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ABSTRACT

The new devel opnents in mechani cal engineering in
Ni geria (Low Cost Vehicle project, aviation projects -

Al R BEETLE, etc.), require in-house practical calculation
techni ques in design generally and cal cul ation of stresses
I n machi ne conponents, particularly.

The machi ne conponents (Spur Gears) under operation
are subjected to stresses which differ at different |oca-
tions. These stresses are hereby determned with the use
of photoelastic and nunerical nethods and conpared with
cl assical design fornul ae.

Gear Model s made of photoelastic material (Colunbia
Resin CR-39) were produced and loaded in a specially built
gear |oading system The stresses in the nodel were
anal ysed using the photoelastic principles giving the
stress difference (0; - 0,) at points. Next, nunerica
method (Finite Difference Method) was enpl oyed which gave
(0 + 0,) values at the same points. The equations for
(0 + 0;) and (0; + 0,) were solved for the individua

stresses at the said points.

The stresses in the gear nodel were also determ ned
using Finite El enent Method, FEM Later, the node
stresses were applied to the steel prototype.

Finally, the results obtained using different nethods
and cl assical design fornulae (Lewis, Modified Lewis and
Sopwi th Equations), were conpared and inferences made.

Sonme likely sources of error in the work were pinpointed.

Vi



TABLE OF CONTENTS

CHAPTER:
TITLE PAGE .. R ‘e v e
DECLARATION . 44 = w4 .. . ..
CERTIFICATION . e .. .. ..
DEDICATION .. e - A,
ACKNOWLEDGEMENT .. . . .. .. ..
.ABSTRACT ... . e “w . aw .
TARLE OF CONTENTS .. .. .. .. ..
"LIST OF TABLES .. .. .. .. ..
LIST OF PIGURES .. . .. .. ..
LIST OF PLATES .. .. .. .. .
LIST OF SYMBOLS .. .. .. .. -
1. Introduction e | . . .o
2.

A review of Various Methods of Calculating

Stresgses in Spur Geatrs . e
Introduction .- .. .. .o
Strength of Gear - Lewis formula = = ..

Strength of Gear Teeth - Sopwith Equation

Application of Photeoelastic and Numerical
Methods for Determining Stresses ..

Field of Application of Photoelasticity

Limitations of Photoelastic¢ Technique ..

Field of Application of Numerical Methods

Principles of Photoelasticity, Finite

Difference Method and Finite Element

Method .. .- .. - ..

vii

PAGE
i1
iii

iv

vi

_ vii

*xi
wiii

Xiv

10

15
15
1¢

1€

18



CHAPTER B © PAGE

4.1. Photoelasticity .. .. .o . 18
4,1,1. The Photoelastic Materials L ee .o 21
4.2. The Finite Difference Method, FDM  as . 22
4.2.1. Formulation of Finite Difference Equations. f 23
4.2.2, Computer Solution of FDM .. - . 27
4.2.3. Accuraéy of Pinite Difference Solution ..  ;_ 27
4.3. The Finite Element Method FEM .. .- . 27
4,.3.1. Element Stiffness Matrix .. “a . : 28
4,3.2. Triangular Element e . '. os _;; 30
5. Experimental Results . . .o ..  . 36
5.1. Detailed Description of the Photoelastic Bench

Used . . .o e e 36
5.2, Design and Fabrication of the Loading System | 37
5.3. Preparation of the Models .o .e 38
5.4. botermination of Young's Modulus and.Poisson‘s

Ratio of the Model Material .. R 45
5.5. Caliberation of the Model ce e © 46
5.6, The Photoelastic Results .. o - o 5é
5.7. Separation of Principal Stresses with the -

use of FDM .. e e 66

5.71. Determination of Stresses at the nedal points

' 1, 2, 3, on the Model using Strain Gauges 66
5.7.2. Application of FDM T . m;
5.7.3. The Individual Stresses ,, - e 79
5.8. Model Stresses Applied to the Prototype 83
6. Calculation of Stresses with the Use of FEM 85
7. Comparison of Results obtained by Different

Methads - .- . . &8

viii



CHAPTER |
7.1. Calculating.thé.Fiilet Streséés with the use
of Lewis formula . - .o
7.2, Caléulating the Fillet Stresses with the use
of Scpwith Equation .. - .
7.3. Comparison of the Fillet Stresses .
7.4. Calculating the Contact Stress at the Point
of Load Application with the use of
Hertz Equation . .a se
7.5 Comparison of Contact Stresses .. .e
7.6. Inferences .. - .. e .o
8. Likely Sources of Error in this work .o
8.1. Likely Sources of Error in Photoelastic
Results . . .o ve
8.2. Likely Sources of Error in Strain Measurement
8.3. Likely Sources of Error in Numerical Methods
g, Conclusion .. . .o Rk .-
REFERENCES .. e .

ix

PAGE
28

90

91

21
96
96

98

95
100
10T
103

105



TABLE

5.7,

LIST OF TABLES

TITLE
Tension test readings ce e
Fringe values for caliberation ..
Fringe values at 9% of full load .
Measured strains for Nodes 1, 2, 3,
Corrected Strain vValues .. .
Fillet stresses by different Methods

Contact stresses by different Methods

PAGE

46
50
63

T
T2

92

926



FIGURE

2.4.

.~ LIST OF FIGURES

TITLE

Gear Nomenclature .., ce e .o

Lewls approach for Calculating Stresses..
Dimensions required for Calculating

Fillet Stresses " we ‘e .

Equivalent flat-sided projection constructed

from Gear Tooth .o . -
Plane Polariscope .. P .o -
Toward Difference Formulae .o .

Square Mesh and Numbered Nodal Points ..
Boundary not Coincident with Nodes -
Node Points on Arbitrarily Shaped Element
Triangular Element ‘s . .
Uniform Stress Field of an Element resolved
into Nodal Forces . .o I .o
Plane State Stress | ... ;. .

Assembly Drawing of the Loading System ..

Fork-Shaped Component e - .
Model Ilanger . . . ‘e
Model Hanger . . .o .
L~Shaped Component .o . ..
Gear Dimensiecns .. . “ | .
Tension Test Piece Dimensions ' s
Stress-Strain Curve .e .- .
Lateral Strain-Axial Strain Curve : .¢"I

=i

aa

13
19
23
24
25
28

30

33
33
39
40
a1
42
43
44
a5
47

47



FIGURE | - TITLE - . PAGE

5.10. Caliberation Specimen Arrangement .. 48
5.11. Detailed Drawing of Fig. 5.10 . N 49
5.12. Nodal points on the gear model .. . f _63

5.13. Dimensions (square mesh} for generating

difference equations .. . e '1 67
5.14a; Force-Strain Curve for Node 1 . .o 68
5.14b. Porce-Strain Curve for Node 2 . .o 'f:' 69
5.14¢c. Force-Strain Curve for Node 3 - . 70
6.1, Computer Print-Out (Inside Back Cover Envelope}
6.2, Constant Strain Triangles on the Gear Model 86
7.1 T.ewis approach for calculating stresses - g9

7.2. Equivalent flat-sided projecticon constructed

from gear tooth for the calculation of

fillet stress .. —_— ... . :; 91
7.3. Dimensions required for the calculation of..
| transmitted leoad . .o .o : 99
7;4..: ﬁimensions required for the calculation of

Contact Stress _ o> . . .95

®it



 PLATE

ir

ITT

1v

VT
VII
VITI

IX

XI
XIT
X111
XTIV

Xv

XV1

XVIX

XVIII

XIX

XX

LIST

Zero order
Half order
Full order
Half order
Full order
Balf order
Full order
Half Order
Full order
Half order
Full order
Half order
Full Order
Half crder
Full order
Half order
Full order
Half order

Front view

The models and the loading system on the

straining frame

OF PLATES

TITLE

fringe at 0% load

fringes
fringes
fringes
fringes
fringes
fringes
fringes
fringes
fringes
fringes
fringes
fringes
fringes
fringes
fringes
fringes

fringes

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

1%
1%
1%
2%
13
3%
3%
4%
1%
5%
5%
6%
6%
7%
7%
8%
8%

load
load
load
load
load
load
load
load
load
load
load
load
load
load
load
lcad

load

»»

of the photoelastic bench

xiii

" PAGE

53
53
54
54
55
55
56
56
57
57
58
58
59
59
60
60
61
61

62

62



LIST OF SYMBOLS

MEANING
Principal stresses
Diametral pitch
Circular pitch
Number of teeth, fringe dfder
Pitch circle diameter
Thickness
Addendum distance

Dedendum distance

.

Sy o L N 5_:'}_, N
oy e

Module

Whole depth

Face width

Length

Applied load

Tangential load component
Radial load component
Second moment of inertia
Moment

Stress

Lewis form factor

~ Principal strains

Speed |

Relative retardation; displacement
Index of refraction
Strain optical constant

Xiv

UNITS

H/m?
mm

mm

mm

m/s



SYMBOL . MEANING R UNITS

K - Stress optical constant N/m? /fringe

E . = Young's Modulus o | _ N/m?

11 - ~ - Poisson's Ratio |
A = Wave length | . mm

v . - Harmonic operator

K(e),K - Element and global stiffness - ~ Nm

(D] o -~ Element elastic property matrix |

a . Surface area m?

[H] ~ Stress~displacement matrix

[B] - Strain matrix

Kij ~ Stiffness coefficients _ Nm

ipl = Column vector of loads

{§} - Column vector of displacement

[K] - Element stiffness matrix

YXY - Shear strain.

€ - Strain

2 ~ Section Modulus o mm?

R -~ Fillet radius | O mm

XV



CIAPTER ONE A

1. INTRODUCTIDN
S In industries which require, in substantial
qﬁénfities, gears which mﬁst combine minimum weight with
consistent reliability or a predictable minimum life
{such as the automobile and aircraft industries}, gear
stressing is the subject of specialist attention.

- Essentlal limitaticons in the design of gear wheels
- are derived from kinematical conditions that the teeth
must be so formed and disposed as to imitate the true
rolling of the pitch circles, although the teeth may
slide over one another, and of course, this normally
happens. Although there are theoretically an infinite
number of ways of satisfying the condition mentioned
above, the great majority are shaped from curves described
by points on the circles and straight lines when rolling
without slipping on circles. The involute curves produced
in this latter way are usually preferred, since a slight
change in the distance between the wheel centres does not
impair the transmission of true rolling motion, while the
teeth, owing to the mode of formation, have their greatest
breath at the roots or junctions with the main body of
the wheel, and are therefore well shaped to resist the
maximum stresses which come upon them due to the sliding
contact pressure between the surfaces.

Although in practice, the design of the teeth is

thus limited, the stress distribution in fhem, and in the
wheels themselves, afford a number of problems of

1



practical importance owing to wide use of gearing, often
under particularly strenuous cenditiens.

The well-known Lewis formula for gear teeth is
based on pure bending effect, and a5 such tends to produce
low results. A further advancement in the Lewis formula
was to take the compenent of the lead producing compres-
sion into account. By introducing this term, the modified
lewis formula éame into existence. These formulae are
inaccurate because the effect of a high load in close
proximity to the fillet is ignored, and because the
simple bending theory formula is intended for beams.whdse
depth is small compared with the length. To overccme
these problems, the analysis of the stresses in spur gear
has been done in this work using different other methods.
These methods include numerical methods {Finite Difference
Method, FDM and Finite Element Method, FEM}; photoelastic
technigue and scpwith equation.

Photoelasticity and numerical methods (FRDM and FEM])
:ére individually or collectively used in stress analysis
and proved to be very successful and efficient in calcula-
tion of stresses for parts of complex shape. Here the
stress distribution in the teeth of a spur gear has been
studied by both photoelastic technique combined with FDM
and FEM. . ” -

In photoeiastic ﬁefhod of stress analyéis, stresses
are inferred from the optical behaviour ¢f stressed trans-
parent materials. In .this method of stress analysis, a
model or detail of the structure is made from a suitabkle
transparent plastic and loaded in such a way as to simulate

2



conditions in the prototype. When the model is placed in
the polariscope and examined in the peolarised light field
provided by the instrument, coloured fringe patterns are
seen which reveal a viS%ible picture of the stress distri-
bution over the whole area of the model and stress dis-
tribution which is accurately readable at any point in the
model for both magnitude and direction. The key piece of
equipment required for photoelastic studies is polariscope
{photoelastic bench). |

The photoelastic results éive prihéipél stress dif-

ference (v, - 02) at any point in the model. For complete

1

determination of separate principal stresses ¢, and Uy FDM

1
is used. This method gives the sum of principal stress

(01 + 02].

by FDM was first developced by Shortly and Weller and was

The determination of sum of principal stresses

later improved upon by Frocht [ref. 7]. This method provides
the most satisfactory method of determining the separate'
principal Stfesses from thé photoelastic results alone with-
out recourse to an auxilliary experiment, since the only
data required are the boundary stresses from the fringe
photocgraphy and partial fringe orders;' It is beyond the
scope of this chapter to deal, in detail, with the basic
principles and theory of photoelasticity, FDM and FEM, since
these are covered in Chapter Four of this work.
Nevertheless, it is worthy to note that in FDM, once
the governing differential equaticns have been derived, no
further reference is made to the physical probklems; while

FEM requires that the physical characteristics of the

| o )



problem be retained throughout the process of its
solution. This results to a large number of simultaneous
linear equations which must be solved for stresses

and displacements of each element .0f the structure.

This is a tedious task which is normally solved with

the aid of a computer.



CHAPTER TWO

2.0. A REVIEW OF VARIOUS METHODS OF CALCULATING STRESSES

IN SPUR GEARS

Z.1. Introduction:

Gears are machine .elements used in a wide
rénge éf engineefing designs, so0 that power may be trans-
mitted steadily and without slip, such as occurs with a
belt drive. There are different types of gears; amonaga
which arce spur gears, helical, spiral, worm and bevel
gears.

Spur gears are those gears that have their teeth cut
§a£a11e1 to the axis of the shaft. A cross-sectdion of the
tocth is identical for beoth size and shape along the
entire length. Spur gears are used Lo transmit rotary
motion bétween parallel shafts. They are used over a wide
range of articles from small watches and meters, gear
trainsxﬁn machiné tools, in gear boxes as fitted to motor
cars and aero-engines, to large drives as found in rolling
mills and on board ships.

For the purpose of continuity, it is pertinent to
define some of the terms used with gearing. These terms
are explained with the aid of Fig. 2.17. | |

The pitch circle is a theoretical circle upon which
all calculations are usually based. The pitch circles of a
pair of mating gears are tangent to each other. | |

A pinion is the smaller of two mating gears while

the larger is often called the gear.

5



Addendum i am S
R i . ‘&:_
Tooth Wid N -
Dedendum| { & thickness _-Offpg)c'e‘— el -
4 | &

/=

- Clearance Fillet
L o : radius.
o . Creartnce

Dedendumn :
circle circle

Fig. 2;1: Gear teeth nomenclature.
The circular pitch, p, is the distance measured on
.'the pitch circle, from a point con cone tooth to a corres-

ponding point on an adjacent tooth. From Fig. 2.1,
circular pitch p is equal to the sum of the tcoth thick-
ness and the width of space. |

The diametral pitch, P, is the rétio of the number
of teeth, N, on the gear to the pitch diamgter, d.

.The ratio of the pitch diameter to the numbes of
teeth N is termed the module M. Hence, it is the recipro-
cal of diametral pitch.

The addendum ‘a' is the radial distance befween the
top-land and the pitch circle.

The dedendum b is the radial distance from the bottom
iénd to the pitch circle.

The whole depth ht

is the sum of the addendum and
dedendum.
The clearance circle is a circle that is tangent to

the addendum circle of the mating gear.

6



Tﬂe clearance is the amount by which the dedendum
in a given gear exceeds the addendum of its mating qear.

The backlash is the amount by which the width of the
tooth space exceeds the thickness of the engaging tooth
measured on the pitch circle. - -

Having defined some of the terms which will be
constantly referred to in this chapter, a reyiew of some
of the various methods of calculating stresses iﬁlépur

gear now follows.

e e e A W S A e oyl S Mp S i S ——

The determination of maxiﬁum stresses in.a
':1oaded gear tooth is complicated by wvariation in maanitude
and direction of the load on the tooth during contact and
by the shape of the tooth, since it has varying width and
is joined to the body of the gear by a fillet.

In 1892, Wilfred Lewis, in his paper titled, "Invesg-
tigation of strength of gear teeth", to the Engineers Club
oi Pb;ladelpia, made simplifying assumptions regarding the
.éfréhqth of gear teeth., This resulted in an equation which
has been used extensively by industry in determining the
size and propeortions cof gears up till now.. |

To derive the Lewis formula, refer to Fig. 2.2 which
shows a cantilever of cross-sectional dimensions F and t,
having a length 1 and a load W, uniformly distributed across

the distance F (face width). The section modulus is Z =

Ft?
6

and then the bending stress, 9, is:

' 6W,_.1
- M -
o = Z." **f,‘{“:-- | o | (2.1)
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Fig. 2.2: Lewis Approach for Calculating Stresses.
Réferring to Fig. 2.2.b, we assume that the maximum
stress in gear tooth occurs at point 'a’. By similar

triangles, one can write:
t/2 _ 1

3 t/2

t2

= x = T (2.2)

Rearranging equation (2.1) we have

thl Wt 1 W

_ - ..t 1 1
TTFEOTF U6 T v TT/AT c1ve C-- (2.3
Substituting the value of x from equation (2.2) into

(2.3} and multiplying the numerator and the denominator

by the circular pitch, P, we have

We p
¢ = e e (2.4)
F(2/3Yxp .
Letting v = 2x/3p, we have
t
T T e e -{2.5
oy {2.5)

Equation (2.5} is the original Lewis equation. The factor
Y is called the Lewis form factor. Form factor may be
ohtained by either qraphiqal layout of the gear toﬁth or
digital computer. | j

At times the diametral pitch P is preferfed to'circu*
lar pitch p in determininq the stresses. This is done by



substituting P = n/p and Y = w7y in equation (2.5}. This
gives:

e ———————————
i .-°-.-"F¥, -m—===(2.6)

?alues of form factor Y are available in standard gear
handbooks. .

In the derivation of Lewis equation, a lot of ;séump-
tions were made which include the following:

The Lewis equation is solved by using tangential
éomponent of the load. If the radial component is consi-
dered, this would produce a uniform compressive stress to
which must be added the bending stress. The effect of the
radial component therefore is to increase the compression
and decrease the tension,.

In the derivation of Lewis formula, the greafésf.
stress 1is assumed tec occur when the load is at the tip of
the tooth. If gears are cut with sufficient accuracy, the
tip lead condition is not the worst, because another pair
of teeth will be in contact when this condition occurs.
with this assumption, Lewis formula does not take into
.account the effect ¢of high load in close proximity to the

fillet.

Alsc, the tangential load W, in Lewis formula, is

- t
éssumed to be uniformly distributed across the full face

of the gear. This statement is not completely true because¢
gears and their supporting shafts are made of elastic
materials which deflect under the application of loads.

The effect of the deformations is to cause non-uniform

distribution of the load.

9



In addition, the effects of stress concentration are
neglected. Stress concentration factors are not taken into
account and recent investigation indicates the advisability
of doing so. | | |

It has also been shown by photoelastic méthod that
the stresses at the root of the tooth can be ‘much greater
than those alleowed for by the Lewis formula. This is due
to the change in the tcoth contour as the form emerges into
the root diameter. -

Finally, the simple bending theory applied by Lewis
here, is only applicable to beams of small t/1l ratios.

This ratic is not small for spur gears,

The well-known Lewis formula for gear teeth is
Based on pure bending effect, and as such, tends to produce
low results as mentioned in the introductory chapter. A
further improvement in the Lewils formula took the component
of the load producing compression into account., This gave
birth to the modified Lewis formula. Both the original
Lewis formula and modified Lewis formula are inaccurate
because the effect of a high load in close proximity to the
fillet is ignored and also because the simple bendina theory
formula is intended for beams whose depth is small compared
with the length. To overcome this second difficulty, a
more elaborate analysis on the lines suggested by D. G.
Sdpwith [ref. 12] was looked into. | o

A further requirement is that these formulaé should
take into account a stress concentration facteor, the walue

of which should depend on the relative size of the fillet.

10



The above criticisms show that the basis of the lewis-and
modificd Lewis formulae is unsound, and.ras such, serious
errors in results may be obtained for certain cases.

To define the basis for the evaluation of Sopwith
.équation, the tensile fillet stresses produced by the
loading of a single projection were analysed, The analy-
sis showed that it was neceséary tb add to the usual
bendind term M, a term L which depended on the proximity
of the load to the fillet, so giving the maximum calculated *
fillet stresé to be K(M + 1.), where K is the stress concen-

tration factor or by using the actual dimensions that were

found most suitable, tensile fillet stress is:

. .54
oag = ki122 ‘,/____0 36(1 ¢ 2 8in 01— (2.7)
where: K = 1 +0-%6(eXR)

I

W Load applicd to projection

t thickness of the projection
and dimensions a, b, e, R and the angle ¢ are as indicated

in Figure 2.3.

o LIBRARY
a\%ﬁfm NIVERSITY
NlEERw‘ o

Fig. 2.3: Dimensions Required for Calculatlnn
Fillet Stresses.

S
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The formula, equation (2.7), can be simplified usually
because frictional effects limit the angle ¢ to small
value, so that the magnitude of % Sin ¢is also small and
can be neglected.
| The formula embraces certain extreme conditions,
such as a long cantilever subjected to a uniform bending
moment (when the proximity term T varnishes); a stub-
shaped prcocjection loaded very close to the fillet and a
projection with relatively large fillet radius having a
stress concentration factor approaching unity. In effect,
these coﬁditions imply that the empirical formula must
have a sound theoretical basis for its conception. The
formula gives considerably greater accuracy than can be
obtained by using the TLewis - or modified Lewis formula.

In Fig. 2.3, 'A' shows the point of maximum fillet
stress, so the weakest semi-gsection is defined by the
line AD of length ‘e', this being the perpendicular
from A on teo the centre line of the projection. DNote that
the point A is found from the point of intersection of the
fillet contour with a line AF drawn at 30° from the centre
of the fillet radius, The particular angle of 30° was
chosen so that the point A coincides with the point of
maximum stress as determined from the fringe photographs.
The arm of the bending moment 'a' is determined by per-
pendicular distance from the mid-point 'C' of AB to the
line of action of the load.

This projection formula derived above was applied to
gecars with little modifications. Because of the curved |

12



flanks of gear teeth, the tensile fillet stresses cannot
be diréctly calculated from the projection formula., How-
ever, by transforming the gear tooth to an equivalent
flat-sided projection, a close estimation of the maximum
fillet stress can be made by using the conventions Sug-

gested in Fig. 2.4.

Fig. 2.4: Eguivalent Flat-Sided Projection .
Constructed from Gear Tooth. B

The.péint p on the flank is midway between tﬁé.
crest and the root, and from p, a line is drawn to touch
the fillet at D. The line CD produces the flat side of
the projection. By substituting values for the dimensions
in the projection formula, equation (2.7), the maximum
tensile fillet stress in gears can be calculated.

As could have been inferred from this review of
various methods of calculating stresses in gears, there
is no satisfactory analytical apprecach. The analytical
methods presented here, especially the Lewis method, are
useful in getting a ball-park answer and in predicting
possibles remedies when trouble is encountered. Hence in
this project work. the author has decided to employ both

13



the laboratory testing and numerical methods to analyse

stresses in a spur gear. It has been shown how they
agree and disagree with traditional bending strength

degign (Lewis and Sopwith)} formulae.

L 3
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CHAPTER THREE

3.0. APPLICATION CF PHOTOELASTIC AND NUMERICAL METHMDS

FOR DETERMINING STRESSES

S —— i ——— — . S e i R R N A e A o —

For quite a long time now, the photoelastic
.method has been applied to a large number of engineering
problems, particularly to the investigations of stress
concentrations due to holes, notches and discontinuities
in structural and machine elements, and to the stress
analysis of rings, chains, links, hooks, and other parts
. of complicated shape not readily dealt with by analytical
methods. Other problems investigated by photoelasticity
‘range from the analysis of highly redundant bridae girders
to the study of cutting stresses in machining operations.

Among the chief advantages of the photoelastic method
of stress analysis are that it provides a means of: obtai-
ning an overall visual picture of the shearing stress
distribution throughout the bedy.

Measuring stress at a point with the consequent
éossibility of finding actual peak values even in regions
of high stress gradient. Accurate stress determination
Cin irregular members comparable to results obtained with
precise strain gauge technique.

Readily obtaining gualitative results for location
of minimum and maximum stress locations or for the deter-
mination cf changes in stress distribution caused by minor
alterations in shape of the model to aid in the process

of developing a satisfactory design.

15



3.1.1. Limitations of Photoelastic Technigue - Although

3

photoelastic method has a very wide area of engineering
applicaticn, it still has some shortcomings.

Photoelastic method of stress analysis is an indireét
ﬁéthod of stress analysis requiring the use of accurate
scale models and subsequent interpretation of data for
the prototype, The experimental procedure is readily
applied only to two-dimensional states since the three-
dimensional methods require rather involved and carefully
deoveleoped technigques. The separaticon of individual princi-
pal stresses at interior points in the model becomes rather
troublesome when isoclinics are employved because of the
unsharp loci (picture}.

Minus these shortcomings of phtoelasticity, it still
remains é powerful method of stress analysis, particularly
when supported by numerical techniques.

Numerical methods consist of the Boundary Element
Method, the Finite Difference Method and Finite Element
Methed. 1In this work, two of them were applied. They
are the Finite Element and Finite Difference methods.
Numerical methadsfor the scolution of different equations
have become particularly popular in recent times because
modern technical problems require complex loading and
shapes which seldom allow a clcosedsolution.

It is believed that numerical applications in elasti=-
city started as early as 1906, but was not efficiently
applied until the introduction of computer hardware and

software. From 50s, numerical methods are firmly established

16



in engineering. The numerical methods are now Sso

efficiently used that they have rendered some analytical

and some experimental procedures cobsolete.

PR
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CHAPTER FOUR

4.0. PRINCIPLES OF PIQTCELASTICITY, FINITE DIFFERENCE

METHOD, FDM, AND FINITE ELEMENT METHOD, FEM

e Bt rm T —

When a pollrised bean passes through a trans-
pafent birefringent sheet (model) of thickness t, the
light splits and two polarised beams propagate in planes
x and y. x and y are the direction of principal strain
at the point under consideration. Supposing the strain

intensity along x and y is €, and Y and the speed of

i
the light in these directions is v, and Voo respectively;
the time necessary to cross the plate for each of them
will be t/v, and the relative retardation between these

twa beams will be:

S S-S S e ) e
§ = C{v1 Vg} t{n,I n2} (4.1}

where n,, n,, are the indices of refraction on x and y
planes, Brecwster showed in his work that the relative
change in index of refraction is proportional to the
difference of principal strains. Hence,

Il - n

1 2 = k(e1 - £

2)
where kK = strain optical coefficient. Combining equa-~
tiens (4.1) and (4.2) we have

& = tk{E,I - 62)

Hence, the basic relation for measuring strains ﬁsing

photoelastic method is:

e - e = 8
17 %2 7 %
or
_ 9 b e e e e e
°1 7 %z T ¥k * Tvu (4.4)



Fig. 4.1: Plane Polariscope.

As could be seen from Fig., 4.1, the two waves are no
longer in phase when emerging from the model becausé of
the relative retardation ¢, The analyser A will transmit
cnly one component of each of these waves, i,e. the one
which is parallel tc A. These waves will interfer and
the resulting light intensity depends on the retardation
) énd the angle between the analyser and direction of
principal stresses (8-a). For plane polariscope, the

intensity of light emerging will be
z;-z . 2 .78 '
I = a*sin® 2(B-o)Sin’* (=) ——=--———=--- (4.5)

 where (B-a) is the angle between the analyser and
direction of principal stresses, ¢ = retardation and
A = wavelength. - |

When a guarter—-wave plate is introduced intithe path
of light propagation, the plane polariscope changes to
circular polariscope. Here, the emerging light intensity

r 18



is independent of the directions cof principal stresses.
Hence, from equation (4.5), the light intensity beccmes

I = a?8in% (A2)  mmmmommmmmomeeeeee e (4.6)

From equation (4.5), the light intensity 1s zero when
{f~c) is zero or when the crossed polariser-analyser is
parallel to the directions of principal stresses,

This is for plane polariscope. Then for ecircular polaris-
cope (equation (4.6)), the light intensity becomes zero
when ¢ = 0, § = 1A; 8§ = 4% or § = N} where N is 1, 2,

étc. This number N which expresses the size of retarda-
tion is called the fringe order. Once 8§ = NA is known,

the strains are:

Qhere f contains all constants and M is the result of
measurement.

Usually, in photoelastic analysis, the measured
vélue is expressed in terms of stress rather than strain.

Hence, in terms of stress, the basic equation becomes

= _c_._ = MN K ——w——emema-m-—— = — -
o =y = N. g N.K (4.8)
where K = §  memsmeem e e e e e (4, 9)

K is the optical constant of the photoelastic model and t
is the thickness of the model. K is either given by the
manufactuéerlor can be siﬁply determined by caliberation
as was the case in Chapter Five of this work. In photo-
elastic method of stress analysis, once the fringe crder N
is known, the stress difference (01 —02) at any point in
the model is completely defined using equation (4.8).
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A
4.1.1. The Photoelastic Materials - The commonly

employed photoelastic materials include Bakelite BT-61-893,
Bakelite 48-005, Catalin, Celluloid, Glass, Columbia
Resin CR-39, Unplasticised perspex, Marblette and Gelatin.
” The choice of material for photoelastic model may be
governed by the individual problem under consideration,
that is, the type of model being investigated and the
sensitivity. In addition, there are certain other general
properties which should be sought for. These properties
are summarised under the following headings:

The model material must transmit light. The material
must be isotropic, thatis tc say that the material must
not show any double refraction before the application of
external loads. The material should be easy to fabricate
into any desired shape for the model, either by machining,
casting ér joining of several pieces. The material must
be hard enough to withstand the machining and clamping
forces. A high modulus of elasticity is desirable to
prevent excessive deflection of the model. Also desirable
are moderate tensile strength and freedom from strain
creep. The stress-optical sensitivity should be high and
the optical creep effect small. The material selected is
expected to have linear stress~strain and stress«retsrdation
relations g0 as tc conform te the elastic theorv, on which
this method of analysis is based, for similarity in stress
pattern between model and prototype. The mechanical as
well as the optical propertics are expected to be constant
at room temperature. Lastly, the cost of the material is

expected to be moderate and the material must be readily

available.
21



1t may be difficult to have a single material that
has all the properties enumerated above. The model
material selected for this work is Columbia Resin CR-39
which has the following properties. CR-39 is a beautiful
clear material. Optically, it is moderately sénsitive to
stress and. it has relatively high modulus of elasticity.
It is somewhat brittle and has the tendency to creep under
load. The material was chosen on the ground that it was
the model material available and because of its optical
sensitivity. | | |
4.2. The Finite Difference Method:

The partial differential equations presented

for solution in stressing problems are typified by Pcissons
equations, laplace equations, harmonic and bia=harmonic
equations in elasticity, etc., and none is likely to be
capable of precise analytical solution for general problems
of practical impeortance. An approximate numerical method
of wide application is provided by Finite Difference Method,
FDM. Essentially, these replace the {linear) governing
equations and boundary conditions by finite difference
approximation in terms of a finite number of ‘unknown values
of the dependent variables at a number of discrete points
within or just outside the domain of integration. The
finite difference equations form a set of linear algebraic
equations to be solved for the set of unknowns. The task of a
accomplishing such numerical solution of large number of
simultanecus linear equations can be achieved with the
aid of an electronic computer; but before any discussion

22



of ways and means of solving the finite difference equa-
tions, either by the use of a computer or otherwise, some
comments on their formulation are first called for.

4.2.1. Formulation of Finite Difference Fguations -

As could have been inferred from the preceding section,
FDM involves the replacement of the governing differential
'eqdation by a set of algebraic simultaneous linear equa-
tions which represent the value of the unknown variables
(stress, strain, etc.), at some pivotal points which are
normally referred to as nodes,
Making use of basic differential calculﬁs, the

~definition of a derivative is given as follows:

df (x) _ lim £f(x + &x) - f(x)

dax AxTo Ax

L I

e

AL | AX

ENVE—— SR 10|

y= f()

S
L

k-1 K K+1
Fig. 4.2: Toward Difference Formulae.

Referring to and making use of notations given in

Fig. 4.2, we have:

(QX) _ Ygo1 7 Yg—q - Ygk+3 7 Yg-3
dx K 2 4x Ay

Equation (4.11} is called difference formula.,
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Higher order differential coefficients can be derived in

difference form in just the same way. For instance:

S N 4
@iyy _d dy, | ‘dx'ke} dx_ K-}
dx?'K ~ dx'ax’'kK 4x
But
- d o Yge1 T Yx dy ~ Yg ~ Yg~1
@gey =~ and @x-y = —a—
] . .. N R “2"' :
a2 S 35 A < Bt S
R e b Ll CRLEY

.The equations which ﬁormally occur in probleﬁs in
elasticity are partial differential equations.

Figure 4.3 shows the conventicnal way ©of numbering
the'node points in order to obtain difference formula for
point O, Note that non-strict adherence to this conven-

tion introduces no error.

” (P=¢bhg)f | .   S Y

—e Y

Fig. 4.3: Square Mesh and MNumbered Nodal Points.
Extending the formulae (4.11) and (4.12) in terms of

¢ = ¢{x,y) for a square mesh gives:

2 b, + ¢, - 2¢
(_2;_3;)0 = 1 1r311 O e (4.13)
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a:¢ qu + ‘pq - 2¢D
{3y2)0 = he
. az¢ az¢
- - (V:*_) (ax2 )O + (3“??)0
b + ¢ + ¢ + ¢ - 4d4¢
o] 2 4 e (4.14)

hz
This can be extended to n-th order equation in the same

manner. Hence:

9 3?4 ’¢
3 (—“5} + ('a—r) - 2( —=)
(3 = XL X 3 2o 4.15)

which gives:

d o
{F—%) o o__ 1 — 3 5 9 e (4.16)
Similarly,
6¢ — 4o, — 49 + ¢, + ¢
gt
(- ¢]o ~ o 2 4 7 11 (4.17)

h‘k‘

The above equations were obtained on the ground that
the boundaries of the cross-section or component being
analysed are coincident with nodal points. In most
engineering problems, the boundaries of the cross-section
or componént being analysed will not conveniently pass
through the node points of the mesh and the difference
equation must therefore be modified to allow for thds.

v - | f _

| IO S 3

PR Y ’
|
4
vl e |
[ Tag™
‘1 s Jﬂ'][ﬂ

y it

=

Fig, 4.4: Boundary not Ccincident with Nodes,
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In Fig. 4.4, B is a point on the boundary which does.
not coincide with the mesh; mh is the distance between j
and B éoints in the x-direction (m < 1} and j+1 is an
imaginary point on the mesh outside the boundary. In the
same manner, C is another point on the bocundary which
does not coincide with the mesh; Kh is the distance between
i and C in the y-direction while j+2 is another imaginary
point on the mesh outside the boundary.

Employing the idea used in generating equations
{4.14), (4.15}, {4.16) and (4.17}, the slope in the x=
and y-directions at j are given by:

b - 0. bo— @
4y, = B, (& 4y, =S
[’ mh :

and hence the value of ¢ at the imaginary mesh point Jj+1

and j+Z can be extrapolated as:

=
|

=9y + W)+ (1 - Dy

j+1 X J m J
~ -a—¢ - ‘_1“
byez =0y F hlgy)y v (= Ry
Hence,
.
‘az ) ¢j+3 + i13]3 -0 E)q’J
ha
1 j. memee—mee—- {4.19)
RTINS TR /- SAS
5y* ') h*
. 9% 82 ¢
Ce TRy = (g ()
1 1 - a 1
RS T TS TT S 1) WA A~ Tas T TS L0 PP

With equations (4.14) and (4.20), any stress problem can

be solved by FDM by generating the mesh and finding the
difference equations which give n-equations in n-unknowns

which could be sclved manually or with the use of computer.
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4.2.2. Computer Solution of FDM - Once the set of

gimultaneocus linear algebraic equations tc be solved are
written in the right order, it will be found that the

matrix dimension corresponds to the number of nodes.

These equationé.can be solved by Gausian elimination

pracess either manually for rough meshes or by the use of
computcr for fine meshes. Computer programmes have been
written which are capable of solving large sets of equations.

4.2.3. Accuracy of Finite Difference Solution = It

has been pointed out that the FDM contains an esscential
approximation, consequently solutions obtained by its use
must be in somc error no matter how small. The error can
be made small and in the past, two extreme ways of doing

so have been advocated: (i) by taking the mesh sufficiently
fine; (iif by including sufficiently high order differences

in finite difference formulae based on a coarse mesh;

4.3. The Finite Element Method (FEW): ' i
The bagis of FEM is the element stiffness matrix.

It involves dividing physical systems such as structure,
solid, etc., into a finite number of relatiﬁely simple
elements whose load-displacement characteristics are known,
can easily be derived or approximated using well tried
method in the theory of elasticity. These elements are
connected at a discrete number of points along their
periphery known as nodal points. B

When a problem is being solved with the use of FEM,
it is important to be aware of the physics and engineering

assumptions of it. This method offers a unifying approach

to the solution of diverse engineering problems. Two basic
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features make the FEM to be superior to other competing
methods. First, a geometrically complex domain of the
problem is represented as a collection of geometrically
simple subdomains called finite elements. Second, over
each finite element the approximaticns are derived using
the basic idea that any continuous function can be

represented by a linear combination of algebraic polynomials.

4.3.1. The Element Stiffness Matrix - As said in the

preceding section, any structure being analysed with the
use of FEM may be broken down into finite number of
relatively simple elements whose load-displacement charac-
teristics are known, can easily be derived or approximated.
The structure cor component is then re-assembled using the
chosen elements and the overall or structure stiffness
equations thus derived., These equations linking the
structure loads and structure displacements are approximate,4
the degree of approximation depending on how well the
assembly elements accommodate the loading and boundary
conditions and obey the rules of compaetibility. Hence,
the element stiffness matrix is the basic building block
of the FEM.

) Let us take for instance, an arbitrarily shaped

element with n'nodes' as shown in Pigure 4.5,

Y

Fig. 4.5: Node Points on Arbitrarily Shaped Element.



Each node is, in general, free to move in several direc=-
tions and thus each node will have a number of element
displacement (§8) associated with it and with each displace-
ment will be associated an element lcad (p). Each element
lead Py will depend upon every element displacement

(61, 3§ e auy ﬁn] and for a linear elastic solid a

2f
typical equation would be:

Py = K8 v K8, v ool + K, 6 -——fhv—[4.2D

where i 1, 2, «...., n. The ceoefficients Ki‘ in

]
equaticns (4.21) are called stiffness coefficients and

the whole of n equations would be written

Py = Kyqfq 7 Ryplp * -eees * Kynly

Py = Kogdg +# Kyplp + evven + Ky 8y . -(4.22)
|}

1

]

Pp = Kugdp * Kopdy © eenen I

Equation (4.22) written in short matrix form gives:

ipl = [KJ18) ——mmmmmm (4.23)
where (p} is the column vector of loads, {8} is the
column vector of displacements and [K] is the element
stiffness matrix.

Calculation of element stiffness matrix [K] is the
starting point of FEM. In the following section, the
stiffness matrix is calculated for two-dimensicnal element

used in plane elasticity {(triangular element).
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4.3.2. Triangular Element -

i Poyde

Fig. 4.6: Triangular Element.

A typical triangular element normally used in the
analysis of two-dimensional problems is shown in Figure
4.6. The element is referenced to x-y system of coeordinates.
Nodes are numbered in counter—-clockwise direction. The
thickness of the element is t, the area is A. ILoads and
displacements follow the node numbering but have their own
Separate numeration.

In this twoc-dimensicnal element analysis, we assume
a function for the displacements: The displacement functicn
here selected [(equation (4.24)) is the lowest corder one
and is outstanding as it provides constant strain through-
out the element (conseguently constant stress). A trian-
gular element with displacement function {4.24) is known
as CsT - (Cohstant-Strain—Triangle).

We have six degrees of freedom involwved, six unknown

coefficients are required.

ﬁx = a1 + * X + a3y (in x=direction)

GY = 0, tagX + ooy (in y-direction)

ba WA Y



where a1 «eees O are the six unknowns and are found by

evaluating displaceme rts at each of the nodes as follows:

% F1 0 v [y o
8g T %3 Y3l (93
b _—
65 T % ¥y o4
64 = 1 X2 y2 GS ------------ (4-25)
66 1 x3 y3 uﬁ
o —

The first set of eguations {4.25)solved for Gpy Gn, Og

(by Gausian elimination of matrix inversion) gives:
% Xa¥3  X3Yy ;153
- ot
Y Xy ¥3X 172
_ 1 - - - — e
¢y X3=X, X=X x2—x1
| -4
whg;e 23 = (x2y3 - x3y2}~{x1y3 - x3y1) +
(x1y2 - y1x2)= 2 x area of triangular
element.
Similarly, the second set of (4.25) is solved and the

full solution becomes:

(o Fx2y3— 0 Xay,= 0 xy,= 0 ] GTW
¥y%3 Y3¥%y Y%
aq b1 0 b2 0 b3 0 52
a3lf2% a1 0 a., 0 any 0 63 (4
p -4,
0 XoY o X3¥1T o X¥uT § ?
b
ag 0 b1 5 ¥ b3 55
(ﬁGJ i 1] a, 0 a, J a, X GGJ
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where ay = X3 ~ Xyi b1 = ¥y T Y3

Nodal displacements &, ..... §, are not yet known.

From strain-displacement equations,

 a6x _ 38y _ 08x . ddy o
fx T T Sy T TRy Txy T Ay T Tk 14.29)
we get (from equations (4.24) and (4.27)})
&
. — — 1
€, b1 0 b2 0 b.3 0 62
. - 1
ty A 0 31 U a2 0 a3 63 memem (4.30)
8
Yo a, b1 a, b2 ag ba_‘ 54
— 5
or 66
te®y o ogehyelely (4.31)

For a plane state the stress—-strain relationship is:

X
JUNRS I B (4.32)
YKY
or |
lely L opled ey 433

where, for plane state cof stress

. T-p i 0
(o 'e) =TT u3?1 e L T ---(4.34)
: 0 0 1£2u
For a plane state of stress
| | (A
- e R B ~==(4.35)
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Equations (4.34) and (4.35) are derived from three.—.
dimensional Hookds Law, E and p being the Young's modulus
and Pcoisson's ratio, respectively.

The next step in the derivation is to find a set of
hodal forces which are statically equivalent to the stress

field acting. Refer to Figure 4.7.

Yy
@(xz-x;)t + Ly (- jzjt |

G;bf“&b‘aﬁrmﬁ '
l% -9t + Ty (x;xs)é.
qﬂ&?ﬁ'g@fﬁﬂ e

T (v AL ‘-'Gny(.trx,){

qx“x}}é - ij (fj;_ = jJ-E

» X

Yig. 4,7a: Uniform Stress Field of an Element
resclved into nodal forces.

\ZJ

T

4

Ty

£
Pl

K 1
‘ Tafet—o

]rp_g
- Pila. 4.7b: Plane State Stress.

As'mentioned.earlier, fhe stresses are uﬁiforh
within the triangle, hence the mid-side forces are now
divided equally between their adjacent nodes. Also
equation (4.22) is applied.

!
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Pg

Pg

Again noting that b3+b

this becomes:

"y

2

0

-

a3+a2 .
by,
(Ix

a_+a

1 3 UY
b_+h

1 3 .
a,tda. 4

1 P
b, +b, A4

---(4.36})

(from equation (4.28}),

——

From matrix algebra transposing a matrix simply means

interchanging its rows and columns.

in equations

is the transpose of matrix [B

(e)

{p(e)} =% " oa
2
where

-b1

(1
(e) , T 1 b2

B = 5y

2A 0
b3

. 0

b
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(e)].

{4.37) and {(4.30) we conclude;

— —— =

e —————— — -

Comparing matrices



Substituting now equations (4.31) and (4.33) in

equation (4.38}) gives:

tP(e}J = t{e)A(e] [B(e]]T[D(e,}[B(e)]{ﬁ(e,} ____(4.40)
T S N (4.41)

and the element gtiffness matrix is therefore:
[K(e}] - t(elA(e)[B(e)]T[D(e)I{B(e)] _____ (4.42
The final step is to determine the element stress

from the elcment nedal displacements. This is done from

equations (4.33) and (4.37):

iole)y - plelpledy sledy L (4.43)
or
ol e pete), (4,44)
Qhere [H(e)] is the stress-~displacement matrix. MNote that
if: |
. the material of each element is the same, [D(e)] = [D]

throughout the calculations;
(e)

~ the thickness of all elements is the same, t =t

throdgh;ut the calculations; _

all triangle areas are the same, A(e) = A and one
realizes how powerful the method is.. |

Also it should be noted that the element stiffness
(e}

matrix [K ] can be calculated without knowing nodal

displacements. Stresses and strains, however, can he
calculated only if nodal displacements are. known.
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CHAPTER FIVE

5.0. EXPERIMENTRAY, RESULTS

—— i — v g e M Pl o T B e w m m  EA A e oy M e o TER B e o T R e o W M e = P o T

lModel 061 Polariscope was used for this experi-
mental work (see Plate xix}. The model required no
assembly operations. The polariscope was simply set on a
table and the power line connected to a 114 volt A/C |
Su@ply. The parts of thc instrument ake as follows:

(i)' A diffused light source consisting of six
flourescent tubes equally spaced about the optical centre
of the instrument. The tubes are cool while General
Electric F15T12~-CW bulbs.

(ii) Two polarising filters (polarisér énd analyséf)
laminated between glass which are mechanically linked
together and may be rotated in unison for the observation
of isoclinics.

(iii) Two quarter wave plates positioned between the
pelariser and analyser which are also mechanically coupled.
“.(ivl Around the analyser is a grvaduated color-coded

dial to indicate the guantity measured.

(v} A mechanical drive system that provides for
remote control of all four filters.

{vi) Straining frame - Model 062, highly overdesigned
structure to incorporate a screw-operated loading syétem
for producing constant defeormation of the model., The model
062 has a built in vertical and lateral travel adjustment
for ease and v%%atility of model positioning. The frame
is mounted on the hase of the polariscope between the
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polariser and analyser housings.

(vii) Electrical load cell readout system-Model 062A
consisting of a compact universal strain gauge transducer
coupled to an indicator to provide a highly accurate load
indication. The indicateor is equipped with a tension-

compression selector switch.

(viii) Camera-Model 066, which was not used in the
analysis due to unavailability of the film for it. The
particulars of the camera, film and film developer used are
as follows: Camera used is Pentax E II M with rings and
135 mm telephoto lens. The film is QRWO Blanck and White -
NP 22 1%%.
Superfix. The . paper used in printing thc photographs

The developer is Eukobrom while the Fixer is

is Tura Paper - RR 111.

{ix) Monochromator - Model 068 which was Fitted to
the point of light scurce housing.

e e S P AV R e S A S L mr mm T P mm S S Mk S e - —

In Figure (5.1), the loading system made up of
the loading fixtures, the straining frame and the models
is shown. The loading fixtures include two triangular
plates used as model hangers, a fork-shaped component and
L-shaped component, all used for lcocad application to the
models.

Triqggulas Plates (Model llangers}- On Figure 5.7,

these plates are identified as item Nos. (1) and (6).

The dimensions of the two plates are shown in Figures 5.3
and 5.4. They are constructed by marking out the trian-
gular shape on a half-inch thick plates. They are cut and
welded to a rectangular bar. The bar serves as a means

of support of the hangers to the straining framc,

Fork-Shaped Component - This is identified as itenm

No. (8) on Figure 5.1, The dimensions of the component
can be seen on Fig. 5.2, Using the drawing for the component,

the dimensions were markcd on the bar and cut to shape.
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It is used to apply load to one of the models as shown
in FPigure 5.1. It is connected to the load cell for proper
reccording of the amount of load applied.

L-Sahped Component - This component is identified as

item no. (2) on Fiqure 5.1. The method of production is
the same as the fork. As can be seen from Ficgure 5.7,
it is used to apply load to one of .the models. Tt is
connected to the adjustable screw head. The dimension;

of the corponent are seen on Fiqure 5.5,

— e B ey — e e

A CR-39 photoelastic sheet of 5 mﬁ thiékness
waé used. The dimensions of the gear-models used are
shown on Figure 5.6. The pitch circle diameter for both
gears is 74 mm. A hole of 9 mm diameter was drilled
through the centre of the cut-out sheet and a 9 mm bolt
passed through it to help hold it to the headstock of the
lathe machine on which the gear-models were turned to
shape. The involute shape of the teeth was traced on the
blank and the teeth cut usinag hacksaw and filed to shape.
After the Filing, the central hecle of 9 mm diameter
was enlarged to 10 mm to enable the models fit very well
in the fixture as shown in Figqure 5.1 and Plate xx. For
the load applicaticn to the gears, the second holes of
8 mm diameter were drilled for the connection of L-shaped
and fork-shaped components as shown in Figure 5.1. Finally,
the teeth edges and holes were polished with fine emery |
cloth to reduce friction between surfaces. Mo aﬁnéaling of
the models was carried out since the models did not show

any residual stresses when examined in the polariscope before
being stressed. .38
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For the determination ¢f E and u, one specimen
of length 121 mm, width 14 mm and thickness 5 mm (model
thickness) was cut and subjectzd to tensile load using
Monsanto Tensometer W. On the specimen were mounted two
strain gauges - one in axial direction and the other in
radial direction, as shown in Figure 5.7, to read axial

and lateral strains, respectively.

N/

it Sl

S I I |

)

Fig. 5.7: Tension Test Piece Dimensions.

Table 5.1 shows the readings taken during the test.
From the analysis that follows, E and p were found to he
4.444 GN/m* and 0.325, respectively. From these results,
the material is suspected to be Columbia Resin CR-39.
.The values do not very much agree with the wvalues in
standard textbooks because there are bound to be some human
errors in carrying out the experiment. These may be due
to the use of the strain gauges or the tensometer.

Area = W.t = 14 x 10“3 X 5.x10_3 = 7 x 10_5 m*
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p +
MEASURED STRAIN I CORRECTED STRATIM
APPLIED “6 _ MEASURED x 1:34 [ STRESS
LOAD (1) ix 10 2.00 |P/A
Axial Lateral 2
Strain Strain eé ei (MN/m* )
=] a
a 1
50 170 - 60 164.90 -~ 58.20 0.71. "
100 330 =110 320.10 ~106.78 1.43
[ 150 510 -165 464,70 -160.05 2.4
200 685 -215 664 .45 -208.55 2.86
-4 | | _

TARLE 5.71: TENSION TEST READINGS:

These readings were taken and with them graphs shown

in Figures 5.8 and 5.9 were plotted.

Under elastic limit, stress is proporticnal to

strain. Hence o = Ee. Young's Modulus E = S - slope of

e

the graph = 4.444 GN/m? .,

Lateral Strain
Axial Strain

Poisson's ratio g = —

Slope of graph (Fig. 5.9)

-{(-0.325) =

0.325

5.5, Caliberation Of The Model:

e —— v e e e S A e s Rt

For the purpose of caliberation, a test piece
of réétangular cross—section, width 25 mm, thickness 5 mm
and length 150 mm was cut and subjected to pure bending,
As there was not any effective means of subjecting
fﬁe test piece to pure bending provided onthe straining
frame of the photcelastic bench, a way was devised.
Referring to Figures 5.10 and 5.1711, the arrangement
consists of two rectangular bars with grooves and four
rollers. Having made the loading system, the model was

put in place and subjected to pure bending. The resulting
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fringes were noted as the force applied increases.
- Table 5.2 shows the readings obtained at 5% load. IThe
- readings were analysed and stress-optical constant XK found
as shown in the following analysis. |
Readings

Full load p = 2000 1b = 8900 N

PERCENTAGE LOAD ACTUAL LOAD FRINGE ORDER

APPLIED (3 n) APPLIED p1{N) OBSERVED (M)
1% | 89 T
2% 178 2
3@ 267 3
as o | 356 4
53 - 445 5.

——

TABLE 5.2: FRINGE VALUES FOR CALIBERATION

Specimen Arrangement

S0 )

B
| -

_ 27
144 - -

ez

—
A
_v

150
-« &
l?fz l%z
h
T .
- I B
Dimensions: a ='ﬁ7 mm; b = 5 mm

py = as given in Table 5.2/
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Using equation (4.8), the stress optical constant X

is given by:

= C = N.K  em———— e
9y —”02 ol No= N.K.{ _ {4.8)
In pure bending, Uy = 0, Hence, 01 = % = N.K —-==w- {5.7)
P
Bending Moment, M = ila ——————————————— {5.2)
e  bh?
Moment of Inertia, Z = g TTTmememmemes (5.3)

Substituting equations (5.2) and (5.3) into eguation (5.1},

we have:
p1.a.6
N.K = 2.b.h°2 __-_--—'"T' __________________ (5‘4)
L. -3 p,a
Ly e e K= gy T e e (5.5)

Optical Constant.

H

Substituting the values of the constants in equation (5.5),
for individual fringe valuew, we have,

. For W = 1

' -3
3 7
k, = 2282 %27 x 10 - 2306880 W/n’/fringe
5 x 10 "x(25 x 10 "y? x 1 T T T T T
For N = 2
. =3 '
k, = 22 108.x 27 x 19 _ = 2306880_N/m/fringe
5 x 10 "x{25 x 10 Y x 2 T TTUTTUTTTTTTTTT
For N = 3
- -3
Ky = % 201.x. 27 % 10 = 2306880_N/m’ /fringe
S x 10 "x{25 x 10 ~)2 x 3 T oToTEREEES B
For N = 4 .
. -3
k, = 23282 8 x 10 - 2306880 W/n% /fringe
S x 10 "x({25 x 10 )% x 4 T -
For W = 5
=3
K, = 22822 x 27 x 10 = 2306880 _N/m?/fringe
5 x 10 "x(25 x 10 °)? x 5 - ToTTTTTeTTTET
K, + K. + K. + K, + K
K= ——Fed 2. - 2306880 w/n?/fringe.
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5 6. The Photoelastic Resultss

. Having prepared the models and the loading
system as discussed in Sections 5.1 and 5.2, the models
were first examined for machining residual stresses which
were found to be absent. Then locad was applied to the
gears using the straining frame. The development of
the fringes as the applied load was being increased was
noted and photegraphed. The photegraphs are shown in

Plates I to XVITII.

.Whole and fractional fringes at different nodal
points were measured using Tardy Compensation Method.
For fractional fringe order measurement, the pcints of
interest were marked as 1, 2, ..., 12 and A, B, e Ky
on the medel. Starting with point 1, an isoclinic was -
brought to the peint. Then the common rotation of
polariser—-analyser was locked thereby aligning them with
the direction of principal stresses %y and Gy The
quarter wave plates were then placed at 45° to the
direction of the principal stresses using an in-built
mechanism for this purpose. Now the analyser is separately
rotated to move a fringe to the point 1. When a fringe
is brought to the point, the pointer on the Tardy
Compensation (8M) Scale indicates the fractional friﬁge

order. The fractional fringe order added to the whole
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PLATE VI

FULL ORDER FRINGES AT 2% LOAD

PLATE v
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HALF ORDER FRINGES AT 7% LOAD

PLATE XVT:

PLATE XV: FULL ORDER FRINGES AT 7% LOAD
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fringe order gives the result tabulated in Table 5.3.
The SM scale is caliberated to read in hundreds of a
fringe. The total resulting fringe order is either

negative or positive depending on whether it is the

lower order - or higher order fringe that moved to the

point when the analyser is rotated.

Readings

o e I,
__ﬂbaf_\ED '

%2 i
| C
7 8 9
Jf A R G
- K 3 4&%

Fig. 5.12: Medal Points on the Gear Model.

yr
Nodal Points*+ A B C D E F
Fringe Order*| - 9.10 |~4.25 {~3.505 [=-2.41 -1.35 —1.95 
G H I g K 1
~19.26 [+7.15 | +4.565 |+5.315 | +9.00.¢(+1.21
2 3 4 5 6 7
+0.,.805 {+1.30 | +3.245 |+2.39 +2.52 | +2.49

8 9 10 11 12

+3,63 +3.75 | +2.80 +4.32 +216

—

TABLE 5.3: FRINGE VALUES g7 9% OF FULL LOAD

P




Boundary Stresses:

At the boundary, one of the principal stresses is

zero. This implies that:

K = 2306880 1/m?/fringe
N = fringe order indicated in Table 5.3. Hence:

5. + 0. =0 = ¢ = K.N (5.6)

u
i
(]
<
o
w
(]
o
o
o
=
[~
13
Y&

2306880 x (-9.10)

&
il
=
»
=
il

il

I
O
o)
o
s
b
e
D .
=
=

Y]

¢, = K.N, = 2307880 x (-4.25) = 29804240 N/m?
Point C:
o = K.N, = 2306880 x (-3.505) = -8085614.4_N/m’
Point D: _
¢ = K.Nj = 2306880 x (~2.41) = -5559580.8 _N/m?
Point Eg
o = K.No = 2306880 x (-1.35) = 23114288 _N/w?
Point F:
bp = K.Np = 2306880 x (-1.95) = 4498416 _N/m?
Point G:
$g = KN = 2306880 x (-19.26)= 744430509 N/m?
- Point H:
by = K.Ny = 2306880 x ( 4.15) = 3373332 H/m]
Point I:
¢, = K.N_ = 2306880 x 4.365 = 10069531 _N/m?
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Point J:

b, = K.N_ = 2306880 x 5.315 = 12261067 N/n?
Point K:
by = K.N, = 2306880 x 9.0 = 20761920 N/m?

Stresses at the Interior Nodal Points:

The principal stress differences at the nodal points
are as follows:

Point 1:

Gy T 9y T K.N1 = 2306880 x 1.21 = 2791324.8_N/m?

0, =6, = K.N, = 2306880 x 0.805 = 1857038.4.M/m’
Point 3:
6, =0, = K.Ny = 2306880 x 1.30 = 2998944 _N/m?
Point 4:
o, - ¢, = K.N, = 2306880 x 3.245 = 7485825.6_N/m’
Point 5:
o, = 0, = K.Ng = 2306880 x 2.39 = 5513443.2_8/m?
L
Point 6:
o, - 0, = K.N, = 2306880 x 2.52 = 5813337.6_N/m’
Point 7:
a, - 8, = K.N, = 230688 x 2.40 = 5536512.0_N/m’
Point 8: .
@, - o, = K.Ng = 2306880 x 3.63 = 8373974.4_N/m?
Point 9
s, - o, = K.Ng = 2306880 x 3.75 = 8650800 N/m?
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Point 10

X.N,

— - = r = 1 2
9, = 9, 10 = 2306880 x 2.8 = £459264,0 _N/m?
Point 11: _ _
o, - 0, = K.N,, = 2306880 x 4.32 = 9965721.6 N/m?
Point 12: _ _
G, - o, = K.MN,, = 2306880 x 2.16 = 4982860.8 N/m*.

12 e REmETs=s=====3=

Mt i e e T .

It has been found by the theory of elasticity
tha£ the governing differential equation (Compatibility
Condition} for plane state of stress and plane state of
strain', in the absence of body forceé, is the Laplace

equation:

vz g =

where

To obtain an approximatc numerical solution of this
equation using finite diffcrence method, it is necessary

tc know the wvalues of (U1 + o0.,) along the boundary of

2
the model, as has been done in Section 5.6. Also, the
stresses at the nodal points 1, 2 and 3 are needed. The

stresses at these nodes are determined using strains

gauges as shown in the following sub-secticn.

5.7.1. Determination of Stresses at Modal Points

1, 2, 3, On the Model Using Strain Gauges - Using finite

difference method, a set of algebraic simultaneous linear
equations are generated by considering the different

66



nodal points. To obtain the required n-equations in
n—unknowns, specific values of stress at some reference
points (1, 2 & 3) are needed. Hence, the stresses at

nodal points 1, 2, 3, are determined using strain gauges.,

oow .
_EEE::nyf \k(//Kh
s e 'l/f* c ' mh = 5-25
m
[7 8 9 m'h = 3-60
N —a
67 5| & F/mh m'"h = 1-05
A .
S h h =65 c

Fig. 5.13: Dimensions (Square Mesh) for Generating
Difference Equations.

Three strain gauges were mounted at the points
on the model in the directions marked a, b, c¢. These
were connected to the strain indicator and lcad was
applied to the model., Table 5.4 shows the readings
taken., Table 5.5 shows the corrected strain. The
readings weorce corrcected because of the difference in
gauge factor of strain indicator and strain gauces. The
gauge factor of the indicator is 2.0 while that of
the strain gauges is 1.91. Figures 5.14 show the
‘relationship between the applied force and the resulting
.stféiné. |
Using these readings shown in the tables below,
the principal stresses at each of the three points were
calculated as follows:
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Readings

the following equations apply:

E‘.(e1 + uez)

17 T - u7
. E{e2 + ue1) __________
2 1 - u?
i E(e1 + e2)
U-l r qz - 1 —_—

7

| MEASURED STRAINS (x 107 °)

Points 1 r 2 ' 3
H;;“ﬁzziifﬁ‘ Ca eb ec ea eb ec ea | eb ' Eé—g
2%p =178N 74 - 35 50 55 65 25 43 (~ 45 (= 7D
43%p =356Nm 150 |~ 76 90 1115 165 50 {125 |- 90 |-152
6%p =534n [ 239 |-1060 (130 {239 (273 85 1215 |~145 (=235
8%p =712N [3U5 |-135 |170 | 285 [419 |14G 320 :;10 -330
9%p =801M 1345 {~150 |200 |34C |505 |165 |3BO |-250 | -390

TABLE 5.4: MEASURED STRAINS FOR POIMNTS 1, 2, 3:
' :Caicﬁ;éfioh.of Principal Strains and Stresses:
Note that corrected values of strains at 9% (81UN) of
full load are used in the calculations,
In the calculation of principal strains e1 and e2,
the following equations apply:
e SZa % 22y (e =8 "+ (6. =6 17T ---(5.9)
1,2 2 ; a b TR e S
 In the'calculafion of principal stresses %4 and Oo
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Node Point 1:

Applying equatibns (5.9) and (5.10) to node point 1,

we have:
_329.475 x 107° + 191 x 10°°
€1,2 )
Ll ' 5 % iy
- 2ka329.475x10 +143.25%x10 )%+ (-143.25x10 -191x10 ") 2}
. -4 -4 |
= 2.602375% x 10 + 4.093849 x 10
. ~ -4
e .oy = 6.696224 x_ 10__
ey = z1.491474 % 107
Now the stresses:
o] + g = E(e1 +—-—-—62)
i 2 1T - u
9 -4 -4
_ 4.4444 x 107 (6.696224 x 10 - 1.491474 » 10 )
: 1 - 0.325
= 3426332.2.N/nl = ¢,
Hode Point 2:
Applying equations (5.9) and (5.10) to node 2, we
have:
324.7 =6 =6
e _ .7 x 10 + 157.57% x 10
1,2 2
¥ -
t =/ -6 -6 2o 44 -6 6.,
2v1€324,7x10 “-482,275x10 " )**+4{482,275x10 -157.58x10 "}
| _ ~4 -4
= 2,411375 x 10 + 2.5520577 x 10
S . ey = 4.9834327 % 107
* _ -5
ot 92 h 1&392222;:%-'{:12::




Now the stresses:

E{e, + e_}
_ 1 2
U1+02-—————»--—-———1_u

5

0 4.4444 x 1070(4.9634327 x 1077 + 1.4068271 x 107°)

- 1 - 0.325

Node Point 3:

Also applying equations (5.9) and (5.10) to
node point 3, we have:

362.9 x 1070 « 372.45 x 107°

1,2 ° 2

+Q-" =
- 2/ (362.5x10

——

+238.75%10 ©)2 4 (~238.75x10 %+372.45x10" )2}
6 a

6

= -4,775 % 10 ~ + 4.3580868 x 10

4.3103368 x 10~

N
1]
It

»
(1]
[}

H
|
=Y
o
[
i
[0 ]
LEV]
[=n]
o
o
—
Law]

I

Now the stresses:

Eie, + e
- .1 2

9 T 92 7 T -1

4 4

_ 4.4444 x 10°(4.3103368 x 107 - 4.4058 x 107%)

B 1 - 0.325

= =62880,047 _N/m? = ¢3

5.7.2. Application Of FDM - Having calculated the

sum of principal stresses at the node points 1, 2 and 3,
we now procced with the finite difference analysis.
Applying equations (4,14} and (4.20), thc following
finite difierence equations are generated for the nodal
points 1 to 12,
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Point 1: ¢, = 3426992.5

3175441.5

L)

Point 2 ¢2
Point 3: ¢3 = =52880.1

. 1 1 ' _
Point 4. ¢'5 + EEPB (E + 1]¢4+¢9+¢3"2[F’4 =0
Point 5: ¢4 + ¢6 - 4¢5 + ¢8 + ¢2 = 0

. 1 1 )
Foint 6: ¢_+ 5¢J (H +1)¢6+¢7+¢1—2¢6 =0

1 1

Point 7: 4+ ¢I-(E.+1)¢7+¢12+¢

8 m 6
Point 8: .. * 9o + by * 9o ~ dég = 0
1

—2¢7 = 0

Point 9: hgt %.¢c—[m'+1)¢9+¢10+¢4—2¢9 = é

POINE 105 ¢3¢ qruby= Gt 118,709+ gop=(g *11oyg = 0
Point 115 ¢y0 *+ & o + b + b5 = 46, = 0

Point 12: ¢+ dbp= (RN b 190 oo (E ¢, = 0.

As indicated on Figure 5.13:

mh = 5.25 mm and h = &€.5 mm

' 1.05
no— = :
T U 0.162
Kh = 2.5 IIUI!, h. - 6-5 :u
. 2.5 :
- - K= 6.5 U.346

Substituting the values of the stresses at the
boundary o©f the model as calculated in Section 0.6, Lhe
ﬁaiués.of m, m', m" and K as calculated above, and the
values of ¢1, ¢2 and ¢3 as calculated ahove, into the

egquations for the nodal points 4 - 12, we have:



3

Point 4

—4.244, * g5 ¥ g = 121968430

Point 5: bg 4¢5 b todg T -3175441.5

Point 6: bg
Point 7: ¢6 -
Point 8: ¢5 +
Point 9: ¢, +

Point 10: ¢4 -
Point 11: ¢8 +
Point 12: ¢7 +

The above

follows:

4.24¢, + ¢, =-12891482

4.805¢7 * by

+ ¢12 =-10680771

by = dbg ¥ dg * gy =0

¢8 - 4.805¢9

11.06¢1U * ¢11 =

P L PR PP

byq = 11.064,,

equations put in
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+ ¢10

= 14594972
43319232

-4498416

- =1.71 x 148

matrix form look as
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Now by back substitution @i are found.

11
——
A
O .
.
o
-3
oo
=
e
=
l'N

¢1‘2 ==x=zcoc=z===bes .
¢4 = —-8333333.3 + 5.32{16040178) = 2000414 W/m?
09 = =3-53 x 10% = 3-64(2000474) + 22.21(16040178)
= 24029153.6_N/m?
¢g = 43319232+ 11.06(-4029153.6)-2000414
= £3243620.8_N/m?
tg = —4498416 -(-4029153.6)+4(2000414)-16040178
= 28507784.4_N/m?
4, = <1.71 x 1082000414 + 11.06(16040178)
= 4403954.7 8/n2
b = —10680771 + 4.81(4403954,7)~(~8507784.4) 16040178
= 2269857.5 N/m?
b = ~12891482 + 4.24(2969857.4)-4403954,7
. = =4703241.3 _N/nl
bé = —31754471.5+44(-4703241,3) ~2969857.4~(-8507784.4)
= 216450480 _N/n? |
¢3'= =62880.1 N/ml
(bg = 3173441.5 NW/ml
¢, 7 3426992.5 N/m?

5.7.3. The Individual Stresses - By combining the
result from the photoelastic analysis and that obtained
using finitc difference method, the individual stresses
can be -calculated. Photoelastic readings gave (@1 - 52)
for the nodal points while FDM gave (01 + 02) values for
the same nodal points. By solving the twe equations,
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separate principal stresses are found as follows:

Point 1:
. c1 - 62 = 2791324.8
o Uy t g, = 3426992.,5

20, = 62183173

.« 0, = 3109158.,7_N/m?

‘] =EosZcZIcss=cks=
o, = 317833.85 _N/ml
Point 2:
. 01 - 02 = 1857038 .4
01 + a, = 313?441135
201 = 5(032479.9
.. o, = 2516240 N/w?
6, = 822201.33 M/mi_
Point 3:
\ 01 -9, = 2998944
o 01 + g, j,?2830'1
201 = 3061824.1
) 1530812.10 N/m?
- - .I _______________
o, = -1468032,.0_N/m?
Eoint 4:
Y Q1 - 62 = 748B5825.6
_ %1 T 7 T TT0E50480
2u1 = =BGg4654.4
.o 61.: 74482327.2 9/ml
©, = £11268153 N/m?



G, ~ o. = 5513443.2

01 + 02 = =4703241.3

L. ———

20, = 810201.9

. - o, = 405700.953 N/m?
o, = £5108342.3 N/uw?
Point 6:
) Gﬁ - 02 = 5813337.6
01 + o, = 29698?1.5
201 = 8B783195.1
. - @, = 4331597.6 N/m?
Oy = £1421740.1 W/m?
Point 7:
. 01 - 02 = 5536512.¢
1t Op ¢ A403954.7
201 = 0940466.7
ey = 4970233.4.8/w?
o, = -266278.65 N/ml
Point 8:
. 01 - 62 = 8373974 .4
) 2 ey 7 eaoTree
2a, = =-13381Q
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Point 9:

aT - 02 = B650800

+
~ a1_:w22 = =3243620.8
201 = 5407179.2
. g, = 2703589.6_Nlm]
o, = £2247210.4 W/m
Point 10:
. o, = a, = 6459264 .0
0, + u2 = ~40?9153.6
201 = 2430110.4
.oy = 1215085.2 W/n?
G, = 72244208.8 N/m?
Point 11:
; h1 -0, = 9965721.6
_ Ty T 0 = 2000004
2a, = 11966136
.. ay = 5983067.8_1/u’
0, = 23982633.8 N/l
Point 12:
; 01 -, = 4982860.8
01 + G q =_160401??h
201 = 21023039



Overall

Results Compiled:

+ .

e — - —— —

STRESSES AT THE POINTS ON | STRESSES AT THE INTERIOR
THE BOUNDARY (N/m?) POINTS (N/m?)
NODE 94 ° NODE] % 1 97
] ——— e | —
A 0 ~20992608 1 | 3109158.7 317833.85
B 0 -98004240 2 12516240 £59201.55
‘ c 0 -8085614.4 3 |1530912.1 -1468032
D 0 -5559580.8 4 1-4482327.2 -11968153 Hw
E 0 -3114288 5 1405100.95 ~5108342.3
P » ~4498416 6 14391597.6 ~1421740
S p— —— — _— ]
G 0 ~44430509 7 |4970233.4 ~566278.65
H [9573552 0 8 | -66905 -8440879
I | 10069531 0 9 | 2703589.6 -5947210.4
J 112261067 0 10 | 1215055.2 —5244208.8
L1 |
XK [20761920 0 11 | 5983067.8 ~3982653, 8
12 110511519 5528658 .6
1 R I ) t

The results from the

— N ey g it e o — i ke —kd —

2-I) photoelastic model

now have to be interpreted to stress values in the metal

part.

The model may differ from the metal part in

respect of scale, thickness, applied load and elastic

constants.

Various methods for transposing the stresses to

the new conditions have been suggested. The problem as

applied to photcelastic work has been specifically

12]1.

considered by J. N. Godier [ref. He suggested that

for the straight-forward 2-D case, the stress at a point
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is proportional to the quantity (W/t.l) so that the
stress in the engineering part can be derived from

the relationship:

¢ =0 X g- X o X qm TooomTomss—os {(5.11)

~where the suffix 'p' and 'm' refers to prototype and

1

model, respectively and o stress at a point. W is

the transmitted locad, t = thickness, 1 = typical length
dimension.

Assuming the prototype to be made of steel, the
transmitted load to be 2 kN, the gear wheel thickness to
59 25 ﬁm, the thickness of the gear tooth to be 6.6 mm.
With these values and the corresponding values in the

model, the stress developed, for example, at the fillet

of the prototype is calculated as:

bData for the Model

o = 20.33 MPa (tension)
Tooth thickness along the pitch line tm = 20 mm
The face width lm = 5 mm

Transmitted load Wm = 282,705 M.

Data for the Prototype

o = 72
P
Tooth thickness along the pitch line tp = 6,6 mm
The face width lp = 25 mm
Transmitted Lload wp = 2000 N
Subsgtituting these values into equation (5.11), the

fillet stress (tension} on the prototype is calculated

as follows:

200
282.7

u = 20.33 x



»

b.o.

. CHAPTER SIX

CALCULATION OF STRESSES WITH THE USE OF FEM

In calculating stresses using an in-plane

censtant strain triangle CS5T Finite Element Method, PEM,

conputer programme (ref.3) was employed. A mainframe

computer Cyber 932511 installed at Ahmadu Bello Univer—

 sity Computer Centre was used to run the computation.

The prOgramme is completely listed ln Flgures 6.1a

ko 6.1g

wnclosed at the end of the volume, and is divided

}into-three main parts, namely: - . ..o uF ¥

L
..‘!.I'..'_ﬂ--.J .

gy
A

(i)

EENEVE

Calculation of the element stiffness matrices

and assemblage intc the overall structural

stiffness matrix. - k- L PR
Sclution of the set of 51multaneous linear
equatlons to determlne the nodal point dis-

placement, - . - . fwrw a0

Evaluation of stresses in the individual

e
. Yin

"elements, B P I I

The f£low chart of the programme is enclosed at the end of

the volume ‘along with the programme ( fié-gr 1a.9, Figb fw)

The aralysig is carried out in a single pass using

input data {(Figures 6.1g Lo 6.1n) whlch pr0v1de a

1

" geometrical description of the Qtructure (quure 6.2)

and fts loading (rigure 6.2) and producing an output

consisting of tabulated nodal point deflections (Fig.

6.1p to 6.1r) and clement stresses (Fig.6.1r to 6.1v).

After the subdivision of the structure into 242

triangular ¢iements (CST} as shown in Figure (6.2}
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element daté (elastic properties, coord;nates and
connectivity of each element and the associated load
components) .

Care was taken to refine the mesh at expected
regions of stress concentrations, that is at the root
of the tooth and the point of load application.

Regqularily, as in FEM procedure, the tooth was ﬁbw
fixed by means of several supports (at nodes 48, 1, 4,
6, 8, 11 and 66}. The load was applied at a pressure
angle of 259 at nodal point 122, Tt is well known that
two values of pressure angle are used for spur dears.
According to standards, these angles are 14.5° and 20°,
the latter being the choice in most modern constructions,
This pressure angle of 20°, however, could increase due
to tooth correction, centre distance shifting, etc.
frefs. 5 and 13]. It was noticed, when taking the photo-
elastic measurements that the working pressure angle was
25° and such working pressure angle was assumed. The
technique applied, however, is suitable for any standard
or working pressure angle, |

The face width (thickness of gear hlank) of the
tooth (5 mm) compared to the thickness of the tooth,
measured along the pitch line (20 mm) and its height
(26 mm) justifies the assumption of the plane state of
stress and ﬁherefore the use of an in-plane FEM analysis
hare. |

- The accuracy of FEM calculation depends on the nunber

of elements used. It was checked that discretization into

242 clements is sufficient for the analysis having used

B7



coarser meshes,
Stress components Ty Uy' Txy, principal stresses o,
and o, and even o, - ¢, were calculated, The results

2 1
are shown in the computer print-out attached (FPig. 6.1r
and Fig. 6.1v). The nature of CST elements implies
that these stresses are constant throughout each single
triangular element (normally represented at the centroid
of the element),.

The analysis of the stresses print-out showed
three regions of concentration with locally maximum
stresses as follows:
at point of loed application:

o, = ~52.59 MPa (element 212)
at the left fillet:

01 = +23.37 MPa {element 104}

at the right fillet:

52 = =20,24 MPa (element 89).

%@!.

88



CHAPTER SEVEN

7.0. COMPARISQM OF RESULTS OBTAINED BY DIFFERENT METHODS

e, L gy ey e e et Sl puft W e e e P T T —— T S T M T e W A

In Chapter Two, it was said that the Lewis
-~ formula is highly deficient because of over-simplifying

- assumptions enumerated in the same chapter. The following

- calculation, when compared with others goes further to

prove this.

The modified Lewis formula takes the effect of

compressive load into account.

. Wr
3
4 W‘
F

5 A |

a t

7 N T

‘ﬁ: o

7

4 |

' ] P SN
{ .
P & |
Fig. 7.1: Lewis Approach for Calculating STresses.
Tensile stress, ct = M/ TLJ R e AR B
where M = moment = Wt.l e e (7, 2)
r
and . 7 = Section Modulus = FE ———————— {7.3)
Substituting equations (7.2) and (7.3} into (7.1}, we have:
Gth : R

’_ Gt = -F—Er' “““““““““““““““““““““““““ (7.4}



Taking effect of compressive load into account we have

Compressive stress o, = M/ (L) mm————— (7.5)
t

Where I"i - Iqr- 'z _________________ — ------- (7-6]
42

and B (7.7)

Substituting equations {(7.€) and (7.7) into {7.5) we

- have:
-BWr

O =yt mmmme e (7.8)
' Gth ~3W
Total fillet stress, o = t = l,r ————— (7.9)
where '

W applied load = 282.705 N

Wt W Cos 25°

Wr W 5in 2hk°®

t Width of tcoth = 26.4 mm

1 20.5 mm

F Model thickness = 5 mm.

Substituting these values into eguation (7.9) gives:

o
1l
|4

+

6x282.705 Cos_25°x20.5x10_

3 33282 .705x Sin 25°

510 x(26.4x1073)2 (20.5 x 10"3)2

9043498.2 - 852894.44

Lewisg Formula (Qriginal):

0.
g =
Modified
.IUZ

g =

+9043498.2_N/m? (left fillet)

i~ S =R

=9043498.2_N/m? (right fillet)

= R i )

T.ewis Formula:

+9043498.2 - 852894.44 =+8190603.8_N/m? (left fillet)

SSECEST-SS o= mo==

20
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Fig. 7.2: Equivalent Flat-Sided Projection
Constructed from Gear Tooth for the
Calculation of Fillet Stress.

In Chapter Two also, it was said that Sopwith
Eguation is better than Lewis formula. This statement
is proved by comparing the results obtained using the
lfwo cgquations with the results obtained using either
finite difference method or finite element methed.

Now referring to the above Fig. 7.2, and using the

data therein, the fillet stresses according to Sopwith

are (equation (2.7))s

1.5a LRETA
g = * Ki + /D.36 i . |l —_———
ei.‘ 1{ “_“-b_.()_- (1 + a Sin Y)] _F- {7.10

where K = stress concentration factor

=1+ 0,260 %7 e (7.11)

a, b, e, are as shown in Figure 7.2

R = fillet radius = 0.2e for double root radii fillet,

97T



173.2 mm, b = 22.6¢ mm,

From the same figure, a = 19 mm, e =
R =0.2¢e = 2.64 mm, W = 282.705 N, F = face width = 5 mm,
Yy = pressure angle = 25°9,
Substituting these values intc equations (7.10)
and (7.11), we have:
_ 13.2, 0.7 _ -
;[{ = 1 0.26(*m] = 1.802
E 1.5x19x10_3
o = % 1.8] =- / 0.36 T oy 1 282,70°0
(13.2x1073)2 7 =3 23 {TrgBin 25%) 177"
: 22.6x10 "x13.2x10 5x10 °
&+ 20.56 MPa
o = .+20.56_MPa (Left fillet)
g = ;§25§§=§g§ {(Right fillet)
7.3. Comparison Of Fillet Stresses: )
. Lewis Modified Sopwith|[FDM+Photo
Locatlon Formula Lewls Equation Elasti- FEM
U RS |_Formula city
7S Do 19MPa | +20.56MPa|+20.76MPa| +23.37MPa
Fillet i i i i _ "
Right —a . _ - - - 2
Fillg;____f'd4MPa N_E.SQMPa 20.56fff 20,99MPa _30.44MPa
TABLE 7.1: FILLET STRESSES BY DIFFERENT METHODS

Tavle 7.1 shows clearly how the Lewils formula, modified

Lewis formula, Sopwith equation, FDM + photoelastic analysis

-and finite element method agree or disagree with one another.

7.4.

e A i A o Ay oy ey I T .t . i Ty Ml e

stress, the Hertz theory is employed.

Calculating The Contact Stress At The Point OFf Load

o W o e o e Ty e e e T = ko S i . b — = — . — —— W P— - — E—— — e —

To obtain an expression for surface contact

Without going into

detailed derivation of the equation, Hertzian contact stress

betweon cylinders may be computed from the equation:

92:..




O = F e (7.12)
whetre
‘ 1 - u: 1 -~ ”.1 o
A o= L { Lt LS S (7.13)
1 1 i) E
2r * 2r 1 z *
1 2 -
f2ws
b= & —mmmmmoe- {7.14)

Applying the above eguaticn to a pair of gears; UT’ Hoyo
E1 and Ez; are the elastic constants of the gear material

while r are the instantanecus values of the radii of

17 T20

curvature on the pinion-and gear-tooth profile, respectively,

at the point of contact. By accounting for locad sharing in

the value ofF W used, equation {(7.12) can be solved for the

Hertzian étress for any or all points from the beginning

to the end of tooth contact. Of course, pure rolling exists

only at the pitch point. Elsewhere, the motion is a

mixture of rolling and sliding. Equation (7.12) does not

account for any sliding action in the evaluation of stresses,
Referring to Figures 7.3 and 7.4, and making use of

the equations (7.12), (7.13) and (7.14), the contact stress

is calculated as follows:

r1 = r2 = r = 45,3 wm
M1 = u2 = u = 0.325

S By = E, = E = 4.444 x 107 N/m?
W = 282.7058 N

" F = 5 mm.
Making use of equation (7.13):

3. 1-{0.325)% .

. - 2 -
Ao 2r(1E“ )= 2x45.3x707 7 (142:222)
| S E 4.444x%10
= 1,8231853_x_10-"0 woyw
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From egquation (7.14), we have:

b - /2 x 282.7058 x_1.8231853 x 107

5 x 10-3 X T

= 8.1009849 % 10 " m

Substituting the wvalues of b and & into equation (7.12),

we have -

-4
Contact Stress g = 8:1009849 x 10 y

1.8231853 x 10

- g g g™

. Photoelasticity+ | .
Hertz Equétlon FDM (Node G) FEM (Nodel122)
-44 .43 MPa -44.43 Mpa -52,59 Mpa

TABLE 7.2: CONTACT STRESSES BY DIFFERENT METHODS

Table 7.2 shows the extent the Hertz equation, the
FDM+photoelasticity and FEM agree with one another when

used to calculate the contact stresses.

7.6, Infercnces:

Looking at the results obtained using Lewis
formula, mcdified Lewis formula, Sopwith Equation, Hertz
Equation, Photoelastic method plus FDM and FEM, the following
inferences are made: ’

. (i) The Lewis formula has been proved deficieﬁ£

since the result obtained with it is almost 50%

less than that obtained using either Sopwith

W Egquation, Photoelastic method plus FDM or FEM.
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(i1)

Co(1ii)

{iv)

(v}

The results obtained using Sopwith equa£ion
agree very well with the photoelastic and finite
element results. | :

The photoelastic results égree with the finite
element method results.

Also the value of stress obtained using Hertz
equation is in complete agreement with that
given by photoelastic plus FDM analysis. B
The contact stress value given by photcelastic
plus FDM analysis does not agree well with that
obtained using finite element method. The
reason for the difference is that the finite

element method always assumes a point load. As

~the load transmitted by the two gears increases,

the point of contact enlarges to a line contact
so that the point load phenomenon does not hold
anymore. As a result, less stress wvalue is
obtained by photoelastic plus FDM method than

with the FEM analysis.



CHAPTER EIGHT

8.0. LIKELY SOURCES OF ERROR IN_THIS WORK

Just like in all experimental work, there afé
in this work various sources of error of which some were
gquarded against while others were inevitable. 1In this
work, the errors are likely to come from the use of strain
gauges, the photoelastic and Numerical analyses.

The major scurces of error and the ways some
of them were guarded against in the photoelastic analysis
part of this work are as followsrs

Effect of Machining Stresses - When a photoelastic

material is produced by machining processes, boundary
stresses are induced in the model. The size of the
machining stress depends primarily on the rigidity of the
machine and sharpness of the cutting tools. In this work,
the machining stresses were reduced to minimum by using a
sharp, well-supported tool and rigid machine while turning
the blank; and sharp hacksaw and smooth files while cutting
the teeth. A non-load observation in the rhotoelastic
bench showed hardly any residual stress.

Accuracy of Model - It can be said that the accuracy

of a test is almost entirely dependent con the dimensional
accuracy of the model. 1If a model is not produced to the
accurate dimension and necessary tolerance included, there
may be errors in the results Obtained. Inaccurate models
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result from hand-filing operations and even.from milling
and turning if the model is not clamped flat on the working
table or face plate. In this work, there are bound to be
some errors due to method of production of the models.
This is hecause, although the model was rigidly clamped
to the machine table, the teeth were cut with hacksaw and
filed to shape. This is because, there was no milling
cutter to use in producing the size of gear teeth needed.
Although the gear teeth were produced by cutting and
filing, I still believe that the error is minimal since
extra care was taken in cutting and f£illing processes.

Time-Edge Effect -~ When some photoelastic materials

are exposed to the air, fringes develop along the exposed
edges. The time-edge effect is a function of time as the
name reveals. It grows with time. As a result, one cannot
finish preparing a model and put it away and expect to gqet
accurate stress patterns at the edges some time after. In
this project, this error is unavoidable since the model
éould not be finished one day and the readings taken the
same day.

Faulty Loading Conditions - In addition to problems

arising from machining stresses and time-edge effect,
there are difficulties due to the loading conditions. If
the loads are applied to the extreme fibres through pins,
friction forces are developed which generally reduce the
applied bending moment and shifts the position of neutral
axis. In this work, the influence of friction farces was
reduced by boring holes on the neutral axes of the models
and loads applied through pins passing through these holes
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(see.Plate XX). The pins and the holes were lubricated

to further reduce the effect of friction. | L
Creep - The problem of creep, in this work,.was

.tackled by using an old, well-seasoned material which

normally will show smaller rates of creep.

o i i ik e i o ey Ak e . W i o L e o T R e e A A et W W M oy S S S A TN e, b v i

As pointed out in Chapter Five, the strains at
the nodal points 1, 2 and 3 were determined using strain
gauges to enable us find the stresses a£ the points.
There are bound to be errors in the measurement due to
instability of gauge performance, though frantic effort
was made to reduce the errors.

Instakility of qgauge performance is caused by the
fecllowings:
{i) Moisture_
(ii) Improper installation of gauges
(iii) TInsufficient drying of cement
(iv) Damaged or imperfect connection
(v) Ageing of bonding medium
(vi) Use of fraved or wornout strained lead wire.
The following measures were taken to reduce the errors
coming from the above mentioned sources,
- On moisture prevention, since the weather under which
.fhe experiment was conducted was dry enough, there was no
need of protecting the strain gauges from the influence of

moisture by waxing it.
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Tﬁe bonding medium used was tested and proved to be
efficient, So the issue of error coming in due to ageing
of the bonding medium does not arise.

Frantic effort was made to see that the strain gauges
were properly mounted on the test piece; and allowed one
day before measurement was carried out to ensure complete
drying of the cement.!;ﬂ:

The strain gauge égnnectiOn was found to be perfect
when it was tested for continuity using Avometer.

The strain gauges used were new ones, and the connec-
ting wires were also new, |

Although the precautions menticoned above were taken,
one cannot still rule out the possibility of some errors

being present, no matter how small,

it i B Al W it AN o i A i S M L Ml I A S g ded s e ey eyt e e e R ey A i e A b ks Wl e —

It has been said earlier that the finite difference
method cbntains an essential approximation; consequently,
solutions obtained by its use must phe in some error, no
matter how small. The error can he made less by taking
the mesh sufficiently fine. 1In FDM plus photoelasticity
applications, however, the refinement cannot go too far,
as reading the fractional fringes becames too difficult.

The error in FEM analysis results frome
(i) the nature of the analysis and selected element;
{i1]) covering the real shape by the idealised onecj
{iii) insufficient idealization. 314““7
The last factor, the most seriocus one in many cases, was
almost eliminated by taking coarser meshes and refining them

and comparing results {that was donec as mentioned in
el (QRATIME ftERAR Y



Chapter Six). The first two factors are inevitable. FEM
is an approximate method but is accepted for this type of
calculation. C8T elements are widely used for in-plane
analysis and they have the advantage of describing well
all shapes (better than, for example, rectangular
elements). The relatively thin model allowed two-

dimensicnal analysis, _ : : e PR
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CHAPTER NINE

9.0. CONCLUSION

The stresses in a spur gear have been success-

fully determined with the use of photoelastie plus FDM

and FEM analyses. The stresses were compared with the

traditional Sopwith equation and Lewis formula.

Comparing the results cobtained using different

methods mentioned above, the following conclusions are

drawn;

(i)

(11)

(iii)

(iv)

the Lewis formula is highly deficient. The

‘deficiency is noticed in the results obtained

. using the formula and other methods. The value

of fillet stress calculated using Lewis formula
is about 50% less than that calculated using
either Sopwith equation or numerical methods.
The results obtained using Sopwith equation
agree well with the photoelastic plus FDM and
FEM results.

The photoelastic plus FDM results agree with
those of FEM.

The result obtained using Hertz equation does

not agree with that obtained using FEM but

- agrees well with the photoelastic plus FDM results,

the reason being that FEM and analytical approa-
ches assume point load which does not exist in

the real sense. From this point of view, the
photoelastic plus FDM method is highly recommended
for contact stress measurement,
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Carried out stress ahalysis revealed that when a
pair of gears are meshing, stress concentration is
noticed at the fillets and point of contact. Because of
this stress concentration at the root, it is recommended
that the gear designers should make the fillet radius as
- large as posisble teo reduce the stress concentration. |
The best results are obtained with the largest radius,
that is, the semi-circular fillet..

On the photoelastic model, as revealed by the fringe
photographs attached, it is possible for the designer to
notice the areas of stress concentration. This helps
him to modify the design as the case may be. |

. The results show that the in-plane, plane stress
.analysis is suitable for spur gears. In case of very
thick gears, the photoelastic experiment would becone
difficult. The FEM in-plane analysis could easily be
replaced, howevey, by a 3-D analysis. The advantage of
: using photoelastic plus FDM analysis is that the complete
calculation (stress separation) is possible without using
isoclinics. Isoclinics (locii of points along which the
principal stresses have parallel directions) are less
sharp and more difficult to determine compared with iso-
chromatics {lines of constant maximum shear stress). In
addition, Sopwith and Lewis equations can only analyse the
stresses at the fillets but not at the nodal points on the
tooth. Supposing a hole is drilled on the tooth for the
purpose of weight reduction; FDMtphotcelastic and FEM
techniques can be used to find the effect of the hole on the
strength of the tooth.
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.~ FLOW CHART FOR COMPUTER PROGRAM FINELMT
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