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CHAPTER ONE

INTRODUCTION

1.1 Background of the Study

The ultimate aim of the field of numerical analysis is to provide convenient methods for
obtaining useful solution ©f mathematical problem and for extracting useful information from

available solution which are nop expressed in traceable forms such problem may each be

formulated.

This formulation may correspond exactly to the situation which it is intended to describe.
more often. it will not. Analytical solutions. when available, may be precise in themselves,
but may be of unacceptable form because of the fact that they are not amendable to direet
interpretation in numerical terms. in which numerical analysis attempted to derive method of

interpreting them into numerical terms. Hildebrand (1974).

With the coming of the technological age problems have required solutions which have not
yet been solved by great mathematician vet which technology has demanded solution. For
example the weather on the earth surface is governed by complicated mathematical equations
which have not been solved to date analytically. The answer of this seemingly impossible
situation is to accept an approximation of the required solution rather the exact answer. The
accuracy depends on the method of approximation proposed. This leads us to the definition of

numerical analysis i.e the study of behavior of numerical method. Morris(1983),

1.2  Aims and Objectives of the Study

Arm of this project is to solve and compare Tavlor's series method and modified Euler's

method.
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The objective i = - 3 :
) of this project is to know which one of them has a lesser error and gives a

better approximation,
1.2 Scope and Limitations of the Stu dy

In thi j ’ - : ot SR .
his project we shall use some computational technigue that will minimize errors we may
encounter during numerical computations, we shall therefore restrict ourselves on those

technique for solving ordinary differential equation, since this area is very wide.

Some methods are better than others. that is some methods are more efficient than others (in &

less number of iteration. it will converge 10 the actual solution)

1.3 Definition of Some Basic Terms

1.1.1 DEFINITION: A differential equation is an equation which involves differential co-
efficient and also differential equation are subdivided into two types namely
i ordinary differential equation and

ii. partial differential equation

Ordinary differential equation involves only one independent variable (and only ordinary
differential co-efficient). Hence. any function of x,y and the derivatives of y up to any order

such that.

dy dx
(s e )

This defines ordinary differential equation for y.

3
d dEY - cf dl 3 2 X > f - )
Example: _ﬁ =3 (b) = + y=sinx © (dx) y” x are all ordinary differential equation.

Dass (2006)
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1.4.2 Definition

A dependent variable of an ordinary differential equation is tlﬁ
Example: if & =
EES

2x then y is the dependent variable that is a function

1.4.3 Definition
An independent variable is a variable with respect to which the differentiation is pe 9{%
Example: :—i = 2x. x is the independent variable

1.4.4 Definition

The order of an ordinary differentiation is the order of the highest differential

present in the equation consider.

& 99 19 _ qimwt (1)
d? i dt ¢

Cos x—j—i—f +5in X (%)Z'f 8y=tanx (2)
1 () - (L) ®)

The order of the above equation is 2.Dass (43)
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The degree of i ; . .
gree of an ordinary differential equation s the degree of the highest derivation after

removing the radical sign and function

The degree of eqn (1) and (2) is 1.And the degree of eqn (3) is 2.

1.4.5 Definition

A differential equation is said to be linear if it is of the first degree in the dependent variable

and all its derivatives.
dy
Exal I=+py=¢
mple & TPY=q

Where P and Q are functions of x (but not of ¥) or constants.

Example:
dy _ .
L; 3o sinx
dy
Bl ooty i, €
2 = 2x

1.4.6 Definition

A function f(x.y) is said to be homogeneous of degree n if f(Ax, &y) = A" f(x.y) or

(MOey)dy + N(x.y)dx =0) otherwise it is called non-homogeneous.

Example of homogeneous equation are:

di =
33; 17y =0

ele
® <
N
et
[
(=}
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Example of non-homogeneous €quations are:-

ay _ 5,
dx o

L O S
d‘-rE\ 17y =2x

Error = true value — Approximate value

For instance. the true value of m = 3.141592653 while the approximate value is 22/7 =

3.142857143.
. ERROR = 3.14139654-3.142857143
Error = -0.00126449

Relative error: the relative error of a numerical measurement or calculation is the numerical
difference between the true values of the caleulation and the approximate value divided by

the true value.

Let Vi be the true value. let Xn be the approximate value.

vt—-Xn
vVt

Then the error = =
. To find the relative error of # we will have 3.141592654-3.1412857143/3.141592654

Relative error = 0.0012644896713.i4i5‘)2654

=0,0004025

=0.0004
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Percentage error: this is s
re 1515 simply define as the relative error multiplied by 100 wsing the
example on the x the Percentage error

i.e percentage error = relative error x 100

=-0.0004025 x 100
=0.04%
Absolute error: this is the absolute value of the error.

Le. if error = -0.00126449,
Then absolute error = 1-0.00126449 = 0.00126449 1brahim (2006).

Having seen the types of error we have in numerical analysis. We will proceed 10 look at the

different sources of error in numerical analysis which we are likely to encounter.

1.4.7 Definition

If the initial condition are not known exactly (or must expressed in exactly as a terminated
decimal number). The solution will be affected to a greater or lesser degree depending on the

sensibility of the equation. Highly sensitive equations are said to be subject to inherit

instability Jain (1984).

1.4.8 Definition

: ite number of decimal places, our computations are subject fo
Since we can carry only a fini

i i atter whether we round or whether we chop off.
inaccuracy from this source nom
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Carrying more decimg| | i
ac i i
Places in the Intermediate caleulations than we required in the final
answer is the answer is th
4 . Pl
flormal practice to minimige this. but in length calculations this is
a source of error that is most diffj

icult to analyzed and control. Jain (1984).

1.4.9 Definition

It is convenient t i
© define a truncation error by exclusion as any error which is either a grass

EITOr Or & roun : i
d off error. Thus a truncation error is one which would be present even in the

hypothetical situation in whi S . 4
Yp! Situation in which no “mistakes” were made, all given data are exact. and

infinitely many digits were retained in all calculations. Frequently a truncation error
corresponds to the fact that, where as an exact result would be affordable (in the limit) by an

infinite sequence of steps, the process is truncated after a certain finite number of steps.

Hildebrand (1974).

Having seen the definition and the example of ordinary differential equation we can say that
ordinary differential equation can be classified into linear and non-linear. Their degree could

also be of first degree or any other degree higher than one.
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CHAPTER Two

LITERATURE vigw

2.1 Introduction

Numerical soluti : s ’ :
©on of ordinary differential equation is the most important technique cver

developed in contj : , : : : ¢
P Ntnuous time dynamics, Since most ordinary differential equation are not

lubl i , tag i % s
soluble analytically, numerica] integration is the only way to obtain information about the

frajectory, Many different methods have been proposed and used in an attempt to selve

accurately, various types of ordinary differential equation. All these discredited the

differential system to produce a difference equation or map Ochoche (2007).

The methods. obtain different maps from the same equation, but they have the same aim: that
the dynamics of the maps. should correspond closely to the dynamics of the differential

equation Julyan and Pirol (1992} and Ochoche (2007).

With the advent of computer. numerical method is now an increasingly attractive and
efficient way to obtain the approximate solution to differential equation that had to prove

difficultly even impossible to solve analytically Ochoche (2007).

Abhulimenand Otunta (2006) talked on the stiff ordinary differential equation: most

conventional numerical integrations solvers cannot effectively cope with stiff problems.

y! = f06y)y (x0) = Yo xe(a,b)...... st
As they lack adequate stability characteristics. for this reason, there has been research
s they lac )

tention f on this class of stiff problem. Several authors including Jain (1972), Enright
attention focus Bl

(1974), Jackson and kenue (19740, Fatokum (2000. 2001, 2002) Xiao et al (2001), Fatunla
, Jackson
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(1976,1980), etc., haye d
j eveloped A-staple o gorithms for solving stiffs initial value problem
in ordinary differentia] €quations.

Liniger and Will ; N
g oughby (1970) introduced the concept of exponentially fitting and suggested

three new A-stabl ! _
aDte schemes With k=], However, cash (1981) derived an exponentially fitted

multi-derivati : ’
uiti-derivative, multi-step methog of order up 1o 5 with the step number k=1 and 2. A

numerical i icati
nvestigation of those methads shows that all are A-stable for all close firting

parameters.

Okunga (1994.1999) developed second derivative multi-step method order 2,4,5 and 6 fél’

stiff lupe in ODES, these methods were found to be A-stable efficient for stiff problems in

which the method applicable.

Abhulimananand Otunba (2006) developed a sixth order multi derivative method for stiff
system of differential equation which compete favorable with the other existing methods.
They also observed that for exponentially fitted problems, the methods need not to use a
small step length as it may be required by many multi step method before a good accuracy is

obtained.

Adeyemiluyi and Babatola (2006) viewed the existing one step algorithms developed for stiff

iv problems for ordinary differential equation which include:

Generalized rumge — kutta scheme by Lawson (1966)

i Implicit runge — kutta scheme by butcher (1965)

fii.  Explicit one and two stage inverse runge — kutta method by Adeyemiluyi (2005)
Th Juded that the most recent and efficient scheme for stiff ODES is the (iii) scheme
ey conclu S

d th Iso discussed its disadvantage and suggested that the implicit discretization scheme
and they also dis¢ s dIs

ca isadvantages They also went ahead to discuss its consistenc:
dv: . Y Iso I
n take care of those dis £
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interval of A-stability i (-20,0). It wag finally

real life problems arising in Physics, chemistry indees

linear two point Byps, The result obtained in example (2)

Increases, the accuracy of the method impraves the just as the result

all, the method has been shown 1o be computationally efficient because

reasonable and easy to express. 3

In (1982), Hong yuafu introduced a rationalized Runge-kutta scheme which wa:
quotient of weighted average of several estimates of the function fix.y) genel

conventional Runge-kutta scheme to obtain a more accurate approximation.

Babatola et al (2006). in their scheme of a new one step implicit inverse Runge-ki 1
for solution of system of ODE. Concluded that the scheme is accurate, they alsa

that the new method demonstrated better accuracy in solving system of ODEs.

electrical transmission network, meter transfer, control theory and action kinetic.

Kayoed (2006) reported in his new work on an improved Numerous method than that the
method of reducing higher order ODEs to a system of first order equation, suffers some

setbacks which include increased dimension of the resulting system to be solved wastage in
ethacl

i u i nplicaticm are discussed in AWU}’e i (199 [,‘
i tational burdens and cos
computer time. compu i

2001,2002).
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A number of articles b, €en writy ution of
ritten of numerous method for a direct numerical solution o

7 o=cond order initial vatug probions of ODES of the f
€ form.

Y= &YYo =ys v (xp)=T

In which the first derivari 2
€rivative y| is absent (see lambe (1973) jain (1984) Awoyemi (1992).
Gonzalez and ARGk
nd Thompson (1997) among others. This method because in effectives or

incapable wh . ; : :
p en the problem 1o he solve involve the first derivative y1 explicitly, This is the
reason why kayoed (2006) developed a numerical method capable of handing g‘enera['swma

order IvPs of the form.
Y =f00yy Wo) =ys  yxo) =T (3

In which first derivative yl is present. Kayoed (2006) concluded that the new method is
applied to solve linear and non-linear test problems. The result obtained for problem (i) and
(ii} of the special type (1.1) are compared with Adee et al (2005). These results show better

accuracy of the new method over Adee etal.

Ochoche (2007) proposed an improved technique for the computation of the numerical
solution of IvPs. The method they improved is the modified Euler’s method in which when

effected a much better performance was gotten and the improved Euler is also of order two,

Richards (2005) also used different numerical method to compete ordinary differential
quation. In his result. it is observed that Adams Bashforthmoulton method is more accurate
£ ! 5

foll Ay miles method. Then runge-kutta, then modified Euler’s method, miles, method
ollowed by :

i F edictor character methods while Runge-tutta is not.
Buler and Euler's method area all pr

Ibrahim (2006) also in his lecture note did the comparative of Euler’s method modified Euler
rahim a

= i i he Runge~kut a method has a
method ethod in which he fou d that t
and Runge kutta met
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approximation than madifi : ued the or
; fed Euler’s methog then Euler's method. He also sued the Taylar's
series method and Picard’s method to 5g] |
soly

© some problems of ordinary differential equation.

Uba (2008) in his lect
l | Cture note also ysed Picard’s method to solve problems in ordinary
differential equation it is observed that

5 the Picard’s method is very tedious and confusing. It
takes time and also that the accuracy increases as the order of the ordinary differential
equation increases. Theeconomical effect of the environment on the population of field mine.
He also discuss on other numerica method such as Taylor’s series method and its short
coming. Euler’s method modified Euler's method., Runge-kutta method of order 4 and their
short comings. He also discuss on the multi steps method which also include Adams moultou

method and the mine’s methad finally he summarized their comparison in the table belew:

TABLE 2.1: COMPARISONS AMONG MODIFIED EULER, FORTH ORDER

‘ RUNGE-KUTTA, MILNE AND ADAMS MOUTON METHODS TABLE.

‘i Method Types | Local Global | Function | Stability | Ease of | Recommendation
‘ errors ; error | eval/step chang.ing
| | step size
'\ Modified Singles | ") | ) 2 Good  |Good | No
| Euler step koo
| Forth order | Single | () | (h") |4 Good Good Yes
i RuneaKutta | step L
' Milne Multi | 7)Y (2 Roor | Pane No
| te
WWWW Good Poor | Yes
moulton |step | 1 1 '

2.2 Taylor’s Series Method

The Taylor’s series method has long been regarded as an efficient procedure for solving
e Taylor’s s

system of d Y ifferential € at10f Frequentty t is necessary to 5
/ T q 0
iy ordinar d

i differential system into an equivalent system. The Taylor’s coefficient for this
manipulate the differen

be simply written, However the required modification is a tedious and
modified system may be SIMPL
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1 (1984) discussed on Taylor’s serjes method and )

uation. Ibrahim (2006) in this lectures note used the

problems of ordinary differentia] equation

2.3 Modified Euler’s Method

The Euler’s method is g first order method, which means that the local erro

proportional to the square of the step size and the global error (error at a g

proportional to the step size. The Euler’s method often serves as basis to ct

complicated method.

Jain (1984) discussed on modified Euler's method of order 4 and its short

differential equation. [

Ochoche (2007} modified Euler’s method as an improved technigue for f
the numerical solution of IvPs. In which when effected a much better performance was
and the improved Euler is also of order two. Richard (2005) Euler’s method are all predicto

characters method while Runge-kutta is not.
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 The equation we'll use for this purpose (o errors.

- anthropology and the like, Ordinary differential equation arise frequently in t

Differential equations are one of the most important mathematical
problems in physical science. Historically. differential equations have

chemistry, physics and engineering. More recently. they have also arise in meg

physical system, unfortunately. many cannot be solve exactly. This is w

numerically appropriate these methods is so important Rattenbury (200.

(2007).

-- which of these methods has less prone to error.

I. Y=y-x y0=2 [01] h=0.1
L2 y=y2+1 y©)=0 [01] h=0
5 y=ox yo=1 [01] =02

Yy y(=3 [01] h=0.1
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or’s series y (0) = 2
X => y‘ =7
| => y" =1
===
=> y“’ =1

all these values into Taylors expansion formula we’ll have

@)+

(0.1)2 0 (013 (0.1)4
9 & 24

’ +'0.005+0‘000l666666 + 0.00’00000004]6666

2.2055171
205171 x=0.1
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1.221403

(0. 1)2 (0. 1)2

1403 + 0. 1(2.221403) + —= (1.221403)+ —= (1.221403)+ —

403 + 0.2221404 + 0.006107015 +00020356716+0.00000508917
=2.649859

2.649859 x=03

=>2.349859

=>].349859

49859) + 22 (1.349859) + ‘—?;—?‘(113@&&' :

695 +0.1(2.349859) +e2 3
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= 1.491825

= 1.491825

182.5 +0.102.49125) + 22 (1.49125) + 22 (1.49125) + &

=3.14872]

y=3.148721 x=0.5
( = 2.64872

1 = 1.648721
';

= 1. 648721
i

1.648721
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¥-1= 1422118
y" = 1.422118
= 1422118

Yy = 1.422118

Z & L)
118 +0.1(2.822118) + 25 (1.822118) + €2 (1822118) +

=3.713752
3.713752x= 0.7

= 3.013752

1.013752

> 1.013752




0.1¢. 013752y 1. 22 (aw

025540

Y=4.025540 x = g

X = 3.22554
I =1.22559

1|.=‘_5 1. 22554

=3.025540 x = 0.9
=3 3.459602
1. 459602

1. 459602




e -
359602 + 0.1(2.459602) 4 0122

)= 3.359602

»

LE 3.1: THE TAYLOR'S SERIES METHODS

, 5 (1459602) 1 (©

P

i_\_J 2 2

2 | 2205171, 2205171
2205171 | 2421403 2421403
2421403 [ 2.649859 2.649859
2.649859 [2.891823 2.391825
2.891825 [2.148721 2.148721
2.148721 3422118 3422119
3422118 [3.713752 3713753
3.713752 [3.025540 1.025541
4.025540 4.359602 4339603
4359602 1.718280 4.718282

y-xy@©)=2 [0.1]h=0.]
g

Yo = hf (%o + Y1)

=E o)+ £ (Xoel , ¥ne)]
o= 217 (2o Y0

page 21 9f =

e
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(0.2) =2.421025
2421025 x,=02%p =03
2421025 + (0.1)(2.421025 -0.2)

2.6431275

) +(2.6431275 03D

1025 + 0.05((2.221025

025 +0.05(2.221025 F 2.3431275)




21025 +0.05(2.221025 -
=2.8841563
649233+ 0.05((2.349233) + (2.8841563 -0 3))

- =2.649233 + 0.5(2.349233 + 2 4841 563)

ller y(0.4) = 2.890902

=2.890902 x,=04 . =03

Yot = 2.890902 + (0.1)(2. 890902 - 0.3)
=2.890902 + 0.1(2. 890902)

& =3.1399922

890902 -+ 0.05((2.490902) * (3.1399922 - 0.5)
390002 + 0.5(2.490902 + 2.6399922)
5)=3.147447

147447 %= 05 XolT &
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6TCT!
(£10200°E)1°0 +
(0~ L10TOL' IO+

w.on_i_x Lo="% L1020 =

(856T66'T+ 08L118°7)S°0 + 08
((£70 - 856269 €)+(08£118°2))50°0 + 08L1
856769
(08211850 + 082
(90-08L11+°€)50°0 + 0841 .
L= vy

90="X 084114

08L11tg =

5;:;.” TLPPLP9 T)gg «




.2229 +0.05((3.2 12229) + (4.3334519 - 5

=4344513
44513 x,=09 Xp =1
13 +(0.1)(4.344513 - 0.9)

3+0.1(3.444513)

0.05((3.444513) * (4.6889643 - 1)

3+ 0.5(3.444513 + 3.6889643)
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(0.1)3
(2 +0

X=0.1

y' = 1010066711

y"=0.202680466

y' = 2081141719

g = | 645972955

2 0.1)*
1(0.01006671 1)+ (0.202680466) ¥ 2 (2.081141719) +




¥=1 ‘.MTMFZQ

Y= 04220753,
Y'=2.338851 1414

¥ =3.5846962¢7

(0.1)?

TS (0422072513) 1 022 5 gagg,

0.1)(1.78747156) 221 ‘“’ (0. 9967132329)#“” (3.6216805

162173)

x=05
g = 1.298431672

g = 1418637870

g = 4821822148

W= 164295007[
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X=06

Y=
3 I.-leOl]Q(,_i

y'=7.0%
) 7.038306916

"

¥ =27.3490466)

L01)°
)+ (2.008575075) + 22
2L (7.058306916) +

x=07

y' = 1.709382385

yi= 10.69439929

page 29 o &%




X=038

¥'=2.06000287

Y'=4241811273
Y= 1722136948
y" =87.8904757|

(0.1)(0.060002871 )+ 22"
T+E (4.241811273) + &
: (17.22156948) +

x=09
= v 2.587625801

Ly =6.520870007
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¥" = 2982434057

C=2Y" =y ey

.260010+(0.1)(2. (0.1)?
(0.1)( 587625801)+T(6.520870_007)+ﬁfﬁm

¥(1.50) = 1.557083

TABLE 3.3: THE TAYLOR’S SERIES METHOD

3 X Yo Y, Taylor Exact Y,

100 0.00 | 0.00 0.00 0

2. |01 0.00 l 0.100333 0.100335 2x10°
3. |02 0.100333 | 0.202707 0.202710 3x10°
4. (03 0202707 0.309331 0.309336 5x10°
5.104 0.309331 i 0.422785 0.422793 8x10°
6. |05 0.422785 0.546289 0.546302 1.3x107
7. 106 0.546289 [ 0.684114 0.684132 2.3x10°
h‘ 0.7 0.684114 0.842248 0.842288 45107
Tg. 0.8 0.842248 1.029564 1.0295639 7.5x10°
10.] 0.9 1.029564 1260010 1.2600158 1L.4x10*
1.1 1.0 1.260010 1.557073 1.557408 3.25x10°%
2.

vy [01] h=0.
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= BE (2 vy)

Bl h=d1 Xner = 0.1
Suler yoe = 0.1

Yot =0+ 0.05[1+(0.1)° +1

=0.005(1 + 1.01
M. Euler y(0.1) = 0.1005
When y, =0.1005 x,=0.1 xu =02
Yaer = 0.1005 +0.1((0.1005)2 + 1)
=0.1005 +0.1(1.01010025)

Euler ype = 0.201510025

yner = 0.1005 + 0.5 [(1.01010025) + (0.201510025)" + 1]

= 0.1005 + 0.5 (1.01010025) + 1.04060629)
M. Euler y, (0.2) = 0.203035
VWhen yo = 0.203035 %, =0.1 s =02

o = 0.203035 + 0.1 ((0.203035)° + 1)

— 4203035 + 0.1 (1.041223211)
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2) = 03071573211
3035 +0.05 [(0.041223211) + (0.3071573211) + 1]

0203035 +0.1 (1.041223211 + 1.09434562)

7 M. Euler y, (0.3) = 0.309813
When y, =0.309813  x,=03 x,., =04
Yoer = 0309813 + 0.1 {(0.309813)" + 1
=0.309813 + 0.1 (1.095984095)
Euler ya = 0.4194114095
yuet = 0.309813 +0.05 [(0.095984095) + (0.41941 14095) + 1]

—0.309813 + 0.1 (1.095984095 + 1.7590593)

M. Euler y, (0.4) = 0.423041
When y, =0.423041 %, =03 Xa1 =05

Yot = 0423041 £ 0.1 ((0.423041)* + 1)

= 0423041 +0.1 (1.178963688)

Euler Y1 = 0.5309373688

1o = 0423041 +0.05 [(0.5309373688) * (0.41941140957 + 1]
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140,10 (1.178963966 + 1.292613237)

¥n (0.5) = 0546620

hen y, = 0.546620 x,=0.5 Xn=1 = 0.6

Yot =0.546620 + 0.1 ((0.54662)% + 1)
=0.546620 + 0.1 (1.298793424)

Euler vy =0.6764993424

Yot = 0.346620 + 0.05 [(0.298793424) + (0.6764993424)" + 1]

=0.546620 + 0.5 (1.298793424 + 1.45765136)

M. Euler y, {0.6) = 0.684442

When y, = 0.684442  %,=0.6 Xp =07

Vet = 0.684442 + 0.1 ((0.684442)° + 1)
=0,684442 + 0.1 (1.46846085)

Euler vy =0.8312880851

Vet = 0.684442 + 0.05 [(1.468460851) + (0.8312880851')2 = |

— 0.684442 + 0.5 (1468460851 + 1.69103988)
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.842417 Xn =ﬂ7 X = 63

=0.842417 +0.1 (1.709666402)

er yooi = 1.01338364

Yner = 0.842417 + 0.05[(1.709666402) + (1.01338364)” + 1]

=0.842417 + 0.5(1.709666402 + 2.026946402)

M. Eulery, (0.8) =
When v, =0.842417  x,=0.7 Xy =0.8
Y1 = 0842417+ 0.1 ((0.842417)* + 1)
= (.842417 + 0.1 (1.709666402)
Euler yn = 1.01338364
Yort = 0.842417 +0.05[1.709666402) +(1.01338364)" + 1]

— 0.842417 + 0.05(1.709666402 + 2.026946402)

. Euler y, (0.8) = 1.029248

hen y, = 1.029248 % =0.8 X =09
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* 0.1 ((1.029248y « 1
48 + 0.1 (2.05935 1446)

=1.235183145

i R ]
0.029248 + 0.05[(2.05935 1446) + (1.2351 83145) +1] )

=0.029248 + 0.05(2.059351446 + 2.026946402)

M. Euler y, (0.8) = 1.258499

When y, = 1.258499  x,=0.9 x,.=1.0

Yoor = 1258499 + 0.1 ((1.258499) + 1)
=1.258499 + 0.1 (2.583819733)

Euler yu-1 = 1.516880973

Yan = 1258499 + 0.05[(2.583819733) + (1.516880973)° + 1]
= 1.258499 +0.05(1.583819733 + 3.300927887)

M. Buler ya(0.8) = 1.552736
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4: THE MODIFIED EULER'S METHOD

Tl Xo =Y, | Eulers x‘m‘ o
ﬂ ; Fomula . ¥t
0 | 0.000000 | 1.000000 | 1.100000 |01 [ 107
9.1 | 1.1005 111.010100 0201510 | 0.2 | 1.040606
0.203035 l 1041223 1 0307157 | 0.3 | 1.004346 |
4,103 0309813 \ 1.095984 1 0.419411 | 0.4 | 1.195906
-{é; 0410423041 11178964 0.540937 | 0.5 | 1292613
uus 05‘05466"0 l 1.298793 | 0676499 [0.6 | 1457651 | 0.684442
i \06]0684442 | 1465461 | 0.831288 [ 0.7 | 1.691040 | 0.842417
18 10.7 | 0842417 ‘1709666 1.013384 | 0.8 | 2.026946 | 1.029248 I.029€3_
9. ‘0.8 l 1.029248 % 9351 | 1.235184 |09 12.525677 1.258499 I:z:;;:
10.\ 0.9]1.253499\ 583820 | 1516881 | 1.0 Isaoogzs 1.552736 | 1.

|

11.] 1.0 | 1.552736

=2xy()=1 [0.1]h=02

Solution
= 2x
fdy = [2xdx
y==—rt+c¢
V= X +e

When x=ly=1c=7
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=1+02)(2) + (0.2
1+04+004

y(1.2)=1.44

y =144 -(0.2)2.4) + 027
=1 +44+048+0.04

y(1.4)=1.96

When y=19% x= 1.4
y'=2x=2‘8
y'=2=22

y=196+ (0.2)(2.8) + (0.2

=1.96 +0.56 +0.04

y(1.6)=2.56
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29 jo 6g efed

+0°0 = TL0+ FTE=

Az = (o)




THE TAYLOR'S SERIES METHOD

M“”’T"‘"‘“-‘——__Wp;_u
i"—% Exact &
. L 1.0000 | 1.0000 1.0000 f
12 | 1.0000 | 1_4400 1.4400 0
I
| 14400 |.9600 1.9600 [}
4. |16 ‘ l.%oo ‘ 2.5600 2.5600 o
5. | 1.8 | 2.5600 3.2400 3.2400 0
! e
6. | 2.0 | 3.2400 | 4.0000 4.0000 0

Ly =2x y()=1[0.1] h=02
Applying

Yo+t = ¥n = hf (¥o * Xa)

Yort = Yo = & [F ¥ + Xa) * F G X))
f(yn + Xn) = 2%

% =1,¥=]1 X = 1.2

Euler yn = 1 +0.2(2)

=11
Yo =1+ 0.1[2+ 2(1.2)]

=1.0.1[2+24]

M. Eulery(1.2) =144
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Buler o = 1.92

. Yot = (14) +0.1[2.4 + 2@
=144 +0.1[2.4 + 2.8}

M. Euler y(1.4) = 1.96

Wheny=1.96 %, =14 % =13

Yor1 = 196 + 0.2(2.8)

Euler yo =2.52

yor1 = (1.96) +0.1[2.8 + (2(1.6))]
=1.96+0.1[2.8+3.2]

M. Euler y(1.6) = 2.56

Wheny = 2.56 X, = 1.6 Xp1=1.8

Yar1 = 2.56 +0.2(2(1.6))

=2.56+02(32)

er ynrl = 3.2
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%@3.1[3.2 +2(1.8)]
+0.1[3.2 +3.6]
er y(1.8)3.24
eny =324 x,=18 x.,=
et = 324+ 0.2(2(1.8))
=324 +02(3.6)
Euler yai = 3.96
Yoo =34 +0.1[3.6 + (2(1.8))]
=324 +0.1[3.6+4)]

M. Eulery(2)y=4

20

TABLE 3.6: THE MODIFIED EULER’S METHOD

Page 42 of 62

Y Euler’s Formula | x4 Modified | Exact
Euler
Yourl
0.000000 1.100000 0.1 1.100500 | 1.100335 | -1.65x10°
4
1.1005 0.201510 0.2 0.03035 | 0.203710 :3.25)(10'
0.203035 0307157 03 0.209813 | 0.309336 ;4.79)4]0'
e e
2 03 0.309813 0419411 0.4 0423041 | 0422793 | -248x10°
R 2 - I
5 3 30810
0.423041 0.540937 0.3 0.546620 | 0.546302 43 X110
| i e L
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[0.0Th=0.1

Taylor's series

=y=1
yisyes
i el
yr=y" =1

(© 1) Ga? 1) Lo

y=1(0.1=— -

=] 4+0.1+0.005+ 0.0001666666 + 0.000004 16666
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T~
5
=
=
G
~
=
=

¥ = 1.1051710

y' = 1.1051710

= 1.1051710

¥=1105171+0.1)(1.105171+ %2 (1.105171) + O (1.105171) +£‘?2'—’4’—‘(1_1U.5-.
=0.105171 +0.1105171 +0.005525855 + 0.00018419516 + 0.00000460487

Y(0.2) = 1.221403

Wheny=1.221403 x=0.1

y' =y = 1221403

g =y = 1221403

yr =y = 1.221403

¥y — 1.221403

L1 a1 B
y= (| 221403+(0.13(1.221403)+220 (1.221403) + O (1221403) + 5 (1.221403)

¥(0.3) = 1.349859

 Wheny= 1349859 x= 0.3
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> 1.349859

¥ = 1.349859

(7

Y => 1.349859

(

y = 1.349859+(0. 3408501017 o ‘
(0.1)(1.349859)+ 2 (1.349859) + 27 (1.349859) +

y(0.5) = 1.648721

Wheny = 1.648721 x=0.5
y' =y => 1648721

y =y = 1.648721

Y=y = 1648721

yr=y" = 1.648721

y = 1.648721H0.1)(1.648721) - (1.648721) + 017 (1. 648721) + O (4 648721)

y(0.6) = 1.8221 19

When y = 1822119 x=06

y=y= 1.822119
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822119

= 1.822119

822119+(0.1)(1.822119)-225 (1 822119) + OO (1 122118 4

¥(0.7)=2.013753
Wheny =2.013753 x=0.7
y'=y = 2013753
" =y = 2.013753
y" =y = 2.013753

=y = 2013753

(0.1)° (01)
y=2.013753+(0.) 013753)#‘& (2013753) + &L (2.013753) + - (2.013753)

¥(0.8) =2.225541

When y =2.225541 = 0.8
y =y = 2.225541

yl=y = 2225541
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‘ 4t+{n.|)(2,22554n+9§f(2.225541}+*QE?: .

Y(0.9) = 2.459603
When y =2.459603 x=009
y' =y = 2.459603
y' =y = 2459603
y"=y" = 2.459603
= 2.459603
y = 2.459603+(0. 1)(2.459603)+22 (2.459603) + O (3 459603) + nL (2.459603)
y(1.0) = 2718281
= 12155
gt = 12155 +0.05(1.105 + 1.12155)
4(0.2) = 1.221025
When ¥n = 1.221025 xn = 0.2 Xp1 = 0.3

o = 121025 +0.1(1.221023)
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¥n = 1490902051 x,=03 x,., =04
= 1.49090205 1 + 0.1(1.490902051)
=1.639992256

Ynet = 1.639992256 + 0.05(1.6399922356 + 1.639992256)

y(0.5)= 1.647447

When v, = 1.647447 x,=0.5 X4-; = 0.6

Yooy = 1.647447 +0.1(1 64744766)
=1.812191443

ye1 = 164744766 + 0.05(1.64744766 + 1.812191443)

y(0.6)=1 820428676

When y, = 1.820429 X = 0.6 xps1 = 0.7

Yor1 = 1.820428676 + 0.1 .820428676)

=72.002471544
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When y, =2.011574 x, = 0.7 y, =08

Y1 = 2.011574 ~ 0.12.01 1374

=2.212731036

¥(0.7)=2.222789
When ya =2.22278924 x,= 0.8 x,.1 =09
Yaer = 2222788924 + 0.1(2.222788924)

= 2445067816

Vet = 2.222788924 + 0.05(2.222788924 +2.212731036)

=2.445067816
When y = 0.100333 x=0.1
y=y+l = y'= 1010066711
y'=2yy' =  y'=0.202680466

ey = y'=2.081141719

Page 50 of 62

Yorr = 2.21273105687 + 0.05(2.212731036 + 2.212731036)




y!\ =
: ’64597295_5:
1006671 1,012
466) .. 01y
- )+

92 +0.05 (2.22>
(2.222788924 . 244506816

45681761 X=0.9

L (R

681761 +0.1(2.456181761)

761 + 0.05(2.45681761 +2.701799937)
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| 1.015000

125500 | 02 |

.'5: —-—__k'__‘-_i-—‘_;‘;--;

id I

2 P02 s |, | ’

| | 1349233

v | ——— |

L[ 1349233 | : i

_: 233 L4856 |04 |y 450056 ‘Ti ]
e =1 1490502 | 1491838 f)mm
i { T ————L

- 1 1.490902 | | 63999> < i

- - -0 i 0 ! | |

4 _H__—;_ = L8I2191 | 647447 | 1648721 !|27,».-10*‘
£ ; s ="

647447 , L8I2191 0.6 1812191 | 1820429 [1.822“9 Jl@xm“
:l-'«-—*.._i__f‘,ﬁ_._. S ——— |

| 1.820429 {2.002473 0.7 | 2.002472 i2.0115?4 r2.033753 lznaxm“'
i | | | J
£ 5 ! | \[ [ )
B 12.011574 ' 2212731 |08 .-"’|273f | 2222789 | 2225541 1 2.753x10
: ‘ i ‘ S9603 | 3.421x10%
12220789 | 2445068 |09 o 2445068 | 2456182 | 245960 [

| 2718282 | 4201107
o 5701800 | 2714081 |2.718282 |

[ 2.456182 | 2701800 10 |2 | ler{_ﬁl#_ﬁ_
: B -

1 |

: | ——
\‘iv': | .__,_,(L___,____Lr

‘)7 #"7__—___-!—_’—4__/—7){
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Errm-
—+ 2000009
| 2205009
i
|
— | 2421008
: iL e )
2649859 56055, lo |
: : el 2649233
2891825 |1 g9)g05 0
‘_‘Tﬁ‘:ﬁ“h‘_ﬁ 12890900
3.148721 | 314872 :
u?_ﬂ_yf — 3147447 0.010339
|

Ll 3422119 ;'3‘432”8 ‘;_!_Wi-ﬁ‘“gﬂmsn J0.011736
8. [3.713753 | 3.713754

P2l N0 3700017
9. ]4.02554] 4.0255.&;_‘1*\71"(1._(, Lq‘(nzz')g
| i
350603 4359602 1ni0-6 | asaasis
1. |4718282 34.7f8280 06 4720187 | 171x104

TABLE 3.9: COMPARISON BETWEEN TAYLOR'S SERIES AND MODIFIED

EULERS METHODS

e . |
I | l : ] M. | Exact
r : Modified | Error |
aylor's Y, | Brror .

| w
Euler’s
- t's
| Taylor's | Buler's |

0 : f'!-“““_‘_',‘,"L_ - -1.65x10-4 |
| l \r-n o In.mu;gu;_;-s;z5xmf4
T——y J‘ . |‘n 203035 j_._4,79x]0_4
0.202707_,,_,‘1,}.\;Wv — 3:,-'-?-;‘&&4”
0.309331 J‘ 55l (}—:, |‘ | .
106 !
71875“ 5 | 0.540020 | ;}E,\‘xlﬂ-tl
”_r_l;jxrl(l
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| 0.6841 14
0.84224¢
1.029564

1.2600¢

1557073

£ 3.10: COMP.-\RIS()N

\LL‘MO

—l,

Bl 1029248

4

—

| 1253499 :
|3,

gsf‘f,l 09

1
L 1552736

BETWEEN TAYLOR'S SERIES AND

Modified
| Tavlor's Euler's

0

0 )

0

256

5 P
s 324 0 f ;
6 | 4.00 Lo 1 4.00 Lo 400 S
& 2.0 | 4.

_ .
TABLE 3.11: COMPARISON BET

EULERS METHODS

Error

| Liosi71

1.221403

avlor’s
Taylors.

EEN TAYLOR’S SERIES AND MODIFIED

| Error
| Euler’s

|-l‘vlodiﬂcd Fuler's

| 1.65x10-4
! RO —

[lgeso0 o ——
1 4.79x10-4
| cogmms . AR
| 109813
of 62



Y10’ serjeg method has g petrer approxim

0° while the modified Eyler's 1,

ethod has the crror of 0.017095,

K at example 2 we wil| find out the Taj)

1S series method with an error of 3.

3 here we notice that the modified Euler's method has a better approxin

0 the previous example. This is because the order of x has increased.

3 we find out that both the Taylor's series method the method Euler’s method
has the same result which makes the error be zero (0). This is because

i ¢ hod is also of
vo and we k that the modified Euler’s met
L ion i der two and we know
| équation is of ori

t them to be exact. Since the Taylor’s series method is of order
we should expec

ation is of order two.
ld not expect less because the equatton is ©

: { ion with an error of
-oc method has a better approximati
lor’s series
ample 4. The Tay

4.201x10°

i3 i as a bette
ay ries meth

L|LILiL il ylor's se

: Y t od h

s libert 0 Co 1 e 14a

Fuler’s method.

- moditied
compared 10 the md
d less error







2l equation. A these were (i

field of numerical analysis w ere reviewed. Afier many obse
mendation were made.

2 'ing lems
u erical a lﬂf}‘Si‘a is concer ed w th solving “hard b
n, since num proble

ast part of cha pter three it
h nalytic me od. Frol he last p 5
néa
Ic EE‘I“} tha a
y or more eff Kl

imati ith least error.
hest approximation with least errol

sives the
the Taylor’s series method giv

mendation

weial scientists, engineers
i gES [ sOoCldl S
are; VErd jimportant A
o . jses especially in

i s : ich arises oSy
ary differential €4 e problems whic

s [ield three

i is field
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general ¥
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egbetade (2006) deseribe and applieq 4 Power

nd Babatola (2006 viewed the existing one spep algorithms developed for stiff
ems for ordinary differentjal equation

enelop for stiff in problem for ordinary differential equations by adevemilli

ola (2006)

First Course in the Numerical Analysis of Differential Equations. Cambridge
ty Press, 1996. ISBN 0-521-33376-§ (hardback), ISBN 0-321-55635-4

ick).

stu 5 i atics
d undergraduate and pns(gmdu;lic students  in mathematics,
i erg are =
eting advanced underg

d L e § =
1scusses ri rii differential equs

al part | [
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