EFFICIENCY OF CASSAVA PEEL IN REMOVING HEAVY METALS FROM AN HOSPITAL SEWAGE SLUDGE IN IBADAN, NIGERIA

ADEDOTUN TIMOTHY ADEOLU

B.Tech (Akure), MPH (Ibadan)

A DISSERTATION SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF DOCTOR OF PHILOSOPHY IN ENVIRONMENTAL HEALTH.

DEPARTMENT OF ENVIRONMENTAL HEALTH SCIENCES

COLLEGE OF PURE AND APPLIED SCIENCE

KWARA STATE UNIVERSITY, MALETE

ProQuest Number: 13814388

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 13814388

Published by ProQuest LLC (2019). Copyright of the Dissertation is held by the Author.

All rights reserved.

This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, MI 48106 – 1346

ABSTRACT

The geometric increase in urbanisation and industrialisation has resulted in drastic increase in the volume of wastewater and sludge which contain contaminants. Hence, the need to remove these becomes imperative. The application of sewage sludge on farmlands is of concern to man owing to the potentials of heavy metals which deteriorate the soil, ground water quality and bioaccumulate in food chains. The use of strain-specific microbial fermentation in the production of organic acids has been extensively studied. However, the use of indigenous microflora toward the bioleaching of heavy metals has not been well researched. This study however assessed the potentials of fermentation extracts from cassava peels in the removal of heavy metals from an hospital sewage sludge. A composite sewage sludge sample was collected from the University College Hospital sewage treatment plant, Ibadan, Oyo State, Nigeria. Heavy metal concentrations in the sample were determined for Copper (Cu), Zinc (Zn), Chromium (Cr), Nickel (Ni), Cadmium (Cd) and Lead (Pb) using Atomic Absorption Spectrophotometry (Buck Scientific Model 210 VGP). Source-segregated cassava peels were collected from a market in Ibadan. Aspergillus niger Fermentation Extract (ANFE) of 0.045M, Aspergillus tereus Fermentation Extract (ATFE) of 0.043M and Crude Fermentation Extract (CFE) of 0.055M were obtained each from 50g of cassava peels after 13-day fermentation using acid-producing strains of Aspergillus niger, Aspergillus tereus and indigenous microbial populations respectively; Commercial-grade Citric Acid (CCA) and Commercial-grade Itaconic Acid (CIA) served as controls. The experiment was carried out by adding 10 ml of the extracts and controls at room temperature (28°C) and elevated temperature (45° C), and pH (3–5) to 3g of the sample each. The mixture was centrifuged after a leaching time of 1-12 days at 1000 rpm for 1hour. The filtrate was analysed for heavy metals concentrations and compared with the standards. Data were analyzed using descriptive statistics, paired t-test and ANOVA at p>0.05. The heavy metal concentrations (mg/kg) in the sewage sludge were Cu (2.22 ± 0.2) , Zn (52.3 ± 0.1) , Cr (1.46 ± 0.1) , Ni (5.6 ± 0.01) and Pb (1.9±0.1). The values of the recorded concentrations (mg/kg) were below the permissible limits of NESREA of Cu (100), Zn (421), Cr (100), Ni (76) and Pb (164). Optimum heavy metals removal for ANFE at room temperature was achieved on day 12 at pH 3.5 for Zn (74.5%) and at elevated temperature was achieved on day 9 at pH 3.0 for Pb (79.3%) while Optimum heavy metals removal for ATFE at room temperature was achieved on day 12 at pH 3.5 for Ni (78.4%) and at elevated temperature was achieved on day 1 at pH 4.0 for Zn (72.3%). The optimum pH for CFE lies between 3 – 4.5 for Ni (76.2%) at room temperature and Cr (76.6%) at elevated temperature. The concentration of heavy metals removed by CFE was significantly higher than ANFE except (Cr and Ni) at room temperature. ANFE showed higher removal when compared with control, except for Cu, Zn and Ni. ATFE showed higher removal when compared with control, except Cr and Pb. Crude fermentation extract of cassava peel was found to be effective in removing the heavy metals from sewage sludge. Therefore, its use could be embraced and promoted for removing heavy metals from sewage sludge, thus safe disposal could be achieved.

Keywords: Aspergillus niger Fermentation Extract, Aspergillus tereus Fermentation Extract, Crude Fermentation Extract, Hospital sewage sludge, Cassava peels.

ACKNOWLEDGEMENT

The writing of this dissertation has been one of the most significant academic challenges I have ever had to face. Without the support, patience and guidance of the following esteemed people, this research work would not have been a success. It is to them I owe my heartfelt gratitude. First, I wish to express my profound gratitude to my supervisor Prof S.O. Adewoye for his supervision, encouragement and support throughout the study period and my co-Supervisor, in person Prof A.A Oladimeji. Many thanks to Dr H.O Sawyerr (Head of Department), Dr O.A Olalubi, Dr K.T Musah, Dr G.A Salako, Dr A.O Ilesanmi, Mr A.O Opasola, Mr A.A Adio, Mr O.O Salami, Arch (Mrs) O.F Adekeye-Oyebanji of School of Allied Health and Environmental Science (SAHES) for their contribution to the success of this work. I am very grateful. My special thanks also go to Prof I.K Adewumi, Prof M.K.C Sridhar, Dr O.M Akpa, Dr S.P Ayodeji and Dr O.T Okareh for being my academic advisors and pillars I could run to when difficulties arose.

I am also grateful to my friends and senior colleagues in the profession: Augustine Ebisike, Shehu Muhammad, Suleyman Tanko, Musa Kwami, Olawoye Faramade, Akinyele Cyril, Usman, Andy Ukah, Enezi David, Anjorin Toyin, Alao Omoniyi and others who inspired me in the course of the research work. I equally appreciate the Sceptre of Power Christian Ministry (SEPCAM) family for being there for me. My profound gratitude also goes to my parents, Elder and Deaconess David Adeolu and my siblings who have always supported, encouraged and believed in me, in all my endeavours. Special thanks to my beloved jewel, Ifeyanu without her this effort would have worth nothing. Also, kudos to my princes (Israel and Michael), your love, support and constant patience have taught me so much about sacrifice, discipline. Thank you for being there for me.

Above all, I give all glory, honour and adoration to the Almighty God; Ancient of days for His protection, divine guidance, love, provision, journey mercies, without Him this work would not have come to reality.

CERTIFICATION

This is to certify that the project titled assessment of efficiency of cassava peel in removing heavy metals from an hospital sewage sludge was conducted by ADEDOTUN TIMOTHY ADEOLU with matriculation number 14/27/PEHS001 of Environmental Health Unit, School of Allied Health and Environmental Sciences, College of Pure and Applied Sciences, Kwara State University, Malete, Nigeria in partial fulfilment requirements for the award of Doctor of Philosophy Degree in Environmental Health.

Prof S.O Adewoye (Major Supervisor)	Date
Prof A.A Oladimeji (Co-Supervisor)	Date
Dr. H. O. Sawyerr (Head of Department)	Date
(External Examiner)	

DEDICATION

This dissertation is dedicated to God Almighty, the all sufficient one, the source of my inspiration.

TABLE OF CONTENTS

Conte	ent	Page
Title p	page	i
Abstra	act	ii
Ackno	owledgement	iii
Certif	ication	iv
Dedic	ation	v
Table	of Contents	vi
List o	f Appendix	xii
List o	f Tables	XV
List o	f Plates	xvii
List o	f Figures	xviii
Abbre	eviations and acronyms	XX
CHA	PTER ONE	
INTR	RODUCTION	
1.1	Background Information of the study	1
1.2	Problem Statement	4
1.3	Justification of the study	7
1.4	Aim and Objectives	8
1.4.1	Aim	8
1.4.2	Objectives	8
1.4.3	Research Questions	9
CHA	PTER TWO	
LITE	RATURE REVIEW	
2.1	Production and Processing of Cassava (Manihot esculenta Cratntz)	10
2.2	Wastes from Processing of Cassava	12

2.3	Cassava peel and its utilization.	13
2.4	Sewage Sludge	14
2.4.1	Composition of sewage sludge	15
2.4.2	Treatment of sewage sludge	16
2.4.3	Application of sewage sludge	17
2.5.0	Heavy Metals in the sewage sludge	19
2.5.1	Lead	21
2.5.2	Cadmium	22
2.5.3	Chromium	22
2.5.4	Copper	23
2.5.5	Zinc	23
2.5.6	Nickel	23
2.6.0	Standard limits of heavy metal concentration in the sludge	24
2.7.0	Removal of heavy metals from sewage sludge	26
2.7.1	Bioleaching of sewage sludge	26
2.8.0	Development of organic aids from agricultural waste	28
2.8.1	Solid waste fermentation.	29
2.8.2	Fermentation Parameters	29
2.8.2.1	Carbon source.	30
2.8.2.2	2 Nutrient Limitation	30
2.8.2.3	3 pH	30
2.8.2.4	1 Temperature	31
2.9.0	Recovery of metal from biosolids	31
CHAI	PTER THREE	
MAT	ERIALS AND METHODS	
3.1	Study design	32
3.2	Collection of materials	32
3.2.1	Source segregation cassava peels.	32

3.2.2	Dewatered sewage sludge	35
3.3.0	Analysis of materials	38
3.3.1	Proximate analysis of cassava peels.	38
3.3.1.1	Moisture	38
3.3.1.2	Ash	38
3.3.1.3	Crude fibre	39
3.3.1.4	Crude nitrogen.	39
3.3.1.5	Crude protein.	40
3.3.1.6	Crude fat	40
3.3.1.7	Hydrocyanic acid.	41
3.3.2	Analysis of dewatered sewage sludge	42
3.3.2.1	pH	42
3.3.2.2	Nitrogen.	42
3.3.2.3	Organic Matter	43
3.3.2.4	4 Organic carbon	43
3.3.2.5	Phosphorus.	44
3.3.2.6	Potassium.	44
3.3.2.7	Nitric-perchloric acid digestion.	45
3.4.	Synthesis of organic acids from source-segregated cassava peels	45
3.4.1	Fermentation of cassava peel.	45
3.4.1.1	Substrate (cassava peel)	45
3.4.1.2	Isolation of fungal strain.	45
3.4.2	Screening of organic acids producing strains.	48
3.4.2.1	Citric acid.	48
3.4.2.2	Itaconic acid.	48
3.4.3	Determination of the acid unitage values.	49
3.4.4	Organic acids production medium preparation.	49
3.4.5	Inoculum	49
3.5	Fermentation techniques	50

3.5.1	Solid State Fermentation	50
3.6	Effect of Moisture Holding Capacity.	50
3.7	Analysis of fermentation extracts.	54
3.7.1	Preparation of DNS solution.	54
3.7.2	Estimation of Sucrose	54
3.7.3	Standard plot for sucrose solution.	55
3.7.4	Estimation of Citric acid.	57
3.7.5	Standard plot for citric acid.	57
3.7.6	Estimation of Itaconic acid.	59
3.7.7	Estimation of Total Titratable Acidity.	59
3.7.8	Estimation of Biomass (Dry cell mass)	59
3.8	Heavy metal removal experiments.	60
3.8.1	Extractant or leaching agent.	60
3.8.2	Extractant pH.	60
3.8.3	Contact time.	60
3.8.5	Temperature	60
3.8.5	Extractant dose.	60
3.9	Data Management.	61
3.10	Limitation/Challenges of the study	62
СНА	PTER FOUR	
RESU	JLTS	
4.1	Physico-chemical properties of dried cassava peels.	63
4.2	Physico-chemical properties of sewage sludge.	63
4.3	Determination of acid unitage values of the isolated and screened organisms	66
4.3.1	Aspergillus niger	66
4.3.2	Aspergillus tereus	66
4.4	Analysis of fermentation extracts during formatting process	69
4.4.1	Aspergillus niger	69

4.4.1.1	Estimation of total titratable acidity (TTA)	69
4.4.1.2	2 Estimation of sugar	69
4.4.1.3	B Estimation of citric acid	69
4.5	Analysis of fermentation extracts during the formatting process	73
4.5.1	Aspergillus tereus	73
4.5.1.1	Estimation of total titratable acidity (TTA)	73
4.5.1.2	2 Estimation of sugar	73
4.5.1.3	B Estimation of itaconic acid	73
4.6	Analysis of fermentation extracts	77
4.6.1	Estimation of Total Titratable Acidity	77
4.6.2	Estimation of sugar	77
4.6.3	Estimation of citric acid.	77
4.6.4	Estimation of biomass	77
4.7	Heavy metal removal.	82
4.7.1	Efficacy of the fermentation extracts for heavy metal removal	82
4.7.1.1	Aspergillus niger fermentation extracts	82
4.7.1.2	2 Aspergillus tereus fermentation extracts	82
4.7.2	Comparison of the heavy metal removal efficacy of the <i>Aspergillus</i> spp extracts with the control	
4.8	Effect of PH on heavy metal removal.	112
4.8.1	Aspergillus niger fermentation extracts	112
4.9	Effect of contact time on heavy metal removal	133
4.9.1	Aspergillus niger fermentation extracts	133
4.9.2	Aspergillus tereus fermentation extracts	133
СНАН	PTER FIVE	
DISC	USSION	
5.1	Source-segregation of cassava peel	154
5.2	Physico-chemical properties of dried cassava peel wastes	154

5.3	Physico-chemical characteristics of sewage sludge	155
5.4	Development of organic acids	157
5.5	Heavy metal removal/Extraction	158
5.5.1	Effect of treatment/Extractant	159
5.5.2	Effects of pH.	160
5.5.3	Effect of contact time	161
CHA	PTER SIX	
CON	CLUSIONS AND RECOMMENDATIONS	
6.1	Conclusions.	163
6.2	Recommendations.	165
6.3	Contribution to knowledge.	165
6.4	Suggestions for future research.	166
REFERENCES167		

LIST OF APPENDICES

Appendix 1	Screening for citric acid producing ability	186
Appendix 2	Screening for itaconic acid producing ability	187
Appendix 3	Total titratable acids at different days of fermentation	188
Appendix 4	Sugar utilization at different days of fermentation.	189
Appendix 5	Acids production at different days of fermentation.	190
Appendix 6	Percentage of heavy metals removal at temperature on day 1 using Aspers	_
Appendix 7	Percentage of heavy metals removal at room temperature on day 3 Aspergillus niger	_
Appendix 8	Percentage of heavy metals removal at room temperature on day 6 Aspergillus niger	_
Appendix 9	Percentage of heavy metals removal at room temperature on day 9 Aspergillus niger	_
Appendix 10	Percentage of heavy metals removal at room temperature on day 12 Aspergillus niger.	_
Appendix 11	Percentage of heavy metals removal at room temperature on day 1 Aspergillus tereus	_
Appendix 12	Percentage of heavy metals removal at room temperature on day 3 Aspergillus tereus	_
Appendix 13	Percentage of heavy metals removal at room temperature on day 6 Aspergillus tereus	_
Appendix 14	Percentage of heavy metals removal at room temperature on day 9 Aspergillus tereus	_
	Percentage of heavy metals removal at room temperature on day 12 Aspergillus tereus.	_
Appendix 16	Percentage of heavy metals removal at elevated temperature on day 1 Aspergillus niger	
Appendix 17	Percentage of heavy metals removal at elevated temperature on day 3 Aspergillus niger	
Appendix 18	Percentage of heavy metals removal at elevated temperature on day 6 Aspergillus niger.	_
Appendix 19	Percentage of heavy metals removal at elevated temperature on day 9 Aspergillus niger	using 204

Appendix 20	Percentage of heavy metals removal at elevated temperature on day 12 using Aspergillus niger
Appendix 21	Percentage of heavy metals removal at elevated temperature on day 1 using Aspergillus tereus
Appendix 22	Percentage of heavy metals removal at elevated temperature on day 3 using Aspergillus tereus
Appendix 23	Percentage of heavy metals removal at elevated temperature on day 6 using Aspergillus tereus
Appendix 24	Percentage of heavy metals removal at elevated temperature on day 9 using Aspergillus tereus
Appendix 25	Percentage of heavy metals removal at elevated temperature on day 12 using Aspergillus tereus
Appendix 26	Comparison of removal efficiencies using fermentation extract at varied temperature for citric acid
Appendix 27	Comparison of removal efficiencies using fermentation extract at varied temperature for itaconic acid
Appendix 28	Showing effect of PH on metal removal efficiency at room temperature on day 1 for citric acid
Appendix 29	Showing effect of PH on metal removal efficiency at room temperature on day 3 for citric acid
Appendix 30	Showing effect of PH on metal removal efficiency at room temperature on day 6 for citric acid
Appendix 31	Showing effect of PH on metal removal efficiency at room temperature on day 9 for citric acid
Appendix 32	Showing effect of PH on metal removal efficiency at room temperature on day 12 for citric acid
Appendix 33	Showing effect of PH on metal removal efficiency at room temperature on day 1 for itaconic acid
Appendix 34	Showing effect of PH on metal removal efficiency at room temperature on day 3 for itaconic
Appendix 35	Showing effect of PH on metal removal efficiency at room temperature on day 6 for itaconic
Appendix 36	Showing effect of PH on metal removal efficiency at room temperature on day 9 for itaconic
Appendix 37	Showing effect of PH on metal removal efficiency at room temperature on day 12 for itaconic acid

Appendix 38	Showing effect of PH on metal efficiency at elevated temperature on day 1 for citric acid
Appendix 39	Showing effect of PH on metal removal efficiency at elevated temperature on day 3 for citric acid
Appendix 40	Showing effect of PH on metal removal efficiency at elevated temperature on day 6 for citric acid
Appendix 41	Showing effect of PH on metal removal efficiency at elevated temperature on day 9 for citric acid
Appendix 42	Showing effect of PH on metal removal efficiency at elevated temperature on day 12 for citric acid
Appendix 43	Showing effect of PH on metal removal efficiency at elevated at elevated temperature on day 1 for itaconic acid
Appendix 44	Showing effect of PH on metal removal efficiency at elevated temperature on day 3 for itaconic acid
Appendix 45	Showing effect of PH on metal removal at elevated temperature on day 6 for itaconic acid
Appendix 46	Showing effect of PH on metal removal efficiency at elevated temperature on day 9 for itaconic acid
Appendix 47	Showing effect of PH on metal removal efficiency at elevated temperature on day 12 for itaconic

LIST OF TABLES

Table 2.1 Heavy metal permissible standard limit for sewage sludge applied on agricultura soil
Table 4.1 Physico-chemical properties of dried cassava peels
Table 4.2 Physico-chemical properties of dewatered sewage sludge
Table 4.3 Acid unitage values for the <i>Aspergillus niger</i> isolate/colonies67
Table 4.4 Acid unitage values for the <i>Aspergillus tereus</i> isolates/colonies
Table 4.5 Total Titratable Acidity <i>Aspergillus niger</i> during the formatting process70
Table 4.6 Sugar Concentration for <i>Aspergillus niger</i> during the formatting process71
Table4.7 Concentration of citric acid from <i>Aspergillus niger</i> during the formatting process
Table 4.8 Total Titratable Acidity for <i>Aspergillus tereus</i> during the formatting process74
Table 4.9 Sugar Concentration for <i>Aspergillus tereus</i> during the formatting process75
Table 4.10 Concentration of Itaconic acid from <i>Aspergillus tereus</i> during the formatting process
Table4.11Estimated weight of Biomass (g) at different period of fermentation
Table 4.12 Optimum heavy metal removal at room temperature for <i>Aspergillus niger</i> extract
Table 4.13 Optimum heavy metal removal at elevated temperature for <i>Aspergillus niger</i> extract
Table 4.14 Optimum heavy metal removal at room temperature for <i>Aspergillus tereus</i> extract
Table 4.15 Optimum heavy metal removal at elevated temperature for <i>Aspergillus tereus</i> extract
Table 4.16 Comparison of Copper removal efficiency of the <i>Aspergillus niger</i> fermentation extract with the control at room temperature
Table 4.17 Comparison of Zinc removal efficiency of the <i>Aspergillus niger</i> fermentation extract with the control at room temperature
Table 4.18 Comparison of Chromium removal efficiency of the <i>Aspergillus niger</i> fermentation extract with the control at room temperature94
Table 4.19 Comparison of Nickel removal efficiency of the <i>Aspergillus niger</i> fermentation extract with the control at room temperature

Table 4.20.	Comparison of Lead removal efficiency of the <i>Aspergillus niger</i> fermentation extract with the control at room temperature96
Table 4.21	Comparison of Copper removal efficiency of the <i>Aspergillus niger</i> fermentation extract with the control at elevated temperature
Table 4.22	Comparison of Zinc removal efficiency of the <i>Aspergillus niger</i> fermentation extract with the control at elevated temperature
Table 4.23	Comparison of Chromium removal efficiency of the <i>Aspergillus niger</i> fermentation extract with the control at elevated temperature99
Table 4.24	Comparison of Nickel removal efficiency of the <i>Aspergillus niger</i> fermentation extract with the control at elevated temperature
Table 4.25	Comparison of Lead removal efficiency of the <i>Aspergillus niger</i> fermentation extract with the control at elevated temperature
Table 4.26	Comparison of Copper removal efficiency of the <i>Aspergillus tereus</i> fermentation extract with the control at room temperature
Table 4.27	Comparison of Zinc removal efficiency of the <i>Aspergillus tereus</i> fermentation extract with the control at room temperature
Table 4.28	Comparison of Chromium removal efficiency of the <i>Aspergillus tereus</i> fermentation extract with the control at room temperature
Table 4.29	Comparison of Nickel removal efficiency of the <i>Aspergillus tereus</i> fermentation extract with the control at room temperature
Table 4.30	Comparison of Lead removal efficiency of the <i>Aspergillus tereus</i> fermentation extract with the control at room temperature
Table 4.31	Comparison of Copper removal efficiency of the <i>Aspergillus tereus</i> fermentation extract with the control at elevated temperature
Table 4.32	Comparison of Zinc removal efficiency of the <i>Aspergillus tereus</i> fermentation extract with the control at elevated temperature
Table 4.33	Comparison of Chromium removal efficiency of the <i>Aspergillus tereus</i> fermentation extract with the control at elevated temperature
Table 4.34	Comparison of Nickel removal efficiency of the <i>Aspergillus tereus</i> fermentation extract with the control at elevated temperature
Table 4.35	Comparison of Lead removal efficiency of the <i>Aspergillus tereus</i> fermentation extract with the control at elevated temperature

LIST OF PLATES

Plate 3.1: Showing the source segregated cassava peel	33
Plate 3.2: Showing the grounded dried cassava peel	34
Plate 3.3: Showing the composite sample of dewatered sewage sludge	37
Plate 3.4: Showing the isolation of acid-producing strain of <i>Aspergillus niger</i> and <i>A</i> .	tereus.47
Plate 3.5: Showing the formation of zones around the <i>Aspergillus</i> spp. growth	51
Plate 3.6: Showing the bottle containing the substrates and inoculum incubating in a controlled incubator for 12 days	-
Plate3.7: Showing the fungal and crude fermentation extracts used for the her removal.	

LIST OF FIGURES

Figure 3.1: The study area where the sewage sludge is being collected
Figure 3.2: Standard plot used for the estimation of sugar utilization
Figure 33: Standard plot used for the estimation of citric aci production
Figure 4.1: The total titratable acidity of <i>Aspergillus</i> spp. fermentation for citric acid an itaconic acid
Figure 4.2: The concentrations of sugar of <i>Aspergillus</i> spp. fermentation for citric acid an itaconic acid
Figure 4.3: The concentrations of acids of <i>Aspergillus</i> spp. fermentation for citric acid an itaconic acid
Figure 4.4: Optimum heavy metal removal for <i>Aspergillus niger</i> extract90
Figure 4.5: Optimum heavy metal removal for <i>Aspergillus tereus</i> extract
Figure 4.6: Effect of pH on metal removal efficiency at room temperature on day 1113
Figure 4.7: Effect of pH on metal removal efficiency at elevated temperature on day 1114
Figure 4.8: Effect of pH on metal removal efficiency at room temperature on day 311:
Figure 4.9: Effect of pH on metal removal efficiency at elevated temperature on day 3116
Figure 4.10: Effect of pH on metal removal efficiency at room temperature on day 611
Figure 4.11: Effect of pH on metal removal efficiency at elevated temperature on day 6118
Figure 4.12: Effect of pH on metal removal efficiency at room temperature on day 9119
Figure 4.13: Effect of pH on metal removal efficiency at elevated temperature on day 9120
Figure 4.14: Effect of pH on metal removal efficiency at room temperature on day 1212
Figure 4.15: Effect of pH on metal removal efficiency at elevated temperature on day 12122
Figure 4.16: Effect of pH on metal removal efficiency at room temperature on day 112.
Figure 4.17: Effect of pH on metal removal efficiency at elevated temperature on day 1124
Figure 4.18: Effect of pH on metal removal efficiency at room temperature on day 312:
Figure 4.19: Effect of pH on metal removal efficiency at elevated temperature on day 3120
Figure 4.20: Effect of pH on metal removal efficiency at room temperature on day 612
Figure 4.21: Effect of pH on metal removal efficiency at elevated temperature on day 6128
Figure 4.22: Effect of pH on metal removal efficiency at room temperature on day 9129

Figure 4.23:	Effect of pH on metal removal efficiency at elevated temperature on day $9 \dots 130$
Figure 4.24:	Effect of pH on metal removal efficiency at room temperature on day 12131
Figure 4.25:	Effect of pH on metal removal efficiency at elevated temperature on day 12 .132
Figure 4.26:	Effect of contact time on copper removal from institutional sewage sludge at room temperature for citric acid
Figure 4.27:	Effect of contact time on Zinc removal from institutional sewage sludge at room temperature for citric acid
Figure 4.28:	Effect of contact time on Chromium removal from institutional sewage sludge at room temperature for citric acid
Figure 4.29:	Effect of contact time on Nickel removal from institutional sewage sludge at room temperature for citric acid
Figure 4.30:	Effect of contact time on Lead removal from institutional sewage sludge at room temperature for citric acid
Figure 4.31:	Effect of contact time on Copper removal from institutional sewage sludge at elevated temperature for citric acid
Figure 4.32:	Effect of contact time on Zinc removal from institutional sewage sludge at elevated temperature for citric acid
Figure 4.33:	Effect of contact time on Chromium removal from institutional sewage sludge at elevated temperature for citric acid
Figure 4.34:	Effect of contact time on Nickel removal from institutional sewage sludge at elevated temperature for citric acid
Figure 4.35:	Effect of contact time on Lead removal from institutional sewage sludge at elevated temperature for citric acid
Figure 4.36:	Effect of contact time on Copper removal from institutional sewage sludge at room temperature for itaconic acid
Figure 4.37:	Effect of contact time on Zinc removal from institutional sewage sludge at room temperature for itaconic acid
Figure 4.38:	Effect of contact time on Chromium removal from institutional sewage sludge at room temperature for itaconic acid
Figure 4.39:	Effect of contact time on Nickel removal from institutional sewage sludge at room temperature for itaconic acid
Figure 4.40:	Effect of contact time on Lead removal from institutional sewage sludge at room temperature for itaconic acid
Figure 4.41:	Effect of contact time on Copper removal from institutional sewage sludge at elevated temperature for itaconic acid

Figure	4.42:	: Effect of contact time on Zinc removal from institutional sewage slud elevated temperature for itaconic acid	_
Figure	4.43:	Effect of contact time on Chromium removal from institutional sewage sluce elevated temperature for itaconic acid	_
Figure	4.44:	Effect of contact time on Nickel removal from institutional sewage slude elevated temperature for itaconic acid	_
Figure	4.45:	Effect of contact time on Lead removal from institutional sewage slud elevated temperature for itaconic acid	_

LIST OF ACRONYMS

- AAS Atomic Absorption Spectrophotometer
- ANFE Aspergillus niger Fermentation Extract
- ATFE Aspergillus tereus Fermentation Extract
- CCA Commercial-grade Citric Acid
- CIA Commercial-grade Itaconic Acid
- CFE Crude Fermentation Extract
- EC European Union
- NESREA National Environmental Standards and Regulations Enforcement Agency
- UNEPA United Nation Environmental Protection Agency
- USEPA United State Environmental Protection Agency
- WHO World Health Organization