of the cube. 

Anderson and Whitcomb (2005) proposed the practical alpha, a= Vk, as a 

compromise between the spherical alpha and cuboidal alpha. The practical alpha, 

which is less extreme when compared to the spherical and rotatable alpha values, also 

offers reasonable variance inflation factor (VTF) as k increases (Li et a/., 2009). 

Another advantage of the practical a is that it exists for both the spherical and 

cuboidal design regions, unlike the spherical and rotatable axial distances that exist 

only in the spherical design region. However, often times, the practical a tends to 

locate the star points very close to the centre of the design region that it is difficult to 

determine the true precision of the designs' prediction capabilities. For instance, in the 

study by Li et al. (2009), despite the advantages posed by the practical axial distance, 

the CCD with spherical a consistently gave smaller and more stable prediction 

variance throughout the design region than the practical ceo by using fraction of 

design space plots. 

1.3 Aim of the study 

The aim of the study is to construct alternative axial distances for the spherical 

and cuboidal design regions of the central composite designs which are less extreme 

but provides more stable prediction precision for the design. 

1.4 Objectives of the study 

Specifically, the objectives of the study include: 

a. To construct a set of alternative axial distances for the CCD in spherical region. 

b. To construct a set of alternative axial distances for the CCO in cuboidal region. 
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The star component does not contribute to the estimation of the interaction terms. The 

centre component contributes to the estimation of pure error and estimation of 

quadratic terms (Wong, 1993) . 

Hence, the role of the star component of the CCO is very vital in response 

surface exploration using the central composite design. It is the introduction of the 

star component that gives the ceo the second-order design status since the factorial 

component must be a first-order design. Therefore, the location of the star points on 

the design region strongly influences the performance of the CCO. Usually, the star 

points are located at distance, a, from the centre of the design region. This distance, 

a, from the centre along the axes of the CCD is called the axial distance. Some axial 

distances exist which leads to the classification of the ceo according to the type of 

axial distance. For a =  Jk, we have the spherical CCO, a= iff gives the rotatable 

CCO, a = iff gives the practical CCO and a =I  gives the Face-centered CCO. 

In this study, we will develop a set of alternative axial distances for the central 

composite designs in both the spherical and cuboidal design regions. The alternative 

sets of axial distances will be evaluated and compared with the existing axial 

distances in both the spherical and cuboidal design regions using graphical methods 

and some popular design evaluation criteria. The graphical methods to be utilized in 

this study will put into consideration the scaled prediction variances for the adequate 

characterization of the prediction properties of the CCD. Furthermore, evaluation of 

the alternative axial distances will be extended to the cases involving replications of 

the star component of the ceo as well as the inscribed ceo. 

1.2 Statement of the problem 

The problem with the spherical and rotatable alpha, as identified by Li et al 

(2009), is that as the number of factors increases, these alpha values could give 
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as a = V n, f , where n, and n, are respectively, the number of rep I i cations of the 

n2 

cube and star components of the CCD. The rotatable alpha has been used extensively 

in the evaluation of the CCD for experimental purposes, Dykstra (1960), Draper 

( 1 982), Myers et a/. (2009) and Ukaegbu and Chigbu (20 15a). Though the rotatable 

axial distance may give desirable prediction variance properties, the level may be 

impractical for the factors of interest. For industrial experiments requiring large 

number of factors, say k = 20 factors, the star points will have rotatable axial distance 

of 4.47 1 (Li et al., 2009). This value may not be feasible considering the fact that the 

remaining factors in the experiment are set at the levels of - 1  and + 1 .  This may 

degenerate further with the replication of the cube or both the cube and star 

components. 

The drawback of the spherical and rotatable axial distances with respect to 

high alpha values when there are high number of factors led to the recommendation of 

the practical axial distance by Anderson and Whitcomb (2005). The practical axial 

distance defines the practical CCD and is given by a = Vf. This axial distance is a 

compromise between the cuboidal and spherical axial distances, a= land a= Jk, 

respectively. According to the authors, the practical axial distance offers small and 

stable prediction variance with acceptable variance inflation factors. However, recent 

studies have shown that despite the obvious advantages of the practical axial distance, 

it does not necessarily provide consistently small prediction variances throughout the 

entire design region. In a study by Li et a/. (2009), the CCD with spherical a is 

consistently superior to that of the practical a in the spherical regions. Ukaegbu 

(20 17) has also shown that the ceo with practical axial distance did not compete 

favourably with the ceo with cuboidal a in a baking experiment requiring the 
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choice of appropriate axial distance for the CCD to optimize the experiment. The 

practical axial distance is applicable in the spherical and cuboidal regions. 

2.3 Orthogonality and blocking of CCD 

Orthogonality is one of the major and useful properties of the central 

composite response surface designs. The CCD is made orthogonal by the choice of 

the axial distance which was recommended by Box and Hunter ( 1957) to be 

a = -J[(Nf )'12 - f V 2 . This gives the orthogonal CCD. The orthogonal a for 

the CCD was extended by Nwobi el a/. (2001) to accommodate the replications of the 

cube and star components of the design. They recommended the axial distance to be 

a=� �f[N112 -(�/)112 j / 4ri;_, where n1 and n2 retained their original meanings 

(Ukaegbu and Chigbu, 2015b). Orthogonality is a spherical property. 

Furthermore, blocking of second-order response surface designs may be 

required to eliminate nuisance variables. Orthogonal blocking of a response surface 

design is possible if the design can be divided into blocks such that block effects do 

not affect the parameter estimates of the response surface model. The CCD is 

orthogonally blocked by the choice of axial distance that ensures orthogonal blocking. 

According to Box and Hunter (1957) the axial distance that ensures orthogonal 

blocking of the CCD is a = , where na and nf are the number of 

centre points in the axial and factorial blocks, respectively (Montgomery, 20 13). 

Dykstra ( 1960) extended the a for orthogonal blocking to the case where the axial 

component of the CCD is replicated twice, � = 2 while Ukaegbu and Chigbu (20 17) 

generalized the a for the replication of the cube and star components of the CCD. 
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The general form given by Ukaegbu and Chigbu (20 17) is a= 

.. 

y 
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CHAPTER THREE 

METHODOLOGY 

3.1 Development of alternative axial distances 

Two sets of axial distances are developed for the CCD. The first set is 

developed for the spherical region and the second set for the cuboidal region. Each set 

is developed under the three classical Pythagorean means, the arithmetic mean, 

harmonic mean and geometric mean of the available axial distances in each related 

design space. Therefore, each set contains three axial distances for each region. The 

arithmetic mean of a set of random variables, 1]1, 1]2, • • •  , 1] r ,  is given by 

r 

Aa =r-1L1J,. The harmonic mean of the same set of random variables is 
I= I 
[ ]-1 I 

A" = r t _!_ while their geometric mean is AG = [TI 1], ]; . �� � 

The axial distances developed from these functions were introduced in each 

central composite design for k = 3 to 8 factors. These designs were evaluated using 

the D-and G-efficiency design evaluation criteria as the single-value criteria. The 

design that has the highest D- and G-efficiency values is the most efficient with 

respect to the particular efficiency criteria. Two popular graphical methods, the 

variance dispersion graph and fraction of design space plots were used to display the 

prediction variance characteristics of the designs throughout the entire design region. 

The design that displays the smallest prediction variance throughout the design region 

is considered the most stable with minimum prediction variance. 
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3.2 D-and G-efficiencies 

The D-efficiency makes use of the determinant, IMI, of the information 

matrix, M = X' X, or the determinant, IM-11, of the inverse of the information matrix, 

M-1 = (X'Xt', where X is the design matrix extended to model form by including 

the linear, pure quadratic and mixed quadratic (interaction) terms. Under the standard 

normality assumptions, IMI is inversely proportional to the square of the volume of 

the confidence ellipsoid (region) of the regression coefficients (Onukogu, 1997). The 

volume of the confidence ellipsoid is relevant because it reflects how well the set of 

coefficients are estimated. Therefore, the larger the value of IMI, the better the 

estimation of the model parameters. On the other hand, small IMI and hence, large 

IM-11 implies poor estimation of the set of model parameters. The D-efficiency is 

very useful in quantifying the quality of the estimated model parameters and is 

defined as (Borkowski and Valeroso, 2001), 

IMII p X 100 D-eff = . 
N 

(7) 

The power, 1/ p, takes account of the Pnumber of parameter estimates of the 

regression model being assessed when the determinant of the information matrix is 

being computed. 

With the development of statistical softwares such as the JMP, Design Expert, 

and so on, which are based on numerous programs and algorithms, the computation of 

D-efficiency has been made easy. However, Borkowski and Valeroso (200 I)  

developed exact D-efficiency for the central composite designs and used it to evaluate 

reduced models for the CCD in hypercube. 
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Since the primary target of so many response surface designed experiments is 

to allow for good prediction throughout the design space, the focus is on the variance 

of prediction, vafs{X)]. The G-efficiency is one of the design evaluation criteria that 

are based on the scaled prediction variance property of the design. The G-efficiency 

uses the maximum SPY, maxlNx' (X' xt x j, in design evaluation. The G-efficiency 

intuitively protects the experimenter against the worst-case scenario of the prediction 

variance being too undesirable since the user may wish to predict new responses 

anywhere in the design space. An interesting and important characteristic of the G­

efficiency is that the lower bound for the maximum scaled prediction variance is 

equal to p, the number of model parameters. Therefore, when 

ma�Nx'(X'Xtx]= p, then the design is 100% G-efficient. Therefore, the G­

efficiency is given by 

(8) 

For the D-and G-efficiencies, the closer the values are to 1 (that is, I 00%), the 

better the design. Recent studies have shown that the lower bound of the G-efficiency 

may not be all the time. This was demonstrated by Anabri and Lucas (2008) and 

Lucas (2009) that some split-plot response surface designs have maximum SPY that 

are less than p such that G-efficiency could be greater than I 00%. They termed these 

designs 'super-efficient' designs. Also, Borkowski and Yaleroso (200 I) developed 

exact G-optimality for evaluating the CCD for reduced models in the hypercube. 

3.3 Graphical methods for comparison 

Several graphical techniques have been developed to enhance comparisons of 

different designs in the design space. The most popular and most used are the 

variance dispersion graph (YDG) and fraction of design space graphs (FDSG).The 
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YDG was first introduced through the works of Giovannitti-Jensen and Myers (1989) 

as a graphical procedure that is dependent on the prediction variance properties of 

response surface designs for evaluating the designs. This graphical method displays 

the distribution of the unsealed and scaled prediction variances of response surface 

designs of a multi-dimensional design region on two-dimensional graphs. In 

constructing the YDG, the prediction variance is plotted against the radius, r, of the 

sphere from zero up to the outer region of the sphere covering the region of interest in 

order to evaluate the prediction capability of the design. If the region is cuboidal, the 

radius ranges from zero to one. 

Giovannitti-Jensen and Myers (1989) developed the YDG first, for the first-

order response surface designs. They showed that, for the first-order response surface 

models, the maximum SPY is max N var�(x)] =I+ N(A.max )r 2, the minimum SPY is 
a 

min Nvar[y(x)] 
= 1 + N(A. . )r 2 and the average SPY (]'2 '"'" 

Nr 2 k 
1s V' =1+-:L:A.,. The k l=l 

parameters, Arnax, �nirflnd A., , are respectively, the maximum, m1mmum and ith 

eigenvalues of the inverse of the information matrix, (X' Xt. If the eigenvalues are 
equal, the design is said to be an orthogonal and rotatable first-order response surface 

design. Also, Giovannitti-Jensen and Myers ( 1989) employed a FORTRAN-based 

computer algorithm developed by Yinning (1988) for computing the prediction 

variances of the second-order response surface designs on a sphere of radius, r, and 

made the algorithm adaptable even for the first-order problems. However, this 

algorithm can only compute the prediction variances for up to k = 7 design variables 

and does not guarantee finding the global optimum. Apart from that, the computing 

time required in using the algorithm makes it less attractive for users. Following the 
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development of the VDG as an acceptable graphical procedure for design comparison, 

Vinning (1993) wrote a FORTRAN-based computer program to generate the VDG for 

response surface designs. 

Following the drawbacks of the computer programs for plotting the variance 

dispersion graphs highlighted above and the uncertainties about obtaining the exact 

results for the designs, Borkowski (1995) developed analytical forms for evaluating 

the exact prediction variances for the CCD as more viable alternative to the 

optimization algorithm. He showed that the exact minimum and maximum scaled 

prediction variances for the second-order response surface design at radius, r, of the 

spherical region are as follows: 

V,MAX=1 A+Br' +( C+ �}•] if MO 

=N[A+Br2(C+D)r4] if D>O. 
The values of the coefficients, as given by Borkowski ( 1995), are: 

D = _!_ ( -1- _ _!_] and 2 np2 f 

where the meanings of N, r, k, f, anda are as have been given earlier in this work 

while ns is the number of replications of the star portion. 
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As pointed out by Zahran et al (2003), the VDG portrays the prediction 

variance characteristic of a design at every point in the design space, helping the user 

to have knowledge of points of best and worst predictions, points where the prediction 

variance is maximized and where it is minimized in the design region. However, the 

VDG hides the fact that different volumes are associated with each radius or 

shrinkage factor, in the case of mixture experiments. The plots deal with the 

prediction variance on a sphere of radius, r, ignoring the associated volume. 

The VDG has been extensively employed in comparing and solving several 

response surface related designs and problems: Trinca and Gilmour (1998), Borror et 

al (2002), anderson-Cook et a! (2009), Chigbu et al (2009), Myers et a! (2009) and 

Ukaegbu and Chigbu (20 15a) for the application of the variance dispersion graphs 

procedure in the spherical region. Also, designs in the cuboidal regions were studied 

using the VDG in Rozum and Myers (1991), Borkowski (1995), Block and Mee 

(2001), Park et al (2005) and Ukaegbu and Chigbu (20 1 5b). Goldfarb et al (2004) 

extended the VDG to three-dimensions to evaluate the prediction variance properties 

of mixture experiments. These plots are excellent tools to aid in selecting the designs, 

augmenting design points, or selecting appropriate fractions of experiments when full 

mixture-process design has large number of runs. 

The fraction of design space graph (FDSG) was developed by Zahran et al. 

(2003) to complement the VDG for both spherical and cuboidal design spaces. The 

plots display the characteristics of the SPY of a multi-dimensional region on a two­

dimensional graph with a single curve for each design. The graph displays the fraction 

of the design space at or below any given SPY value, V, say. The concept of fraction 

of design space (FDS) puts into consideration, the volume of the fraction of the design 
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space not accounted for in VDG.According to Zahran et al (2003), the fraction of 

design space is defined as 

FDS= �f. . . . .f I(X)d� . . dxk. 

{us�a-g) . 
where l(X)= g ' 

0 . 
g;eO 

g=O 

g=\{x)-v , vis any given scaled prediction variance value, v(x) is the prediction 

variance such that v(x) < Vand g < 0 while '¥ = 2* is the volume of the design 

space. If the design is rotatable, Zahran et al. (2003) defined the fraction of design 

space as 

FDS=k£I(X)rk-1dr. 

The prediction variance is computed for each fraction of the design space, then the 

prediction variance is plotted against the cumulative fractions of the design space. 

They went ahead to develop a FORTRA code that uses International Mathematics 

and Statistics Library (IMSL) multivariate numerical subroutine for calculating the 

FDS and plotting the graphs. 

The prediction variance values of the FDS were originally calculated 

numerically using the software, Mathematica. Though this is feasible for lower 

dimensions up to five factors, this approach becomes computationally too 

cumbersome and slow for higher dimensions. For this reason, considerations have 

been vigorously assessed for other alternatives for obtaining the FDS and their 

corresponding prediction variances (PV). Consequently, Goldfarb et al .(2004) 

proposed uniform sampling throughout the entire design space. Using this approach, 

the FDS is constructed by sampling a large number of values, n, throughout the entire 
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design region and obtaining the corresponding PV values which are then ordered and 

plotted against the quantiles, (_!_,�, . . . ,�) . This approach could be employed for any 
n n n 

type of design space, regular or irregular. The original approach proposed by Zahran 

et al. (2003) considered only regular design regions. 

Goldfarb et al. (2004) also adopted the FDS plots for evaluating mixture 

experiments. At constant shrinkage factor, they plotted the global FOS and the sliced 

FOS for the scaled prediction variance values. This enables the user to see which of 

the spaces contributes more to changes in the SPY. Liang et al. (2006) extended the 

FOS plots approach to the case of CCO for split-plot designs incorporating cost. The 

graphical tool enables the experimenter to evaluate and develop strategies for 

improving the prediction performance of split-plot designs. Li et al. (2009) utilized 

the FOS plots to evaluate the prediction variance prope1ties of the CCO, SCO and 

MinResV designs in both cuboidal and spherical regions for various axial distances 

and for six to ten design factors. Examples of further works involving the fraction of 

design space graphs in design evaluation and comparisons include Ozoi-Godfrey et al. 

(2005), Ozoi-Godfrey et at. (2008),Anderson-Cook et al. (2009)and Jang and 

Anderson-Cook (20 I 1 ). 
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CHAPTER FOUR 

RESUL TSAND DISCUSSION 

4.1 Alternative axial distances 

In this section, a set of axial distances were developed for the cuboidal and 

spherical design regions for the evaluation of the central composite designs (CCD). 

4.1. 1 Axial distances for Spherical Region 

The three existing axial distances for the spherical reg10n are, namely: 

spherical alpha, a = Jk; practical alpha, a = Vk and rotatable alpha, a= 1J, 
where f = 2k-q, k is the number of factors and q is a nonnegative integer less than k. 

The arithmetic, harmonic and geometric means of these three alpha values gave the 

three new axial distances for the placement of the star points in the spherical region. 

The first is the arithmetic axial distance. 

(9 ) 

be the arithmetic mean of s random variables with subscript, A representing 

'arithmetic', then the arithmetic mean of the spherical, practical and rotatable axial 

distances is given by 

aAs = s-' [k'12+k'1"'+2(k-q)"' ], s= 3and q?. O. (1 0) 

For the harmonic axial distance. let Au = s[� }_]-/ be the harmonic mean of the 
1=1 11, 

s independent random variables, then the harmonic mean of the three existing axial 

distances is given by [ 1 1 1 ]-I 
a - s - + - + --=== HS 

- Jk ifk ;) 2k-q 
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[k -1/2 k -
1/.f 2 - ( k - q )/-1 ]-I = s + + , s = 3 andq;::: 0. ( I I) 

I 
The geometric mean of a set of s independent random variables is Ac = [ D 1/, J. 
Hence, the geometric axial distance in the spherical region is 

Therefore, 

(12) 

Equations ( 1 0), ( 111) and ( 12) are the alternative axial distances for the CCO in 

spherical region based on the three Pythagorean means. 

4.1.2 Axial distances for Cuboidal Region 

The two existing axial distances applicable to the cuboidal region is the 

cuboidal alpha, a=l, which defines the face-centered ceo and the practical alpha, 

a= ifk (k is as earlier defined). Then the three Pythagorean means are obtained. 

For the arithmetic alpha, 

(13) 

The harmonic alpha for the cuboidal region is 

(14) 
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The geometric alpha is 

[ 4 "]l/s V4r a cc = I x v k = (k) , s = 2. (1 S) 

Equations ( 1 3), ( 1 4) and ( 1 5) are the three alternative axial distances of the CCO in 

the cuboidal region. Catalogues of the values of these alternative axial distances with 

those of the existing axial distances, the cuboidal, ac , spherical, a 5 , practical, a P, 

and rotatable, a R, axial distances, from which they were derived are presented in 

Tables 1 and2, respectively, for the spherical and cuboidal regions. 

4.2 Design Efficiencies for Comparison 

The 0- and G-efficiency values are computed for the six variations of the 

CCO in spherical region and five variations of the CCO in cuboidal region. The 

variations of the ceo are based on the various axial distances defining the central 

composite designs under comparison. The 0- and G-efficiencies are used to measure 

any improvement on the performances of the designs by the alternative axial 

distances. The closer the efficiency value is to I 00 percent, the more preferable the 

design. The designs having the same number of experimental runs makes it easier for 

comparison as no design will have undue advantage over the others with respect to the 

number of runs. The number of factors under consideration here is k = 2 to 8 factors. 

Each set of factors was evaluated with three centre points in line with the 

recommendations of Montgomery (20 1 3) which stated that for CCO, 3-5 centre points 

area acceptable. The values of the 0- and G-efficiencies for the axial distances for the 

spherical regions are presented in Tables 3 and 4, respectively. 

Table L presents the catalogue of Alpha value for the Spherical Region. The values of 

the six axial distances in the Spherical Region as evaluated using 2 to I 0 factors are 

presented in the table. 
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The catalogue of Alpha value for the Cuboidal Region is presented in table 2. The 

table is made up of the results of evaluation of the five axial distances in the region 

using varying number of factors, 2 to I 0 in experiment. Table 3 and 4 show the 0-

and G- efficiency values, respectively, with the three centre points in the Spherical 

Region. 

The best results for the D-efficiency in spherical region is given by the CCD 

with rotatable axial distance, aR. This is followed by the ceo with spherical axial 

distances, as. The central composite designs with the three alternative axial 

distances, a As, aHs and aGs, consistently give D-efficiency values that are better than 

the CCO with practical axial distance, ap. Among the arithmetic, harmonic and 

geometric axial distances, the ceo with arithmetic axial distance is the best in terms 

of 0-efficiency, followed by the CCO with geometric axial distance. The CCO with 

harmonic axial distance consistently gave the worst 0-efficiency performance among 

the three alternative axial distances. Therefore, the central composite designs with 

arithmetic, harmonic and geometric axial distances should be used in place of the 

CCD with practical axial distance when the 0-efficiency is the criterion chosen by the 

experimenter for response surface exploration. 

The CCOs with arithmetic, harmonic and geometric axial distances, aAs• aHs 

and acs• gave the highest G-efficiency values for k =  5, 7 and 8 factors. Only the G­

efficiency values of the CCD with spherical axial distance, as, are higher than those 

of the arithmetic, harmonic and geometric axial distances for k = 3, 4 and 6 factors. In 

the spherical region, the CCD with practical axial distance offered the lowest G ­

efficiency values, followed by the ceo with rotatable axial distance. I t  is only at k = 

8 that the CCO with rotatable and spherical axial distances have the same G-
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TABLE 1 

Catalogue of alpha value for the spherical region 

K F as aP aR a AS aHS aGS 
2 22 1 .4 1 42 1 . 1 892 1 .4 1 42 1 .3392 1 .3303 1 .3348 
3 

23 1 .732 1  1 .3 1 6 1  1 .6 8 1 8  1 .5766 1 .5530 1 .565 1 
4 
5 24 2.0000 1 .4142 2.0000 1 .8047 1 .7574 1 .78 1 8  
6 

25 2.2361 1 .4954 2.3784 2.0366 1 .9526 1 .9961 

7 26 2.4495 1 .565 1 2.8284 2.28 1 0  2. 1 4 1 7  2.2 1 34 

26-1 2.4495 1 .565 1 2.3784 2 . 1 31 0  2.0441 2.089 1 

8 27 2.6458 1 .6266 3.3636 2.5453 2.3255 2.437 1 

27-1 2.6458 1 .6266 2.8284 2.3669 2.2283 2.3003 

9 27-2 2.6458 1 .6266 2.3784 2.2 1 69 2 . 1 229 2. 1 7 1 2  

28 2.8284 1 .68 1 8  4.0000 2.8367 2.5038 2.6697 

1 0  28-1 2.8284 1 .6818 3.3636 2.5246 2.4088 2.5 1 98 

28-2 2.8284 1 .68 1 8 2.8284 2.4462 2.3047 2.3784 

29 3.0000 1 .  7321 4.7568 3. 1 630 2.6764 2.9 1 30 

29-1 3.0000 1 .  732 1  4.0000 2.9 1 07 2.5847 2.7495 

29-2 3.0000 1 . 732 1 3.3636 2.6986 2.34 1 5  2.5952 

2 10 3. 1 623 1 .7783 5.6569 3.5325 2.8427 3. 1 686 

210-1 3. 1 623 1 .7783 4.7568 3.2325 2.7554 2.9907 

2 10-2 3. 1 623 1 .7783 4.0000 2.9802 2.6583 2.8229 

210-3 3.1623 1.7783 3.3636 2.7681 2.4197 2.6644 
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TABLE 2 

Catalogue of alpha value for the cuboidal region 

K F ac ap a AS aHS aGS 

2 22 1 .0000 1 . 1 892 1 .0946 1 .0864 1 .0905 

3 23 1 .0000 1 .3 1 6 1  1 . 1 580 1 . 1 365 1 . 1 472 

4 24 1 .0000 1 .4 1 42 1 .207 1 1 . 1 7 1 6  1 . 1 892 

5 25 1 .0000 1 .4954 1 .2477 1 . 1 985 1 .2229 

6 26 1 .0000 1 .565 1 1 .2826 1 .2203 1 .25 1 1  

26-1 1 .0000 1 .565 1 1 .2826 1 .2203 1 .25 1 1 

7 27 1 .0000 1 .6266 1 .3 1 33 1 .2386 1 .2754 

27-1 1 .0000 1 .6266 1 .3 1 33 1 .2386 1 .2754 

27-2 1 .0000 1 .6266 1 .3 1 33 1 .2386 1 .2754 

8 28 1 .0000 1 .68 1 8  1 .3409 1 .2542 1 .2968 

28-1 1 .0000 1 .68 18  1 .3409 1 .2542 1 .2968 

28-2 1 .0000 1 .68 1 8  1 .3409 1 .2542 1 .2968 

9 29 1 .0000 1 .7321 1 .366 1 1 .2680 1 .3 1 6 1  

29-1 1 .0000 1 .7321  1 .3661 1 .2680 1 . 3 1 6 1  

29-2 1 .0000 1 .7321 1 .366 1 1 .2680 1 . 3 1 6 1  

1 0  29-3 1 .0000 1 .7321 1 .366 1 1 .2680 1 . 3 1 6 1  

2 10 1 .0000 1 .7783 1 .3892 1 .2801 1 .3335 

2 10-1 1 .0000 1 .7783 1 .3892 1 .2801 1 .3335 

210-2 1 .0000 1 .7783 1 .3 892 1 .280 1 1 .3335 

21o-3 1 .0000 1 .7783 1 .3892 1 .2801 1 .3335 
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TABLE 3 

D-efficiency values with three centre points in spherical region 

k F N a s  ap a AS aHS aGS aR 

2 22 I 1 6 1 .76 44.77 57.59 57. 12  57.36 6 1 . 76 
3 

23 1 7  70.05 52.5 1 62.53 53.04 53 .20 1 00 
4 
5 24 27 76.40 55 .80 68.98 67.30 68. 1 6  1 00 
6 

25 45 80.70 58.70 74.42 7 1 .93 73.51  85.60 
7 
8 26-1 47 83.50 59.60 74.62 72.33 73.51  1 00 

27-1 8 1  85.94 62. 1 6  79.4 1 76.29 77.9 1 90.61 

28-2 83 87.87 63.38 79.84 76.94 78.46 87.87 
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TABLE 4 

G-efficiency values with three centre points in spherical region 

k F N as ap a AS aHS aGS aR 

2 22 I I  87.27 57.65 83.52 83.52 83.30 6 1 .76 

3 23 1 7  89.03 79.25 85.20 79.54 79.63 77.30 

4 24 27 95.2 1 58.50 92.50 9 1 . 84 92.63 76.30 

5 25 45 86.00 80.90 88.60 89. 1 9  88.92 83.00 

6 26-1 47 94.90 90.00 92.88 92.36 92.63 86. 1 0  

7 27-1 8 1  83.68 8 1 .64 85.37 85.52 85.46 8 1 .06 

8 28-2 83 94.58 95.48 97.35 96.93 97. 14 94.58 

32 



efficiency values which are however, lower than those of the three new alternative 

axial distances. Hence, if the G-efficiency is the experimenter's preferred criterion for 

response surface exploration in spherical region, the ceo with arithmetic axial 

distance should be used or any of harmonic and geometric axial distances. lt is only 

for k = 3 ,  4 and 6 factors that the ceo with spherical axial distance should be 

preferred. 

The results of the D- and G-efficiencies for the cuboidal region are presented in 

Tables Sand 6, respectively, for k = 3 to 8 factors of the central composite design. 0-

and G- efficiency values with three centre points in the Cuboidal Region are presented 

in Table 5 and 6 respectively. 

As depicted by the results in Table 5, the CCOs with arithmetic, harmonic and 

geometric axial distances are consistently the best with the highest 0-efficiency 

values for all the factors considered in the cuboidal design region. Among the three 

alternative axial distances, the ceo with the arithmetic axial distance gives the 

highest 0-efficiency values which are followed by the ceo with geometric axial 

distance and then, the ceo with harmonic axial distance giving the lowest percentage 

0-efficiency values. Also, the CCOs with arithmetic, harmonic and geometric axial 

distances provide the highest G-efficiency values as compared to the values of those 

of the cuboidal and practical axial d istances. The only exceptions are for k =  5 and 7 

where the CCD with cuboidal axial distance, ac, have the highest G-efficiency 

values. The CCD with arithmetic axial distance again provided the highest G­

efficiency values for k = 3, 4, 6 and 8 factors among the three alternative axial 

distance. This is followed by the CCO with geometric axial distancesand then, the 

CCD with harmonic axial distance. Obviously, the central composite designs with 
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TABLE S 

D-efficiency values with three centre points in cuboidal region 

K F N ac ap aAC a He aGC. 
2 22 1 1  42.84 44.77 46.43 46.03 46.36 

3 23 1 7  4 1 .30 42.95 46.83 46.08 46.45 

4 24 27 42. 1 0  44.07 49.05 47.88 48.46 

5 25 45 43.30 48. 1 6  5 1 .24 49.71  50.47 

6 26-1 47 43.20 49.77 5 1 .66 49.84 50.74 

7 27-1 8 1  45 . 1 1  5 1 .28 54.00 5 1 .95 52.97 

8 28-2 83 45.88 5 1 .40 55.07 52.82 53.93 
,__ 
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TABLE 6 

G-efficiency values with three centre points in cuboidal region 

K F N ac a p  aAC aHC ace 

2 22 1 1  68.7 1  57.65 72. 1 8  7 1 .79 72.03 

3 23 1 7  74.00 69.42 76.37 76.02 76.20 

4 24 27 84.30 73.91 85.86 85.57 85.71 

5 25 45 95.01 82.20 92.22 92.52 92.37 

6 26-1 47 88. 1 4  84. 14 88.95 88.74 88.85 

7 27-1 8 1  89.20 86.30 87.82 88. 1 2  87.97 

8 28-2 83 94.37 9 1 .96 94.88 94.75 94.81  
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arithmetic axial distance would be the experimenter's choice should the D-efficiency 

be the criterion for response surface exploration. The same is also true of the CCO 

with arithmetic axial distance if the G-efficiency is the experimenter's choice for 

response surface exploration in cuboidal region. Following the results of the 0- and 

G-efficiencies, the central composite designs with geometric and harmonic axial 

distance provide form idable alternatives to the ceo with arithmetic axial distances 

since in most cases, the results of the three CCOs only s lightly differ. 

4.3 Graphical comparison 

The variance dispersion graphs (VOG) and fraction of design space graphs 

(FOSG) were used in comparing the alternative axial distances for the central 

composite designs with the existing axial distances in the cuboidal and spherical 

regions. As earlier pointed out, single point criteria like the 0- and G-efficiencies 

cannot completely reflect the performances of a design throughout the entire design 

region. The graphical methods possess this unique quality and could reveal points of 

strengths and weaknesses of the competing designs within the design region by 

displaying the designs performances throughout the design space (Li et al, 2009 and 

Chigbu et al, 2009).The variance dispersion graphs (VOG) assess the prediction 

variance properties of the designs under study by displaying their scaled prediction 

variance performances at every point radius in the design space. A design with low 

and stable scaled prediction variances at every point radius is preferred. The fraction 

of design space graphs (FOSG) assess the prediction variance characteristics of 

competing designs by displaying the scaled prediction variances of the designs per 

volume of the design space (Ozoi-Godfrey et al, 2005). Therefore, a design with small 

and stable scaled prediction variance at every fraction of the design space is preferred. 

The term 'stability' refers to a design maintaining small prediction variance over 

substantial portion of the design space or the entire design region. The variance 

dispersion graphs were plotted in MATLAB software package (Version 20 1 4a) with 
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the aid of computer programs developed in this work. The fraction of design space 

graphs were plotted in MA TLAB software package (Version 20 1 4a) after the 

fractions of design space and corresponding scaled prediction variance have been 

computed in Design Expert software package, Version 1 1 .  Three centre points were 

considered for each design for all  the k factors under consideration. 

4.3 . 1  Comparison using VDG 

The designs are compared in the spherical and cuboidal design regions using 

the variance dispersion graphs (VDG). The graphs displayed the prediction variances 

of the competing designs throughout the entire design space on a two dimensional 

scale. The graphs are presented in Figures 4- 1 0  for the spherical region and Figures 

1 1 - 1 7  for the cuboidal region. 

The graphs for the spherical region show that the CCD with arithmetic axial 

distance displayed the smallest and stable scaled prediction variances throughout the 

design regions for the k = 2to 8 factors considered. This was followed by the CCD 

with practical axial distance. The designs with spherical and rotatable axial distances 

displayed the worst performances with the highest scaled prediction variances 

throughout the design space. The CCD with harmonic and geometric axial distances 

are only better than the ceo with spherical and rotatable axial distances in the 

distribution of small scaled prediction variances at every point radius in the spherical 

region. For the cuboidal design space, the CCD with cuboidal axial distance, ac ,  

displayed the smallest prediction variances which remained stable for r = O.S.Beyond 

this radius, the scaled prediction variance of the cuboidal ceo deteriorates and 

becomes very unstable. The three alternative axial distances, harmonic, arithmetic and 

geometric axial distances, displayed relatively similar but stable scaled prediction 

variance characteristics. The CCD with harmonic axial distances is the best of the 

three in cuboidal region with the lowest prediction variance. The CCD with practical 
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axial distance displayed the worst prediction characteristics with the highest and 

unstable scaled prediction variance spread throughout the entire cuboidal design 

region, followed by the CCD with arithmetic axial distance. Obviously, the alternative 

three axial distances have shown amazing prediction potentials for predicting 

responses in the spherical and cuboidal regions. The three axial distances are better 

than the spherical axial distance in the spherical region and practical axial distance in 

the cuboidal region. However, none of the three axial distances is overall better than 

the other two alternative axial distances in both the spherical and cuboidal design 

regions. The arithmetic axial distance is better than the other axial distances in the 

spherical region, followed by the geometric and then harmonic axial distances. In the 

cuboidal region, the harmonic axial distance gave better prediction potential, followed 

by the geometric and then arithmetic axial distances. Prediction variance is very vital 

in the choice of design for predicting responses. Therefore, for the spherical region, 

the CCD with arithmetic axial distance is the ultimate choice. Considering the 

apparent instability displayed by the CCD with cuboidal axial distance, the CCD with 

harmonic axial distance could be preferred instead for predicting responses in the 

cuboidal region. 

4.3.2 Comparison using FDSG 

The prediction variance characteristics of the competing designs were also 

evaluated using the fraction of design space graphs. The graph displays the scaled 

prediction variances of multi-factor experimental design region on a two-dimensional 

scale. The lower to the horizontal scale and more stable the prediction variance is, the 

better the design for predicting responses in the design region. The graphs are 

displayed in Figures 1 8  to 24 for the designs in spherical region and Figures 25 to 3 1  

for the designs in cuboidal region. 
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The fraction of design space graphs (FDSG) in Figures 18 to 24 reveal that the 

CCD with arithmetic axial distance, a. AS ,  in the spherical region has the smallest and 

most stable scaled prediction variance throughout the entire design space for all the 

factors under consideration. Though for k = 2, the CCO with arithmetic axial distance 

maintained the smallest scaled prediction variance for only 50 percent of the fractions 

of the design space. This design deteriorates with rapid increase in scaled prediction 

variance which accounts for the high level of instability displayed by the design. The 

central composite designs with spherical axial distance, a. s ,  and rotatable axial 

distance, a. R , displayed the worst scaled prediction variance characteristics in the 

spherical region for all the k = 2, 3, . . . , 8 factors. The central composite designs with 

geometric axial distance is better than the ceo with harmonic axial distance with 

smaller scaled prediction variance. Though both designs maintained high stability 

throughout the entire design space, they are only better than the spherical and 

rotatable CCDs. Obviously, the CCD with arithmetic axial distance would be the 

appropriate choice for predicting responses in the spherical region. 

The cuboidal CCO with axial distance, a.c , produced the lowest scaled 

prediction variances for k = 2 and 3 factors in the cuboidal region. With higher 

factors, k = 4, . . . , 8, the prediction variance characteristics of the cuboidal CCD 

deteriorates with the highest and most unstable scaled prediction variances. The CCO 

with practical axial distance, a P , performed only better than the cuboidal CCD but 

worse than the arithmetic, harmonic and geometric CCOs. The arithmetic, harmonic 

and geometric CCDs produced the same small and stable scaled prediction variances 

for all the factors under consideration. 
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4.4 Partial Replications of the CCDs 

The concept of replication of factorial components of the designs other than 

the centre point of the design was first introduced by Dykstra ( 1 959). He argued that 

the measure of error obtained in factorial experiments in which each factor 

combination is run once does not provide true estimate of the experimental error in 

estimating the factor effects since the measure of the experimental error is obtained 

from the scatter among resulting measurements from design samples. This measure of 

experimental error, he considered to be the same as having repeated measures on one 

sample. Therefore, Dykstra ( 1 959) proposed changing the experimental conditions 

after each run in order to obtain real duplicates that wi l l  provide true estimate of the 

experimental error even though this may incur higher number of experimental runs 

and cost of experimentation. 

The idea of replicating factorial designs was extended to the replication of the 

cube and star portions of the central composite designs by Dykstra ( 1 960).He argued 

that replicating only at the centre could be misleading since there is no assurance that 

the experimental error will be constant throughout the entire design region. He 

pointed out that variability might increase away from the centre of the design such 

that the estimate of the experimental error may be too small for proper evaluation of 

the coefficients of the second-order models. The cube and star portions of the CCD 

were examined for partial replication and suggestions made on possible advantages of 

replicating these portions of the ceo. 

Draper ( 1 982) examined the appropriate number of centre points that offers 

minimum prediction variance for central composite and Box-Behnken designs. To 

achieve this, he considered three variations of the CCD, namely: (i) one cube plus two 

stars, (ii) one cube plus one star and (iii) two cubes plus one star, for k =  5, 6, 7 and 8 
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factors. The designs are evaluated by varying the number of centre points to know the 

design option that minimizes the integrated variance function proposed by Draper in 

the study. 

Focus on improving prediction variance characteristics of the central 

composite design through the replication of cube and star portions of the design was 

recommended by Giovannitti-Jensen and Myers ( l 989).The variance dispersion graph 

developed by Giovannitti-Jensen and Myers ( 1 989) for evaluating the prediction 

variances of response surface designs was extended to the central composite design 

with star replications by Borkowski ( 1 995). The procedure adopted by Borkowski 

( 1 995) for the variance dispersion graph involved the development of analytical 

procedure as opposed to the Fortran-based programme used by Giovannitti-Jensen 

and Myers ( 1 989) which becomes almost impossible to use for higher number of 

factors. 

Borkowski ( 1 995) approach has been adopted since its introduction as easier 

and more reliable approach for plotting variance dispersion graphs of the central 

composite designs. Chigbu et al. (2009) and Ukaegbu and Chigbu (20 1 5a, 201 5b) are 

some of the authors that have utilized the approach in plotting variance dispersion 

graphs for the evaluation of the central composite designs in both the spherical and 

cuboidal design regions. The same approach has been extended to the evaluation of 

prediction variance properties of split-plot central composite designs by Wesley et al .  

(2009). 

Works by Chigbu and Ohaegbulem (20 1 1 )  and U kaegbu (20 1 7) involved the 

evaluation and comparisons of the partially repl icated variations of the central 

composite designs using single value criteria like the 0- and G- criteria. In general, 

their works have shown that replicating the cube and star portions of the central 
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composite designs does not improve the values of the 0- and G-efficiencies of the 

design. Therefore, in this work, attention was paid mainly on the evaluation of the 

prediction variance characteristics of the central composite designs using the variance 

dispersion graphs and fraction of design space graphs when only the star portion is 

replicated. 

As earlier pointed out in the l iterature, the value of the rotatable axial distance 

with cube and star replications, n1 andn2 , respectively, is a R = ;/n,fln2 . With 

the repl ication of the star only, the rotatable axial distance becomes a R = V f I n2 • 

This axial distance, a R = V f I n2 , was used to develop another set of arithmetic, 

harmonic and geometric axial distances that accommodate the replication of the star 

portions of the central composite designs (CCD). The new set of axial distances for 

the spherical region are presented below. 

For the arithmetic axial distance, 

' { [2k-q l�4} 
a AS = -; kl/2 + k�'4 + --;;;- , S = 3 ,  q> 0. 

For the harmonic axial distance, 

k-1/2 k-1/4 3 0 { [ 2-(k-q), 4 ]}-l 
aHs = s + + n%4 , s = , q> . 

For the geometric axial distance, 

I 

{ 3 1 ( k-q )}; acs = k 4 x-;;; 2 4 
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The catalogue of values for the arithmetic, harmonic and geometric axial 

distances in the spherical region when the star point is replicated for k = 2 to I 0 

factors are presented in Tables 7and 8, respectively for n2 = 2 and 3. 

Catalogue of Alpha values for replicating the star portion of al l  CCDs twice in the 

Spherical Region is presented in Table 7. 

Catalogue of Alpha values for replicating the star portion of all the CCDs three times 

in the Spherical Region is shown in table 8. 

It could be observed from comparing the values in Tables 1 ,  7 and 8 that replicating 

the star portion of the central composite design reduces the rotatable, arithmetic, 

harmonic and geometric axial distances for the spherical region. The consequences of 

the reduction of the axial distances will now be measured on the prediction variance 

characteristics of the star-replicated central composite designs. The variance 

dispersion graphs and fraction of design space graphs of the star-replicated ceo are 

presented henceforth. 
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TABLE 7 

Catalogue of Alpha Values for the Spherical Region with m = 2 

K F 2mk as ap aR a AS aHS aGS 

2 22 8 1 .4 1 42 1 . 1 892 1 . 1 892 1 .2642 1 .2558 1 .2599 

3 23 1 2  1 .732 1 1 . 3 1 6 1  1 .4 1 42 1 .4874 1 .4675 1 .4772 

4 24 1 6  2.0000 1 .4 142 1 .68 1 8  1 .6987 1 .665 1 1 .68 1 8  

5 25 20 2.2361 1 .4954 2.0000 1 .9 1 05 1 .8565 1 .8840 

6 26 24 2.4495 1 .565 1 2 .3784 2. 1 300 2.0441 2.0891 

26-1 24 2.4495 1 .565 1 2.0000 2.0049 1 .9390 1 .9 7 1 9  

7 27 28 2.6458 1 .6266 2.8284 2.3699 2.2283 2.3003 

27-1 28 2.6458 1 .6266 2.3784 2 .2 1 69 2 . 1 228 2. 1 7 1 2  

27-2 28 2.6458 1 .6266 2.0000 2.0908 2.0097 2.0494 

8 28 32  2.8284 1 .68 1 8  3.3636 2.6246 2.4088 2.5 1 98 

28-1 32 2.8284 1 .68 1 8  2.8284 2.4462 2 .3047 2.3784 

28-2 32  2.8284 1 .6 8 1 8  2 .3784 2.2962 2. 1 920 2.2449 

9 29 36 3.0000 1 .732 1 4.0000 2.9 1 07 2.5847 2.7496 

29-1 36 3.0000 1 .  732 1 3 .3636 2.6986 2.4835 2.595 1 

29-2 36 3 .0000 1 .7321  2.8284 2.5202 2.3730 2.4495 

1 0  21 0  40 3 . 1 623 1 .7783 4.7568 3.2325 2.7553 2.9907 

2 10-1 40 3 . 1 623 1 .7783 4.0000 2.9802 2.6582 2.8228 

2 10-2 40 3 . 1 623 1 .7783 3.3636 2.768 1 2 .55 1 3  2.6644 

2 10-3 40 3 . 1 623 1 .7783 2.8284 2 .5897 2.4348 2.5 1 49 
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TABLE S 

Catalogue of Alpha Values for the Spherical Region with m = 3 

K F 2mk as ap aR a AS aHS aGS 

2 22 1 2  1 .4 1 42 1 . 1 892 1 .0746 1 .2260 1 .2 104 1 .2 1 8 1  

3 23 1 8  1 .732 1 1 .3 1 6 1 1 .2779 1 .4420 1 .4 1 53 1 .4282 

4 24 24 2.0000 1 .4 1 42 1 . 5 1 97 1 .6446 1 .6085 1 .6259 

5 25 30 2.236 1  1 .4954 1 . 8072 1 .8462 1 .7972 1 .82 1 4  

6 26 36 2.4495 1 .565 1 2 . 1491  2.0546 1 .9835 2.0 1 97 

26-1 36 2.4495 1 .565 1 1 .8072 1 .9406 1 .8744 1 .9064 

7 27 42 2.6458 1 .6266 2.5558 2.2760 2 . 1 676 2.2239 

27-1 42 2.6458 1 .6266 2 . 1 49 1  2 . 1 405 2.0575 2.0991 

27-2 42 2.6458 1 .6266 1 .8072 2.0265 1 .9404 1 .98 1 3  

8 28 48 2.8284 1 .68 1 8  3.0393 2.5 1 65 2.3489 2.4361 

28-1 48 2.8284 1 .68 1 8  2.5558 2.3553 2.2398 2.2994 

28-2 48 2.8284 1 .6 8 1 8  2 . 1 49 1  2.2 1 98 2. 1 224 2 . 1 703 

9 29 54 3 .0000 1 .732 1 3.6 1 44 2.7822 2.5266 2.658 1  

29-1 54 3.0000 1 .7321 3.0393 2.5905 2.4 1 99 2.5089 

29-2 54 3.0000 1 .7321 2.5558 2.4293 2.3042 2.368 1 

1 0  2 10 60 3 . 1 623 1 .7783 4.2983 3.0796 2.6997 2.89 1 3  

2 10-1 60 3 . 1 623 1 . 7783 3 .6 1 44 2.85 1 7  2.5969 2.7291 

2 10-2 60 3 . 1623 1 .7783 3.0393 2.6600 2.4843 2.5759 

2 10-3 60 3 . 1 623 1 . 7783 2.5558 2.4988 2.3625 2.43 1 3  
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The variance dispersion graphs (VDG) for the star-rep) icated central 

composite designs are shown in Figures 32 to 45for n 2 = 2 and 3 .  For k =  2 factors, 

all the six competing designs display very similar scaled prediction variance 

characteristics with almost equal scaled prediction variances and could be described 

to have equal prediction capabilities, especially for n 2 = 2. For n 2 = 3, the CCO 

with rotatable axial distance gives the lowest scaled prediction variance which is 

slightly different from the others. The CCD with arithmetic axial distance displayed 

the lowest and most stable scaled prediction variances for k = 3 to 8 factors and 

mostly for the n2 = 2 and 3 replications of the star portion. This is followed by the 

CCD with harmonic axial distance for some factors and the CCO with rotatable axial 

distance for other factors. The CCO with spherical axial distance displayed the worst 

scaled prediction variance distribution with the highest scaled prediction variance 

values for all the factors and for n2 = 2 and 3 replications of the star portion. This is 

followed by the ceo with practical axial distance. 

Should the experimenter decide to harness the advantages of replicating the 

star portion of the ceo in predicting responses in the spherical region, the ceo with 

arithmetic axial distance should be the ideal choice. The fact that these competing 

designs have equal number of experimental runs and centre points shows that the best 

design in terms of small and stable scaled prediction variance has no undue advantage 

over the other designs. The fraction of design space graphs of Figures 46 to 59show 

that the CCD with arithmetic axial distance gives the smallest scaled prediction 

variances throughout the spherical region for n2 = 2 and 3 replications of the star 

portion and for the k = 2, 3, . . .  , 8 experimental factors under consideration. 
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The CCO with harmonic alpha is the second best for all the factors only when 

there is n 2 = 2 replication of the star portion. The scaled prediction variances of the 

ceo with rotatable axial distance get smaller and better as the replication of the star 

portion increases from n 2 = 2 to n 2 = 3 and performed better than the ceo with 

arithmetic alpha for k = 3 with n 2 = 3 .  The CCD with spherical axial distance gives 

the worst prediction variance performances with the highest and most unstable scaled 

prediction variances for n2 = 2 and 3 and for all the factors under consideration. 

This is followed by the CCO with practical axial distance which displayed the second 

worst scaled prediction variance characteristics throughout the entire design space. 

The graphs did not reflect any improvement in the prediction capabilities of the CCOs 

with spherical and practical axial distances with the replication of the star portion. 

The fraction of design space graphs for the star-replicated CCDs are shown in 

Figures 60 to 73 for the cuboidal design space. As earlier stated, the values of the five 

axial distances, cuboidal, practical, arithmetic, harmonic and geometric, for the 

cuboidal design region are not affected by the replication of the star portion of the 

CCO. The fraction of design space graphs (FOSG) of the star-rep licated CCOs in 

cuboidal region are displayed in Figures 60 to 73 for all the factors under 

consideration. The graphs show that for the CCD with cuboidal axial distance yielded 

the smallest scaled prediction variances for about eighty percent (80 %) of design 

space for k = 2 to 4 factors irrespective of the number of replications of the star 

portion. For k = 5 to 8 factors, the prediction variance performances of the CCO with 

cuboidal alpha become almost the same with those of the arithmetic, harmonic and 

geometric axial distances. The CCO with cuboidal alpha becomes very unstable with 
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small scaled prediction variances which increases so rapidly that it becomes 

the worst prediction variance at more than n inety five percent (95 %) of the design 

spaces for k = 6, 7 and 8 factors. This improves as the number of star repl ication 

increases from 2 to 3.  

The CCO with arithmetic, harmonic and geometric axial distances displayed 

the same and most stable scaled prediction variance characteristics in the cuboidal 

region. The CCO with practical axial distance displayed the worst scaled prediction 

variance characteristics in the cuboidal region with the highest scaled prediction 

variances irrespective of the number of replication of the star portion. In response 

surface exploration in the cuboidal region involving the replication of the star portion 

of the CCO, the CCD with cuboidal axial distance will be recommended mainly for k 

= 2 to 4 experimental factors. However, due to the instability of the CCD with 

cuboidal alpha, any of the CCDs with arithmetic, harmonic and geometric axial 

distances would be preferred for k =  5 to 8 factors. On the other hand, the CCO with 

practical axial distance cannot be recommended for response surface exploration in 

cuboidal region involving the replication ofthe star portion of the ceo. 

4.5 Inscribed CCD 

The inscribed CCO is a rotatable CCD whose cube component is located 

inside the sphere unlike the circumscribed ceo where the edges of the cube are 

circumscribed by the sphere. The factorial portion of the inscribed CCD is obtained 

by dividing the unit length of the cube, ± 1 ,  by a ,  the axial distance. This causes the 

cube to shrink within the circumference of the sphere. 

In this section, the variations of the central composite design whose axial 

distances associated with the rotatable axial distance were used to construct the 
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inscribed CCO and the D-and a-efficiencies obtained for comparison. The results are 

presented in Tables 9 and I 0, respectively, for the D-and a-efficiencies. 

Table 9 and 1 0  shows the D- and 0- efficiency values, respectively, for 

inscribed CCO. The values of the D-efficiency for the inscribed central composite 

designs displayed in Table 9 show that the designs have low D-efficiency values. The 

designs having the same number of experimental runs for each particular set of factors 

makes comparison easier. The inscribed CCO with harmonic axial distance 

consistently gives the highest D-efficiency values except for k =  7 where the inscribed 

CCD with geometric axial distance gives the highest value of the D-efficiency. The 

second inscribed CCO with geometric alpha has the second best D-efficiency values 

that are only lower than those of the harmonic axial distance, followed by the 

inscribed CCO with arithmetic axial distance. The inscribed CCD with rotatable axial 

distance consistently yielded the poorest D-efficiency values. Therefore, if the D­

efficiency is the experimenter's choice criterion for exploring the design region for 

the inscribed central composite design, the harmonic axial distance should be used in 

constructing the factorial portion of the inscribed CCO. But for k =  7, the geometric 

axial distance should be used to construct the inscribed ceo. 

The variations of the inscribed CCD displayed commendably high a­

efficiency values as shown in Table I O.For k = 2, 3, 4 and 6 factors, the inscribed 

CCO with rotatable axial distance gives the highest a-efficiency values. For k = 5 

factors, the inscribed CCD with geometric alpha gives the h ighest a-efficiency value, 

the harmonic axial distance gives the best for k = 7 factors while the highest a­

efficiency for k = 8 is given by the arithmetic �xial distance. If the experimenter 

chooses the a-efficiency for the experimental region, the rotatable axial distance is 

most suitable for constructing the inscribed CCO for k =  2, 3, 4 and 6 factors. The 
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TABLE 9 

D-efficiency Values for Inscribed CCD 

K F N aR a AS aHS aGS 

2 22 1 1  24.5 1  26.43 26.69 26.56 

3 23 1 7  1 4.2 1 1 6.03 1 6.50 1 6.26 

4 24 27 08.32 1 0.43 1 1 .08 1 0.73 

5 25 45 04.77 06.95 07.3 1 07. 1 7  

6 26·1 47 02.71 04.66 05.50 05.04 

7 27-1 8 1  00. 1 4  00.22 00.23 00.26 

8 28-2 83 02 . 1 8  0 1 .98 03.95 03.60 

J 
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TABLE l O  

G-efficiency Values for Inscribed CCD 

K F N an a AS aHS aGS 

2 22 1 1  87.27 83.52 83.08 83.30 

3 23 1 7  87.81  85.20 84.62 84.92 

4 24 27 95.24 92.50 9 1 .84 92. 1 8  

5 25 45 83.04 88.60 87. 1 3  88.92 

6 26-1 47  96.85 93.82 92.94 93.39 

7 27-1 8 1  8 1 .06 85.37 85.52 85.46 

8 28-2 83 96.58 97.35 96.93 97. 1 4  

J 
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harmonic axial distance is the most appropriate for k =  7 factors while the arithmetic 

axial distance is most appropriate for k =  8 factors. 

4.6 MA TLAB Programs for the VDGs 

Two computer programs are written in the MA TLAB software, R20 1 4a, for 

plotting the variance d ispersion graphs. The first program is for plotting the variance 

dispersion graphs in the spherical region while the second is for the cuboidal region. 

The two separate programs are prompted by the distinct nature of the design regions 

and the number of axial distances required in this study for each design region. The 

programs are developed using MA TLAB commands and syntaxes required for the 

algorithmic/sequential computations of the prediction variances and corresponding 

radii .  The two programs are built based on the exact closed forms of the variance 

dispersion graphs for the second-order central composite design given by Borkowski 

( 1 995) to ease the tedious computations required in the process of plotting the VDGs 

using the closed forms. The programs plot the variance dispersion graphs within 

fractions of a second irrespective of the number of graphs involved. Also, the 

programs accommodate the replication of the star component of the CCD considered 

in this study and are equally amenable to replication of the factorial portion of the 

CCD if required. The programs are presented in Appendices A. l and A.2, 

respectively, for the spherical and cuboidal regions. 
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5.1 Summary 

CHAPTER FIVE 

SUMMARY AND CONCLUSION 

The central composite design (CCO) is very popular among practitioners and 

experimenters who utilize response surface exploration. The location of the star points 

is very vital for the optimum use of the CCO and a handful of axial distances exist for 

various purposes. In this study, a set of three alternative axial distances are proposed 

for the CCO in each of the spherical and cuboidal design regions. The three sets of 

axial distances are the arithmetic, harmonic and geometric alphas which were derived 

as functions of the three Pythagorean means of the already existing axial distances. In 

order to evaluate the effects of the alternative sets of axial distances, the CCDs were 

evaluated and compared with the existing axial distances which include the spherical, 

practical and rotatable axial distances for the spherical region; cuboidal and practical 

axial distances for the cuboidal regions. Therefore, six variations of the CCO were 

evaluated in the spherical region and five variations were evaluated in the cuboidal 

region. 

Two commonly used single value criteria for response surface design 

evaluation, the 0- and a-efficiencies were employed m the evaluation of the 

variations of the central composite designs. It is common knowledge and has earlier 

been pointed out that in response surface methodology, single-value criteria, like the 

0- and G-efficiencies considered in this work, do not effectively reflect the prediction 

capabilities of a design in the design space of interest. Therefore, in addition to the 0-

and G-efficiencies, two commonly used graphical methods were also utilized in 

studying the prediction variance distributions of the variations of the ceo in the 

spherical and cuboidal regions. They are the variance dispersion graph and fraction of 
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design space graph which were used to monitor the stability of the prediction 

variances throughout the entire design region or where in the region has the best and 

worst prediction. 

Replication of the star portion of the CCD was considered in the study with 

the aim of ascertaining the performances of the three alternative axial distances 

proposed in this study when there are partial replications of the CCD. The CCOs with 

the alternative axial distances were compared with the existing axial distances already 

mentioned here for the spherical and cuboidal regions. The performance evaluations 

of the star replicated CCDs were carried out using the graphical methods adopted for 

this study since earlier studies have shown that replication of the cube and star 

portions of the ceo does not improve the 0- and a-efficiencies. 

Furthermore, construction and evaluation of the inscribed central composite 

design was put in perspective. The four axial distances in this study which are 

functions of the rotatable axial distance were used in constructing the inscribed ceo 

with the aim of determining, through evaluation criteria, which of the axial distances 

is most appropriate for the construction. The 0- and G-efficiency criteria were used to 

evaluate and compare the variations of the inscribed CCO which is only available in 

the spherical region. 

From the results, this research has three major contributions as highlighted 

henceforth. Firstly, alternative axial distances, the arithmetic, harmonic and geometric 

alpha, were developed by exploiting the algebraic properties of the three Pythagorean 

means, arithmetic, harmonic and geometric means. The alternative axial distances 

were developed and made suitable for both the spherical and cuboidal design spaces. 

Furthennore, the alternative axial distances were adapted to accommodate the case of 

partial replication ofthe star portion ofthe ceo. 
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Secondly, SIX variants of the ceo involving the three alternative axial 

distances and the three existing axial distances for the spherical region from which the 

alternative ones were developed were obtained, evaluated and compared in the 

spherical region. Five variants of the CCO involving the three alternative axial 

distances developed for the cuboidal region and the two existing axial distances for 

the cuboidal region were also obtained, evaluated and compared in the cuboidal 

region. The evaluation and comparison of these variants of the CCO were made 

possible using two single value evaluation criteria and two graphical methods. In this 

way, the points of strengths and weaknesses of the alternative axial distances were 

highl ighted. 

Thirdly, the three alternative axial distances were used in the construction of 

inscribed central composite designs and the emanating designs evaluated using the D­

and 0-efficiency criteria. The results were compared with the traditional construction 

of the inscribed ceo using the rotatable axial distance and the benefits of using the 

three alternative axial distances in the construction of the inscribed ceo were 

highl ighted. 

Fourthly, the variance dispersion graph functions for second-order central 

composite design were automated as computer program which runs in MA TLAB 

based in the FORTRAN programming language. The programs were developed for 

the spherical and cuboidal regions and were designed to accommodate the replication 

of the star portion of the CCO. If needed, the programs are also adaptable to the 
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5.2 Conclusion and recommendations 

The analytical forms of the arithmetic, harmonic and geometric means were 

extensively exploited in the development of the arithmetic, harmonic and geometric 

alphas as formidable alternative axial distances for the central composite design. The 

statistical properties of these alternative axial distances were explored using the D­

and G-efficiencies while the variance dispersion graph and fraction of design space 

graph were used to explore their prediction variance properties. It was observed that 

in the spherical region, the D-efficiency values of the arithmetic, harmonic and 

geometric axial distances are consistently better than those of the practical axial 

distance. The G-efficiency values of the three alternative axial distances in most cases 

remained the highest among the six variations of the central composite designs 

simultaneously evaluated in the spherical regions. 

In the cuboidal region, the D-efficiency values of the arithmetic, harmonic and 

geometric axial distances are the highest among the five variations of the CCD 

evaluated for k = 2 to 8 factors. Also, the CCD with the three alternative axial 

distances have the highest G-efficiency values in the cuboidal region except for k = 5 

and 8 where the CCD with cuboidal axial distance has the highest G-efficiency 

values. The D- and G-efficiency values of the practical axial distance mostly 

remained the worst for both the spherical and cuboidal regions. 

The variance dispersion graphs in the spherical region shows that the variation 

of the CCD with arithmetic axial distance displayed the smallest and most stable 

scaled prediction variance throughout the entire design space. The variation of the 

CCD with cuboidal axial distance is the best within the r � 0.5 radius range in the 

cuboidal region. The instability beyond this radius range however, is a source of 

concern since predicting responses may be required throughout the entire design 
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region. The alternative axial distance, specifically, the harmonic alpha with the second 

smallest scaled prediction variances but with better stability throughout the design 

region is recommended for the cuboidal region. The arithmetic axial distance is also 

the best choice in the spherical region with the smallest and most stable scaled 

prediction variances as comparison with fraction of design space graphs also revealed. 

For the cuboidal region, the three alternative axial distances are the best with equal, 

smallest and most stable scaled prediction variances throughout the design space as 

shown using fraction of design space graphs. 

The replication of the star portion of the CCO improved the prediction 

variance characteristics of the variations of the ceo in the spherical and cuboidal 

design regions. However, the variation of the CCO with arithmetic axial distance is 

the smallest and most stable scaled prediction variance characteristics in the spherical 

region as displayed in the VDG and FOSG. In the cuboidal region, any of the 

arithmetic, harmonic and geometric axial distances which produced the same smallest 

scaled prediction variance values is recommended for predicting responses. 

Furthermore, the harmonic axial distance is recommended for the construction of the 

inscribed central composite design. 

I n  general and from the foregoing, the alternative axial distances, the 

arithmetic, harmonic and geometric axial distances, have yielded desirable results for 

the exploration of the response surfaces using the central composite design. The 

alternative axial distances are viable and formidable alternatives to the other existing 

axial distances for the central composite design in the spherical and cuboidal design 

regions. 

5.3. Contributions to knowledge 

The following are the contributions made in this research to knowledge: 

1 2 7  



J 

a. the development of the arithmetic, harmonic and geometric axial distances for 

the spherical and cuboidal regions of the CCD using the concept of 

Pythagorean means. 

b. the use of 0-and G-efficiencies for comparing the alternative and the existing 

axial distance. 

c. the use of graphical methods (Variance dispersion graph and fraction of design 

space graph) for comparison of the axial distances. 

d. the use of computer algorithm to develop the variance dispersion graph. 
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Appendix A. l :  MATLAB Program for Plotting the VDGs in Spherical Region 

Define k, n, f and q ( q =replication of star); 
>> a 1 =spherical alpha value; 
>> a2=arithmetic alpha value; 
>> a3=rotatable alpha value; 
>> a4=practical alpha value; 
>> a5=harrnonic alpha value; 
>> a6=geometric alpha value 
>> F I =f+(2*q*a 1"2); 
>> F2=f+(2*q*a2"2); 
>> F3=f+(2*q*a3"2); 
>> F4=f+(2*q*a4"2); 
>> F5=f+(2*q*a5"2); 
>> F6=f+(2*q*a6"2); 
>> T I =(2*n*q*a 1 "4)+(k*n*f)-(k*F 1 "2); 
>> T2=(2*n*q*a2"4)+(k*n*f)-(k*F2"2); 
>> T3=(2*n*q*a3"4)+(k*n * f)-(k* F3"2); 
>> T4=(2*n*q*a4"4)+(k*n*f)-(k*F4"2); 
>> T5=(2*n*q*a5"4)+(k*n*f)-(k*F5"2); 
>> T6=(2*n*q*a6"4)+(k*n*f)-(k*F6"2); 
>> A 1 l =((k*f)+(2*q*a 1 "4))ff1 ; 
>> A 1 2=((k*f)+(2*q*a2"4))/T2; 
>> A 1 3=((k*f)+(2*q*a3"4))/T3; 
>> A 1 4=((k*f)+(2*q*a4"4))ff4; 
>> A 1 5=((k*f)+(2*q*a5"4))ff5; 
>> A 1 6=((k*f)+(2*q*a6"4))ff6; 
>> A21=-(F l /T l ); 
>> A22=-(F2/T2); 
>> A23=-(F3ff3); 
>> A24=-(F4/T4); 
>> A25=-(F5/T5); 
>> A26=-(F6/T6) ; 
>> A3 1=((n*f)-F1 "2)ff l ;  
>> A32=((n * f)-F2"2)ff2; 
>> A33=((n*f)-F3"2)ff3; 
>> A34=((n*f)-F4"2)/T4; 
>> A35=((n*f)-F5"2)ff5; 
>> A36=((n*f)-F6"2)ff6; 
>> B l=-(2*A2 1 )+( 1 /F l ); 
>> B2=-(2 * A22)+( 1 /F2); 
>> B3=-(2* A23)+(1 /F3); 
>> B4=-(2*A24)+(1/F4); 
>> B5=-(2 * A25)+( l /F5); 
>> B6=-(2* A26)+(1/F6); 
>> C I =( l /2)*(( 1 /f)-(A3 1 /(q*a 1 "4))); 
>> C2=( I /2)*((1 /f)-(A32/(q*a2"4))); 
>> C3=( 1 /2)*(( l /f)-(A33/(q*a3"4))); 
>> C4=( 1 /2)*(( 1 /f)-(A34/( q*a4"4))); 
>> C5=( 1 /2)*((1 /f)-(A35/( q*a5"4))); 
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>> C6=( I /2)*(( 1/f)-(A36/(q*a6"4))); 
>> D l =( l /2)*(1/(q*a1"4)-( l lf)); 
>> 02=( 1/2)* ( 1 /(q*a2"4)-( l /f)); 
>> D3=( 1/2)* ( 1 /(q*a3"4)-(l/f)); 
>> D4=( 112)* ( 1 /(q*a4"4)-( 1 /t)); 
>> D5=(1/2)*(1/(q*a5"4)-( l /f)); 
>> 06=( 1 /2)*( 1/(q*a6"4)-( 1/t)); 
>> r=O:O. l :2.0; 
>> V I  =n*(A I I  +(B I *r."2)+(C I -(D I /k))"'r."4); 
>> V2=n*(A 1 2+(B2*r."2)+(C2-(02/k))*r."4); 
>> V3=n*(A 1 3+(83*r."2)+(C3-(D3/k))*r."4); 
>> V4=n*(A 1 4+(84*r."2)+(C4-(D4/k))*r."4); 
>> V5=n*(A 1 5+(B5*r."2)+(C5-(D5/k))*r."4); 
>> V6=n*(A 1 6+(86*r."2)+(C6-(D6/k))*r."4); 
plot(r,V I ); 
>> hold on 
>> plot(r, V2); 
>> plot(r,V3); 
>> plot(r, V 4); 
>> plot(r,V5); 
>> plot(r, V6); 
>> hold off 
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Appendix A.2: MA TLAB Program for Plotting the VDGs in Cuboidal Region 

Define k, n, f and q (q =replication of star); 
>> a I =cuboidal alpha value; 
>> a2=practical alpha value; 
>> a3=arithmetic alpha value; 
>> a4=harmonic alpha value; 
>> a5=geometric alpha value; 
>> F l=f+(2*q*aJA2); 
>> F2=f+(2*q*a2/\2); 
>> F3=f+(2*q*a3/\2); 
>> F4=f+(2*q*a4/\2); 
>> F5=f+(2*q*a5/\2); 
>> T I =(2*n*q*a JA4)+(k*n*t)-(k*F 1/\2); 
>> T2=(2*n*q*a2/\4)+(k*n*t)-(k*F2/\2); 
>> T3=(2*n*q*a3/\4)+(k*n*t)-(k*F3/\2); 
>> T4=(2*n*q*a4/\4)+(k*n*f)-(k*f4A2); 
>> T5=(2*n*q*a5/\4)+(k*n*f)-(k*F5/\2); 
>> A l l=((k*f)+(2*q*a 1 "4))ff l ;  
>> A 1 2=((k*f)+(2*q*a2"4))ff2; 
>> A 1 3=((k*f)+(2*q*a3"4))ff3; 
>> A 1 4=((k*f)+(2*q*a4/\4))ff4; 
>> A 1 5=((k*f)+(2*q*a5/\4))ff5 ;  
>> A21=-(F i ff l ); 
>> A22=-(F2ff2); 
>> A23=-(F3ff3); 
>> A24=-(F4!r4); 
>> A25=-(F5ff5); 
>> A3 1 =((n*t)-F 1 "2)ff l ;  
>> A32=((n*f)-F2/\2)ff2; 
>> A33=((n*f)-F3/\2)ff3; 
>> A34=((n* f)-F4"2)ff4; 
>> A35=((n*t)-F5"2)ff5 ; 
>> B I =-(2*A2 1 )+( 1 /F l ); 
>> B2=-(2*A22)+( 1/F2); 
>> 83=-(2* A23)+(1/F3); 
>> B4=-(2*A24)+( 1 /F4); 
>> B5=-(2*A25)+( 1 /F5); 
>> C 1 =( J /2)*(( 1 /f)-(A3 1 /(q*a 1 "4))); 
>> C2=( 1 /2)*((1 /f)-(A32/(q*a2A4))); 
>> C3=(1 /2)*(( 1 /f)-(A33/( q*a3"4))); 
>> C4=(1 12)*(( 1 /f)-(A34/( q*a4"4))); 
>> C5=( 1/2)*(( I /f)-(A35/( q*a5"4))); 
>> D l =( 1 /2)*(1/(q*a1 "4)-( 1 /t)); 
>> D2=(1/2)*( 1 /(q*a2"4)-( l/t)); 
>> D3=(1/2)*(1 /(q*a3"4)-( 1 /t)); 
>> D4=(1/2)*(1 /(q*a4"4)-(l lt)); 
>> D5=(1/2)*( l /(q*a5"4)-(1 /f)); 
>> r=O:O. I :  1.0; 
>> V I  =n*(A 1 1  +(B I *r./\2)+(C 1 -(D I /k))*r."4); 
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>> V2=n*(A 1 2+(B2*r."2)+(C2-(D2/k))*r."4); 
>> V3=n*(A 1 3+(B3*r."2)+(C3-(D3/k))*r."4); 
>> V4=n*(A 1 4+(B4*r."2)+(C4-(D4/k))*r."4); 
>> V5=n*(A 1 5+(B5*r."2)+(C5-(D5/k))*r."4); 
plot(r, V I ); 
>> hold on 
>> plot(r, V2); 
>> plot(r,V3); 
>> p lot(r,V4); 
>> plot(r,VS); 
>> hold off 
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Appendix B. I :  Extended Design Matrix for Four-Factor CCD ''ith Spherical Alpha 

XI X2 X3 X4 X 1 "2 X2"2 X3"2 X4"2 X I *X2 X I *XJ X I *X4 X2•XJ X2•X4 X3*X4 

- I  -I -I  - I  

I -I  - I  - I  - I  - I  - I  

- I  - I  - I  - I  - I  - I  
...--

- I  - I  - I  - I  - I  - I  

- I  -I - 1  - 1  -1 - 1  

-1 - 1  - 1  - 1  - 1  - 1  

-1  - 1  - 1  -I - I  - I  

- I  - I  - I  - I  

- I  - I  - 1  - I  -I  - I  

- I  - I  - I  - I  - I  - I  

- I  - I  - I  -I  - I  -I  

I I - I  - I  - I  - I  

- I  - I  I - I  - I  - I  - I  

- I  - I  - I  - I  
-I -I - I  -I 

I I I I I I I I I 

-2 0 0 0 4 0 0 0 0 0 0 0 0 0 
2 0 0 0 4 0 0 0 0 0 0 0 0 0 
0 -2 0 0 0 4 0 0 0 0 0 0 0 0 
0 2 0 0 0 4 0 0 0 0 0 0 0 0 
0 0 -2 0 0 0 4 0 0 0 0 0 0 0 

.r 0 0 2 0 0 0 4 0 0 0 0 0 0 0 
0 0 0 -2 0 0 0 4 0 0 0 0 0 0 
0 0 0 2 0 0 0 4 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 

137  



Appendix 8.2: Extended Design �latrix for Four-Factor CCD n ith Practical Alpha 

X I X2 X3 X4 X 1"2 X2"2 X3"2 X4"2 X I *X2 X I *X3 X I *X4 X2*X3 X2*X4 X3*X4 

-I - I  - I  -I  

I - I  - I  - I  - I  - I  - I  

- I  I - I  - I  - I  -I  -I  

I I -I  -I  -I  - I  -I  -I  

- I  -I  I -I  -I  -I I - I  
I - I  I -I  -I  -I  - I  - I  

- I  - I  - I  - I  I -I  -I  

- I  I - I  - I  - I  

- I  - I  - I  - I  - I  - I  
- I  - I  - I  - I  - I  - I  

-I  I - I  - I  - I  - I  - I  
- I  -I  -I - I  

-I  -I  -I  -I  -I  - I  
- I  - I  I - I  - I  

-I  I - I  -I  - I  I 
I I I I I I I I 

-1 .414 0 0 0 2 0 0 0 0 0 0 0 0 0 

1 .4142 0 0 0 2 0 0 0 0 0 0 0 0 0 

0 -1 .414 0 0 0 2 0 0 0 0 0 0 0 0 

0 1.4142 0 0 0 2 0 0 0 0 0 0 0 0 

0 0 - 1 .4 1 4  0 0 0 2 0 0 0 0 0 0 0 

r 0 0 1 .4 1 42 0 0 0 2 0 0 0 0 0 0 0 

0 0 0 - 1 .4 1 4  0 0 0 2 0 0 0 0 0 0 

0 0 0 1 .4142 0 0 0 2 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

) 
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Appendix B.3: Extended Design Matrix for four-Factor CCD with Rotatable Alpha 

XI X2 X3 X4 X l "2 X2"2 X3"2 X4"2 X l *X2 X I *X3 X l *X4 X2*X3 X2*X4 X3*X4 

-I -I - I  - I  

- I  - I  - I  - I  - I  - I  

-I  - I  - I  - I  - I  - I  
.,-

I - I  - I  - I  - I  - I  - I  
- I  - I  - I  - I  - I  - I  

- I  - I  - I  - I  - I  -I  

- I  - I  - I  - I  I - I  - I  

I - I  - I  - I  - I  

- I  - I  - I  - I  - I  - I  

-I - I  - I  - I  - I  - I  

- I  - I  - I  I - I  - I  -I 

- I  - I  - I  I -I 

- I  - I  - I  - I  -I  -I  

-I  -I  I - I  - I  

-I  - I  -I  -I  I I I 

I I I 

-2 0 0 0 4 0 0 0 0 0 0 0 0 0 

2 0 0 0 4 0 0 0 0 0 0 0 0 0 

0 -2 0 0 0 4 0 0 0 0 0 0 0 0 

0 2 0 0 0 4 0 0 0 0 0 0 0 0 

0 0 -2 0 0 0 4 0 0 0 0 0 0 0 

r 0 0 2 0 0 0 4 0 0 0 0 0 0 0 

0 0 0 -2 0 0 0 4 0 0 0 0 0 0 

0 0 0 2 0 0 0 4 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Appendix 8.4: Extended Design Matrix for Four-Factor CCD with Arithmetic Alpha in Spherical Region 

XI X2 X3 X4 Xl"2 X2"2 X3"2 X4"2 X l *X2 Xl*X3 X I *X4 X2*X3 X2*X4 X3*X4 

-I  -I  -I  -I  I I 

-I  -I  -I  -I  -I  -I  

-I  -I  -I  -I  -I  -I  

-I  -I  -I  - I  - I  -I  

- I  -I  -I  -I  -I  -I  

I - I  - I  -I  I -I  -I  -I  

· I  I - I  - I  · I  - I  · I  

-I  -I  -I  -I  

-I  -I  - I  -I  -I  -I  

-I  -I  -I  -I  -I  -I  

- I  - I  - I  I -I  -I  -I  

- I  ·I  -I  I -I  

-I  -I  -I  - I  -I  -I  I 

-I  ·I  -I  - I  

- I  - I  · I  -I  I 

I I I I I I 

- 1 .805 0 0 0 3.2569 0 0 0 0 0 0 0 0 0 

1 .8047 0 0 0 3.2569 0 0 0 0 0 0 0 0 0 

0 -1 .805 0 0 0 3.2569 0 0 0 0 0 0 0 0 

0 1 .8047 0 0 0 3.2569 0 0 0 0 0 0 0 0 

0 0 - 1 . 805 0 0 0 3.2569 0 0 0 0 0 0 0 

0 0 1 .8047 0 0 0 3.2569 0 0 0 0 0 0 0 

0 0 0 - 1 .805 0 0 0 3.2569 0 0 0 0 0 0 

0 0 0 1 .8047 0 0 0 3.2569 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 40 



Appendix 8.5: Extended Design Matrix for Four-Factor CCD '' ith Harmonic Alpha in Spherical Region 

XI X2 X3 X4 Xl"2 X2"2 X3"2 X4"2 X I *X2 X I *X3 X I *X4 X2*X3 X2*X4 X3*X4 

-I - I  - I  -I  I I 

- I  - I  - I  - I  - I  - I  
---

- I  - I  - I  - I  I I -I  -I  

I I - I  - I  I - I  - I  -I  -I  

-I  -I  I - I  I - I  - I  I -I  

I - I  - I  - I  I - I  - I  - I  

- I  - I  - I  - I  I -I  - I  

I I - I  - I  - I  - I  
- I  - I  -I  I - I  - I  - I  

- I  - I  -I  -I  -I  -I  

- I  - I  - I  I - I  - I  -I  

I I -I - I  I -I  -I  

-I  -I  I -I  - I  -I - I  I 

- I  - I  I I -I - I  

- I  I I I - I  - I  - I  I I 

I I I I I I I I I I I I I 

- 1 .757 0 0 0 3.0885 0 0 0 0 0 0 0 0 0 

I .  7574 0 0 0 3.0885 0 0 0 0 0 0 0 0 0 

0 - 1 .757 0 0 0 3.0885 0 0 0 0 0 0 0 0 

0 1 .7574 0 0 0 3.0885 0 0 0 0 0 0 0 0 

0 0 - 1 .757 0 0 0 3.0885 0 0 0 0 0 0 0 

0 0 1.7574 0 0 0 3.0885 0 0 0 0 0 0 0 

0 0 0 - 1 .757 0 0 0 3.0885 0 0 0 0 0 0 

0 0 0 1 .7574 0 0 0 3.0885 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 4 1  



Appendix 8.6: Extended Design Matrix for Four-Factor CCD with Geometric Alpha in Spherical Region 

X I X2 X3 X4 Xl"2 X2"2 X3"2 X4"2 X l *X2 X l *X3 X I *X4 X2*X3 X2*X4 X3*X4 

-I  -I  -I  - I  I I I I I I 1 I I l 

I -I  - I  - I  I I I I -I  -I  - I  I l I 
- I  I - I  - I  I I I I -I  I I - I  - I  I 
I I - I  - I  I I I I I - I  - I  - I  - I  I 

- I  - I  I - I  I I I - I  I - I  I - I  
I - I  I - I  I I -I  I -I  -I  I - I  

- I  I I - I  I I -I  - I  I I - I  - I  
I I I - I  I I I I - I  -I  -I  

- I  -I  -I  I I I I - I  - I  - I  

I -I  -I  I I - I  - I  I - I  - I  

- I  I -I  I I -I  I -I  - I  I - I  
I I -I  I I I - I  I - I  I - I  

- I  - I  I I I I - I  - I  -I  -I  I 
I -I  I I I - I  I I -I -I  I 
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Appendix B.7: Extended Design Matrix for Four-Factor CCD with Cuboidal Alpha 
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Appendix 8.8: Extended Design Matrix for Four-Factor Inscribed CCD with Rotatable Alpha 
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Appendix B.9: Extended Design Matrix for Four-Factor Inscribed CCD with Arithmetic Alpha 
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Appendix 8.10: Extended Design Matrix for Four-Factor Inscribed CCD with Harmonic Alpha 
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Appendix B.ll: Extended Design Matrix for Four-Factor Inscribed CCD with Geometric Alpha 
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ABSTRACT 

In this study, three axial distances are proposed as alternatives to the existing axial 

distances of the Central Composite Oesign(CCO) in spherical and cuboidal design 

regions with the aim of providing formidable alternatives to the existing axial 

distances of the ceo whose prediction properties are less extreme and more stable in 

the spherical and cuboidal design regions. The three alternative axial distances, 

namelythe arithmetic, harmonic and geometric axial distances, each, for spherical and 

cuboidal regions, were developed algebraically based on the concepts of the three 

Pythagorean means. The strengths and weaknesses of the alternative axial distances 

were validated by comparing their performances with the existing axial d istances in 

the spherical and cuboidal regions. The 0- and a-efficiencies are used for comparison 

while the two graphical methods adopted are the variance dispersion graph (VOa) 

and fraction of design space graph (FOSa). Furthermore, effect of partial replications 

of the star portion of the ceo on the alternative axial distances were evaluated by 

comparing the performances of the replicated variations of the CCD in the spherical 

and cuboidal regions. Also, the alternative axial distances were utilized in the 

construction of the inscribed ceo in order to determine their benefits in improving 

the performances of the inscribed CCO. The results show that the three alternative 

axial distances provide 0-efficiency values that are consistently better than that of the 

practical axial distance and often compete favourably with those of the spherical and 

rotatable axial distances in the spherical region. The a-efficiency values of the 

alternative axial distances are better for most of the sets of factors considered. In the 

cuboidal region, the three alternative axial distances are consistently better in terms of 

the 0- and a-efficiencies. The stability and prediction capabilities of the CCO with 

arithmetic axial distance remain the best in the spherical region and the second best in 
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the cubloidal region. However, the case of the cuboidal region improved with the 

replication of the star portion as the three alternative axial distances became the best 

and the most stable in terms of scaled prediction variances. The alternative axial 

distancesalso improved the performances of the inscribed ceo when used to 

construct the design. Two computer programs were developed in MA TLAB software 

which constructs the variance dispersion graphs of competing designs in very little 

time of less than a second. It is therefore concluded that the alternative axial distances 

developed in this study have yielded desirable results for the exploration of the 

response surfaces using the central composite design. It is strongly recommended that 

the central composite design with arithmetic axial distance would be the 

experimenter's choice should the 0-efficiency be the criterion for response surface 

exploration. 

(Word counts: 441) 
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