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ABSTRACT 

A fornalism for energy dissipation in physical systems using 

coupled oscillators is hereby presented. The ncdel deronstmtes 

energy transfer frcm a free translational notion of a centre of nass 

into intrinsic nodes represented by four oscillators of the same 

force constant. First, from the classical energy of the system, the 

kinetic and potential energy rratrices are deduced. These rratrices 

are used to transform the natural rn::x:les of vibration into norrral ' 

ooordinates which decouple the vibration into the various nodes with 

particular frequencies. This transforrration has been clone through 

the application of Lagrangian dynamics. A classically decoupled 

total Hamiltonian obtained is written in tenl6 of its quantum mechanical 

equivalence. The time-independent Sc:hr&!inger's equation applied to the 

decoupled Hamiltonian of the system quantizes it, giving the usual 

quantum nechanical eigenvalues and eigenfunctions for both intrinsic 

and translational motions. 

Collective amplitudes of the rotion, or the dissipation functions 

of the internal excitation energy, obtained as a rrultiple integral in 

terms of the translational and intrinsic wave functions is solved 

f analytically exactly. 

11 Numerical values of the normalized collective amplitudes have 
,, 

been C0111p.1ted and examples of probability distributions for the 

intrinsic excitation are presented gn'lphically. 
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CHAPl'ER ONE 

Itn'ROOOCTION 

A ruclear i:henanenon, not yet well understocx!, wch plays a 

very important role in the field of fusion and fission dynamics is 

the dissipation of energy or friction. By dissipation we irean the 

oonversion of the kinetic energy of relative notion into other degrees 

of freedom, for example intrinsic excitations (Mshelia et al, 1975, 

1981). D..iring the historical development of quantum mechanics there 

has been little interest in a fonralism for systems with dissipations. 

This is because nost quantum mechanical analyses deal with microscopic 

phenanena, i.hile dissipation is a macroscopic concept. However, there 

has been some discussicn of dissipation in quantum mechanics in 

general, and with reference to the hanronic oscillator in particular. 

One method (Kanai, 1948; Kerner, 1958; !:>'tevens, 1958) starts with the 

classical equations of notion for a system with dissipation due to 

velocity-dependent force, finding a Lagrangian which leads to these 

equations of motion, and then quantizing it by conventional formal 

methods. This method has been sh= to be unrealistic (Senitzky, 

1960) and cannot describe a true physical system with quantum mechanical 

properties because it leads to the violation of Heisenberg's uncertainty 

I, principles. The other method consists of considering the dissipation 

as being due to the coupling of two systems, the undamped hanronic 

oscillator and the system which produces the damping. Similar systems 

considered in classical physics are the folJowine: whm cle.1J inc with 

dissipation in an electrical system specified by a value for the 

nsistance, or dissipst:im in a mechanical system specified bY a value 

of the coefficient of friction, one is really corcerned with the 

im:eniction of tw:> types of systems, one is the hanronic oscillator 
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� cne wmrt:a to describe canpletely, and the other a canplicated 

system - the loss mehcanism - "1ich cne can describe approximately 

Saie attempts oo the treatment of dissipation for nuclear systems 

have shol.a-t that the enere;y of collective degrees of freedom fa 

OCX!Verted into intrinsic excitation energy (Swiatecki et al , 1972). 

For example, in deep inelastic reactions, the heavy ions lose their 

total kinetic energy and are repelled only by their Crulanb interaction, 

indicating that the kinetic energy of relative notion has been dissipated 

into intrinsic degrees of freedom. Many authors have used frictional 

forces in order to describe the kinetic energy loss theoretically 

(Bass, 1980). Beck and Gross, 1973 have, in a semi-classical treatment 

given a relatiooship between the frictional force, acting between n.u 

ioos rroving on classical omits, and the inaginary optical-m:xlel potential., 

More recently Glas and Mosel, 197� have mnnerically denonstrated the 

effects of friction in heavy-ion reactions. By using the Landau-Zener 

approxination, these authors calculated the probabilities for inelastic 
16 

processes and fusion for a head-on collision of the 160 + O system. 

This work is Pr?llising because it has the following features: the 

inelastic excitations occur at the rearrangement point of nuclear shells, 

which varicG w.i.th Ll1c nu:.;:.; uf Lhc nuclei. 'l'hiu ruu.i.u:; var.i.es a:; 

R = r A113 
with r = 0.9 fin according to the two-centre shell m::xlel 0 0 0 

(Glas and l'bsel, 1974). Also various studies have been nade with 

·respect to a microscopic and collective description of nuclear-energy 

dissipation (Hasse, 1978; Gross and J<alinCMSki, 1978). The varioos 

methods of appruach include time-dependent perturbation expansions 

(Beck and Gruss, 1973; Hasse, 1979), linear response theory (Hofnann 

and Siemens, 1976, 1977), quantal nester equaticns, Fokker-Planck equation: 
randa!Hnatrix theory for canplex ruclear reactions and time-dependent 
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AJl.llllber of CXJJq>licated oscillatory systems can be analysed in 

1:emS of simple cries by ccnverti.ng to normal l!Pdes of vibraticn 

i.henever the interparticle fozx:es are linear functions of the I"elative 

displacements. These nornal m::x:les are equivalent to independent 

hazm::nic oscillators. The one-ctimensiona.l harmonic oscillator is important 

for the quantum mechanical tI"eatment of the vibrations of atoms in rrolecules 

and crystals or nuclear vibrations. It is also important in the study 

of inelastic reactions between heavy ions whet'e the energy of the 

collective degree of freedom is converted into intrinsic excitation 

energy (Mshelia et al, 1975). 

In this work we pt'esent a rrodel for energy dissipation based on 

quantum mechanics, with sorre classical backgra.md theory. Dissipation 

is considet'ed as due to the coupling of collective degrees of freedan 

to intrinsic excitations. A simplified model of four oscillators 

coupled to a degt'ee of freedom of fzx:e motion, which can be solved 

exactly by analytical methods, is hereby described. This is an 

extension of a l!Pdel developed by Mshelia et al, 1981. This simple 

nPdel can be extended to a mot'e I'ealistic but canplex case of heavy 

ion collision. The four oscillators I'epresent intrinsic degI"ees of 

freedan relative to a fifth particle whose motion is translational only 

The l!Pdel is simple enaigh and has been solved exactly by analytical 

methods. 

In Chapter �Jaescription of the l!Pdel of fa.tr oscillators 

crupled to a free irotfon is made using classical mechanics. Nonral 

coordinat es are obtained for a linear vibration of five particles. 

'lhese coordinates decouple the vibrations into different nodes of 

mticn. A decolpled Hamiltonian is tlus obtained. In O<ipter Three 

te obtain the quant:un mechanical equivalence of the total Hamiltonian 
beq split :in'l:IO two parts: collective and intrinsic Hamiltatlans. 'lhe 
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indoor ....... SchrOclinger•s equatioo is awlied to these Hamiltmians 

Ind the quantum mechmical eigenvalues and eigen-functioos obtained. 

'1heae tum rut to be the usual hanrcnic oscillator eigenvalues and 

eigenfunctions. The dissipatioo function of the internal excitation 

energy is calculated by expanding the total 1oave function in the 

ortha'lormal set of intrinsic wave functions. This dissipation function 

or the collective amplitude is solved analytically exactly. 

In Chapter Four the result obtained in Chapter Three is 

to the model. We canp_1ted some numerical values of the collective 

amplitudes and presented graphical examples of probability distributions 

for the intrinsic excitation. Finally in Chapter Five conclusions and 

further �Ii< on the m:xiel are proposed. 
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2.1 'mE �ICAL PROBl.ll1 
2.1.1 Linear Vibrat� of Five Particles 

The model consists of five particles on a straight line 

and only vibrations along the straight line joining the particles 

� coosidered. The potential energies of the particles are 

approxinated by assuming fou� springs of the sarre force constant 

c joining the four particles ;)f 1-.he same mass, m, to the central 

particle of ness M. The coordinate Z denotes the positioo of 

the particle of mass M relative to which the potential energy 

of the system is determined. 

The kinetic and potential energies are thus given by: 

T = �rroti + 'mX� + �not� + 'm,:ct+ �Mi z 

..tlere :X:. , i = 1, 2, 3, 4, and Z are velocities. 

]. 

V = !c[(x1-z>2 + (x2
-Z)2 + Cx3-Z)2 + (x4-Zl2] 

�[>q+x�+x�+x4+4Z2 - 2Cx1+x2+x3+x4lZJ 

Depressed in natrix form, 

m 0 0 0 0 *' 1 
0 m 0 0 0 *2 

T = l ( 0 0 m 0 0 ., � X3 

0 0 0 m 0 *4 
0 0 0 0 M z2 

-----

(1) 

(2) 

(3) 
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2 xl 
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0 

0 

-x1z 

c 0 

0 
2 x2 

0 

0 
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0 

0 

0 
2 X3 

0 

-x3z 

0 

0 

i(x1x2x3x4Z) � 0 

c 

0 

0 

c 

0 

0 

0 0 0 c 

-c -c -c -c 

0 

0 

0 
2 X4 

-x4z 

-c 

-c 

-c 

-c 

4c 

-x1z 

-x2z 

-x3z 

-x4z 

4z2 

xl 

� 
X3 

X4 

z 

We denote the kinetic and potential energy natrices by 

[Tij] 

and [Vij] 

m 

0 

0 

0 

0 

c 

0 

0 

0 

m 

0 

0 

0 

0 

c 

0 

0 

0 

m 

0 

0 

0 

0 

c 

0 0 

0 0 

0 0 

m 0 

0 M 

0 -c 

0 -c 

0 -c 

0 0 0 c -c 

-c -c -c -c 4c 

(4) 

(5) 

(6) 

These matrices are obtained directly by inspection of equaticns (1) and 

(2) or on applicaticn of the Lagrangian equation of classical rrechanics, 

d (�) _ aL 
at" aq aq 0 (7) 

.,_.. L = T - V and q is the first derivative with respect to 
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We see that the kinetic energy matrix is diagonal mile 

the potential energy natrix is nondiagonal die to the prod.lets 

x1Z, 'X.i.Z, x3z, and x4z. These off-diagonal terms give rise to 

the ccupling of the collective and mtrinsic m:>tions. In the 

theory of vibratioos it is possible to fmd a transforneticn 

to nonral coordmates. These coordinates are uncoupled, 

thereby making the problem completely sep.>rable mto independent 

notions, each with a particular normal frequency. We present 

this in the foregoing sections. 

2 .1. 2 The Eigenfreguencies 

By considering the case of snall oscillations about 

positions of stable equilibrium and applying the Lagrangian 

formalism cne obtams the eigenvalue equaticos from which the 

e:igenfrequencies are calculated. These eigenvalue equations 

are given by 

5<vij - w2Tij> Aj = o (8) 

\Jlere V ij and T ij are the potential and kmetic energy 

1113.tri.x elerrents respectively. The direction of the line 

along l<k!ich the oscillations take place is the direction of 

the vector A i.bose scalar components are � . Assuming the 

non-trivial case, 1J1ere A. � 0 , the f x f rratrix 
J 

[V1• .) - w2[T .. ) .is singular so that the secular 
J l.J 

determinant 

c1et c[v .. J - ... 2cr .. n = o 
l.) · l.J 

(9) 

gives f values of w2 • Thus the roots of the determinant 

provide the m:xlal �encies wi of the vibretions. We label 

a JIDdal vector associated with the frequency .,i as. A
i 
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With [T . . ] and [V .. ] given by equations (5) and (6), 
:LJ :LJ 

the llDdal frequencies wi are written as: 
2 c w1 = rrt1(4m + M) = c/µ 
2 w2 = c/m 

2 w3 = c/m 
w� = c/m 

w2 = 0 5 

where µ. = rrt1/(4m + M). 

(10) 

Thus the eigenm:x:Je corresponding to the eigenfrequency w1 
describes the ootion in which all the five particles 

vibrate about their conm:m equilibrium configuration. The 

eigenm:x1es oorrespooding to the eigenfrequencies w2 , w3 and w4 
are degenerate. The eigenfrequency w5 vaTJishes. This implies 

that its corresponding eigerurode describes a unifonn translational 

ootion of the system as a whole. This corresponds to the 

Z-cooroinate. 

2 .1 • 3 Natural l'bdes of 1-btion and Nornal Cooroinates 
We pruceed to find a transfornation to nornal coordinates 

bearing in mind that we are dealing with a system for mich 

the energy is srre.11 enough to ensure that the system does not 

depart appreciably from the equilibrium configuration. 

A l..agrangia.n system is said to be harnonic with respect 

to the set of cooroinates qj if it is of the form 

L = � � T. · q. 4: - � i: V .. q. q. 
ij :LJ i J ij :LJ .i J (11) 

� the matrices [T .. J and [V • •  ] are real, constant, 
:LJ :LJ 

eylm8tric and positive definite (Pars, 1965 and Desloge, 1982). 

The :results of motion of hanronic systerm can be sunmarized as 
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follCMS: 

Coosider a Lagrangian system of f degrees of freedom 
that is hann::riic with respect to the set of variables qi 

The system l<llose Lagrangian is given by equatiai (11) has' the 

following properties: 
(a) There is a set of possible rodes of rrotion in lotiich the 

point in configuration space q representing the instantaneous 

configuration of the system oscillates in simple harm::inic rrotion 

abrut the origin along a straight line passing through the 

origin. These rrodes of rot ion are called naturel modes of 

rrotion. The directions in q-space of the straight lines alone 

lotiich such rrotiai is possible are called rrodal directions. A 

vector f.. who:;e tl.i.r-ed.iut1 .i;; J nowl dircellon .ic; wllcd a 

modal vector. In a natural mcx:le ::if :rotion all the particles 

in the system are oscillatii\g with the same frequency and are 

either in phase or 180° out of phase with one another. 

(b) Associated with each rrodal direction there is a single 

angular frequency of oscillation "'i, called a natural or 

rrod3.l frequency. The value of a particular rrod3.l frequency 

nust be one of the f positive roots of equation (9). 

(c) If any of the roots of equation (9) is substituted into 

equatiai (8) then any vector A \otiose ccrnponents, A., satisfy J 
the resulting set of equations will be a rrodal vector, A. l. 
with ..ttich the given frequency "'i is associated. If the 

frequency "'i is unique, equation (8) will determine a unique 

one dimensicnal subspace within which Ai nust lie; that is, 

the vectm'B will all lie along a single directiai. If the 

fniqucncy 111i ia one or a uct of 1 lc.lentiml froqucnc.ies, 
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(d) Fran the set of all modal directions it is always possible 

to croose a set of f linearly independent modal directicns . 

This follows from the fact that a set of modal directions is 

linearly independent if the corres:p::>nding modal vectors are 
linearly independent. 

We can now define nonnal coordinates as follows: The 

set of coordinates corresponding to the set of orthononnalized 
rrodal vectors j\, Ai, --- , Af , designated by g1, g2, 
&f are called nonnal coorinates (Desloge, 1982). The 

t:rensfonnation is given by the equation 

11: : �. A • T·. qJ· "I' l.J •Tl. l.J (12) 

On application of this equation, with proper choice of the 

rrodal vectors, the nonnal coordinates are obtained as: 
g1 = � (-x1 -x2 -x3 -x4 + 4Z) 

� = x1 - x2 
g3 = X2 - X3 � ---- (13) 

g4 = X3 - X4 

gs = 
.. ·1 (4m + M) {mx1 + mx2 + mx3 + mx4 + MZ) 

The !*iysical rreaning of these coordinates is self-explanatory 

fran equation (13): g1 is the relative coordinate between 

z and the centre of the intrinsic coordinates at �Cx1 + x2 + x3 

g2, g3 and g4 ru:-e the relative coonl:inatcs !Jetwee11 Lhe intrinsic 

coordinates x1, x2, x3 and x4 ; and gs is the centre-of-110.ss 

coaroinate. 

2.1.� The I?ecoupled Classical Hamiltonian 

By solving s:inl.ll.taneously equations (13) we obtain, in terms 

of the nannal ooorclinates, x1' �· x3, �and Z, and lo.hen 

� into  equations (1) and (2) give the decrupled 
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kinetic and potential energies as: 

T = i(µlgl: + µ2� + µ3g� + µ4g� + µSg�J 
where the corresponding na�ses are g iven by 4nt1 

µ1 = 1iiii+M 

and 

µ2 = 3/4 m 

µ3 m 

µ4 = 3/4 m 

µS = 4m + M 

(14) 

(15) 

V = ic( µlwlgl + µ2w2g2 + µ3w�g3 + µ4w�g�) ---- (lG) 

Having obtained the decoupled energies we can now write cbYrl 

the total classical H3.miltonian as 

H = T + V 
�(µ1� + µ2g� t µ3g3 + µ4g� T µ5gS) 

+ !(µlwlgl + µ2w�g� + µ3w3g3 + µ4w�g�) (17) 

1l1Us the complicated motions of the particles have been 

transfonned into an equivalence of uncoupled oscillators, 

with one free particle, since its motion about the 

Z-coord:i.Mte iR tmnR.l.nt.i.OT1'll only with kill<'tic 0n"Tf.Y of the 

centre-of-1!laSS as ;µ5g� and frequency w5 = o . 
'Ihe solution of Schrod.inger's equation with the quantized 

Hamiltonian (see next section) is equivalent to that of a 

collectial of .independent harm::Jnic oscillators . 



CHAPl'£R 'lHREE 

3 'lHE Qt.Wm.11 HEaiANIC.AL APPROACH 
In this secticn, a quantum mechanical descripticn of rur 

roodel is presented. Here we obtain solutions of Schrodinger's 

time-indepdent wave equatioo by incol"IX'rating the classical 

fornul.ae obtained in Chapter Tuo .  A collective wave flll'lction 

obtained as a 11Ultiple integral has been solved analytically. 

'!his collective wavefunction provides the probability for 
intrinsic excitation. 

3 .1 Eigenvalues and Eigenfunctions of the total Hamiltonian 

'lhe oscillators described by the coordinates x1, x2 , 

x3 and x4 represent the intrinsic degrees of freedan and the 

translational motion described by Z represents the oollective 

degree of freedom. Thus the Har.liltonian is split into 

collective and intrinsic parts as follc:MS: 

R = Rcoll(Z) + Hint(x1, x2' x3, x4' Z) ----- (18) 

where the collective and intrinsic Hamilton operators are 

respectively defined thus: 
-h2 32 

flcoll (Z) = - 2M W 
and 

(19) 

-h a2 a2 a2 a2 
flw. t(x1, x2, x3, x4,Z> = - 2m <axr + a� + ax2 +ax' ) + 1 £ 3 4 

2c[(x1-Z)2 + <x2-z>2 + Cx3-Z)2 + (x4-Z)2] --- (20) 

Fran the coupled terms of equation (20) energy.can be dissipated 

.fron the collective degrees of freedom into intrinsic degrees 

of freecbn represented by the four oscillators. With the nonral 
coordinates the total Hamiltooian in eq.iation (18) decouples 

:i1'11:x> its no:rnal l!Pdes of vibretion. We obtain, in terms of the 

llCll1IBl coordinates, the total Hamiltinian as 
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R = - fl• c!... � + !... L + !... a2 
+ !... L + !... k> 

� µ1 3Si µ2 ag� µ3 � µ4 ag� µs ags 

+ �(µlwlgl + µ2w�g� + µ3w§g� + µ4w�g4l 

where µi are the equivalent nasses of the particles 
corresponding to the nonnal coordinates gi , i = 1,2,3,4,S 

We now obtain solutions of the time-independent 
Schrodinger's equation with the decoupled Hamiltonian, H:, 

g iven by equation (21) .  The eigenvalue equation is given by 

(21) 

R w<g1, g2, g3, &4, gs> = E w<g1, g2, g3, &4• &s> --- <22i 

Since R describes a free trenslational motion of the centre 

of mass and decoupled harmonic oscillations in the �· g2, g3 

and g4 degrees of freedcrn, the eigenvalues and eigenfunctions 

are simply obtained as 
'fl2k2 . 

Gcrstv = 2µ5 
+ l'lw1(r+!) + 1lw2(s+!) + -!'iw3Ct+!) 

+ ru4 (v+!) 

wkrstv<g1, g2, g3, g4, gs> = Uk(g5lwr<g1>ws<g2>�t<g3> 

·wv(g4) 

(23) 

(24) 

where r,s,t,v = 0,1,2, --- and k is the wave number far the 

plane-1oave rotion. The plane-wave function for the centre 

of nass, nornalized by means of the Dirac 6-function (Schiff, 

1968) is given by 

l\ <gs > = ,,.!- exp< ikgs > •211 
'lhe normtlized, bound state, wave functions of the harncnic 

oscillators are written as 

(25) 



•r<&i> 

•s<&2> 

•t <&3> 

- 111 -
-ia�� Nr e .1va1&1 > 
-2a�g� NB e .Hs(a2g2) 
-!a3g3 Nt e .�Ca3&3l 
-�tt�g� 

•v<&4> = NV e ·8v<04&4) 

----- (26) 

mere Hi denotes the Hennite polynormial of order i and 
the aj's denote the inverse oscillator lengths given by 

ttj = (µjwj/h)! (27) 

1,2 ,3 ,4. The nonrelizaticn =nstants are given as 

Ni = (�)! 
n 2ii! 

----- (28) 

where i and j are as defined above. 

3.2 The Eigenvalues of the Intrinsic Hamil_tonian 

For the intrinsic Hamiltonian defined in equation (20), we 

set 
x' 1 = x1 - Z 

x' 2 = x2 - Z 

j ----- (29) 
x' 3 : x3 - Z 

x4 = x4 - Z 

9.lbstituting these values into equatiro (20), we obtain the 

e igenvalue equation, 

2 2 . ,2 ,2 ,2 
{- 'fl C a + • + • + • l + !c (x.! 2 + x� 2 + 'S ax!' a"2' ax1' ax42 :i. £ 

x3• + x4•>} ·�n2n3n4 EN 'n1�n3n4<x1,x2,x3,x4> �- (30) 
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This gives, 

� = flw(N + 2) 

•n1�n3n4 <x1,x2,x3,x4> 

-- (31) 
= � Cxl>¥ Cx2>¥ Cx3)� (xij) nl n2 n3 n4 

where N = n1 + n2 + n3 + n4 and 

n1, n2, n3, n4 = O, 1, 2, ---
The normalized oscillator eigenfunctions are: 

-h2x' 2 
v (x') = N e 1 H (yx'l n1 1 n1 n1 1 

-h2x' 2 
V (x') = N e 2 H (yx') � 2 n2 --n2 2 

-h2x, 2 
� (x') = N e 

3 H (yx') n3 3 n3 n3 3 

-h2x4 2 
� (x'): N e H (yx4> n4 4 n4 n4 

(32) 

where the N 's are the nonrelization constants and y is nj 
the inverse oscillator length. These are similarly given by 

arxi 

where 

N = n. J 

y = 
"' = 

f ni 2 � nj ! l 
(m.Jlh)i 

(k/m)2 

3. 3 The Collective Wave F\Jnetions 

(33) 

(34) 

The total w:ivc function can be expanded in t= of the 

eigenfunctions of the :intrinsic Hamiltonian since these farm 

a oooplete set (Dlge et al, 1981) 

t = t Q> + Cx1-Z,x2-Z,xrZ,X4-Z) --- (35) 
lcrstV 'i.¥3� nin 3?111 n1�n3n4 
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The expansion coefficients are the collective amplitudes 

and are obtained by nultiplying equation (35) fran the left 
• 

by •n n..n n and integrating. The result is 1 :I. 3 4 
• krstv " " f (Z) = /[ff+ <x1-z,x2-Z,xrZ,x4-Z)ljl <k1dlc2dx3dx4 n1n2n3n4 _,, n1n2n3n4 krstv 

Inserting the w:ive functions >Ji,_ and � given "'·stv n1n2n3n4 
by equations (24) and (31) respectively, and taking the 

formulae in equation (13) for the nonnal coordinates, it is 

straight forward to evaluate the llllltiple integral of equation 
( 36) • This integral can be cast into the form 
krstv 1 ,, 2 f (z) = -- Nn N Nn Nn Nr.NsNtNv 1££,Jexp[- f n1�n3n4 � 1 � 3 4 

{(7+1/a)(xl+xfi)+(11+1/a)(x�+x�)+ 

16(1+1/a)Z2 )+{Zy' (1 +1/a)+b}(x1+� + 
2 

X3+X4)+ � (3-1/a)(xlx2+X3X4) -

1 2( i 40" y x1x3 + x1x4 + x2x4> + 11"(4-1/a)x2x3 
M + b - Z]. H (y(x1-Z)) H (y(x2-Z)) m n1 

·n2 
·8n

3 
(y(x3-Z)) 1-\,4 (y(x4-Z)) 8r<�-x1-x2 

13 -x3 -x4 + 4Z)) Hs <-2- y(x1-x2)) 8t(y(x2 -x3)) 

13 
Hv(�(x3-x4))dx1dx2dx3dx4 

'The CC11Stants c and b are defined by 

(37) 

c = [� + 1]: ---- (38) 
i.l<m 

b = 4m+M 

By a facim'ization nethocl and the application of the ad:l.ition 

1:heciNlll far Hermite polynomiulr; (Moree and reshl>ach, 1953), 
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1 n n R Cx+y) =::n7'1mtoCm> H Cffx) H C/fy) "b 2 - m n-m ----- (39) 

the final expression for the collective artq>litudes results: 
krstv 

n f (Z) = Fn �o� n, rstvexP[ikZ - �1+1/o)d' I r/ f � · n1n2n3n11 1 2 3 I 1 "':2 3 

"1::'\ � r-"':2 s-m3 t 111-�-m4 n2-m5 113 • � kis � Tn., \ � ffi10 ffi11 

�-'"s 
r'lii2 

s-m
�
-m7 t-1:.\i v n1 -m1 -11\i-mg r. r. r. 13  'lli•1 m15 rn16 

n2-mr-m10 
�7 

n3-�1 n4 r-mz-1!.'s-�2 r+s+t+v-m3-"'s-m1s . r r. r c-1> '"18 �9 "'20 

_2-�C4n1+4r+3s+3n2+2t+2n3+v+n4-3m1-Jmi-2m3-2"'4-2m5-2m5-m7-mg 

-m9-�o-m11-m12 > 
n n -m. n r-m... s-m 

( 1
)(r )(s )( 1 i)( 2)( t)( 3)(t ) • 

m1 "':2 � 11\i � '"s � 11'13 
n -� -11\i "2-ms "3 l'�-'% s-m3--m., 

( 1 )( )( ){ ) ( IT ) • ll1g m10 m11 �2 '13 

t"""ll v n1 -� -m4 -mg n2 -m5 -�o) c"3 -�1) .( H." )( m ) ( m. 7 m18 
. �4 "'15 16 l 

(114 r-mz-ms-m12 "1.:.12.:.13 il,,.:i,.i16a7u 
• m >C >-I -I � 8 

19 m20 m1m2rn3 lll1ms"'G�ll\l 

a9a10a11a12a13a14a15 a16a17a18a19a20a21a22a,3 

·I . I 
mgm10�1m12�3�4m15 �6�7m18�9"':20"121"122fl123 

.HCid) . . H<#> . HCi�> - H<�> 

nf1'1-fl\i-lllg"'111.6 "2-fils-�O-m17 n3-�1-�B 114-�9 

.HC�> ./ii 
4 • � """\; "'111. 2 '"111:10 

1'tere rn... = s-m3-m?°·m13 
= t-ma ""'iii 
: V�5 

� 

(40) 

----- (41) 



CliAP1'ER FOUR 

.. • RESULTS AND DISOJSs!ONS 

4.1 

In this section 1o1e present sane graphical values of 
probability distrirutions for 

·
the intrinsic excitatioos 

cala.tl.ated with the amplitudes given by equation (40). All 
paremeters occuring in the final fonnula that enter into 
the numerical calculations are dimensionless quantities. 
These include the ratio of the oscillator mass m to the 
central particle rrass M; the ratio of the energy of free 
motion Ii<: to the energy of oscillator spacing, � �1-l'lw = .Yt2k2/[2(4m + MJ.r\w]; and the ratio of the int-rinsic 
excitation energy to the energy of oscillator spacing, 

!:N = EN/-l'Jw. These quantities have been varied in order to 

stuciY the numerical results syste'll3tically. 

in the 

In Fig. 1 we have plotted probability amplitudes, 

I fkrstv I 2 • 2n n n n n , as functions of the energy of free motion, 
- 1 2 3 4 Ii<: , for varioos quantum number, n1, n2 , n3 , n4 , r, s, t, v 

and for fixed ratio m/M = 1. Tw:> sets of quantum numbers 

have been chosen: r = s = t = v = 0 and r = s = 2, t= v = o 

as illustrated in Figs. Hal and 1Cb) respectively. In Fig. 

we have taken (i)n1 = n2 = n3 = n4 = 0 

or N = O ; (ii) n1 = � = 1, n3 = n4 = 0 

or N = 2 ; (iii) n1 = n2 = n3 = n4 = 1 

or N = 4 ; (iv) n1 = 2, � = n3 = n4 = 1 , 

or N = 5 ; (v) n1 = 3, n2 = 2, n3 = n4 = 1 

or N = 7 and (vi) n1 = 1, n2 = 2, n3 = 3, n4 = 4 , 

er N = 10 • 

1(a) 
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' - · ' " • llJiull(y 
- T" llN1vE"srt" . �1 • '"" 

-� IA�A \'•11 fl . --, _____ i::iA u c 1-1 1 w. observe fttin the 1:t«> f� that the eJCci��::; --
!ntr.insic states <n1 , n2 , n3 , '\) has an increasing width with incr'easing energy � and principal quantum number N. The larger the N the lll:lre the pea]< of the distribution is · shifted to hi�her eneT'fil' rutios \. We also Gee thut the distr.ib.Jticris are all i:>eaked except that of the gro.Jnd state where N = 0 as depicted in Fig, l(a ) (i) . This curve has a non-zero value of about O .  7 at � = O. Its observable exponential characteristic is revealed in the interval 0 < � < 1 • This special case can be explained from equation ( 40 ) :  All the quantum numbers are set to zero . Thus all terms depending on the quantum states of the system are 

red.Iced to unity or a constant . The only dependent factor is 
the exponential function which reduces to one at 11<: = 0 
and zero at large values of E .  Hence the 1113X:inrum value of 

this distril::ution is at F. = O Th d .  . . I< · e istribution , in 

general ' decreases exponentially with increasing � . 
The results of Fig. 1 reveal that for the case \.here the 

quantum states r ,  s ,  t .:ll1d v are all zero, probability 

amplitudes converp:e rrore slowly . When the states r s t and , , -
V are not all zero, the amplitudes of the distribution converge 

rapidly. In both cases the nax:imt.un probability occurs only 

for specific values of the ratio � for each distribution . 

In conclusion , we say that intrinsic excitation is more 

);ln)hable at higher � values when the energy of collective 

� � is mininn.111 . At J.arge �stv values intrinsic 

Lt.ion is possible at lOloler' � values · 

F.igs . 2(a) and 2(b) show plots of prooobility distributions 

� of � for f.ixed sets of quantum munbeI'S and far 
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l'Ullbers as iUustretec1. The � f i&ures show sim.iJ.ar 
characteristics : The Widths of Pt'Obab.iJ.ity distrib.Jtions 
decrease with :increasine n:itio mlH; the reak , at specific 
value of � for e.ach n:Jtio mlM, decreases with decre.:tsing 
ratio m/M and is shifted to a higher � value.  This means that higher-lying intrinsic states become excited with decre.asing mtio m/M . The t� noticeable differences in the tw;, figures arc conspicuous : Lower peaks and fast vanishing Probability amplitudes with increasing quantum numbers. In surmary ' Fig . 2 tells us that there is strong coupling be tween lhc o:;cillulors und Lhe centntl 111:1ss M for the ratio m/M > 1 and weak coupling for m/M < 1 ,  at low � values and conversely :-ieak coupline for m/M > 1 and strong crupling for m/M < 1 at high � values . Hence intrinsic 

states are easily excited for higher mass ratios at low 
energies of free motion and are also excited for low nass 

ratios at hich cnercic:; of free motion . 

Protxibilitv DiGtributions as Functions of 
( - n.) . Intrinsic St:t te::; ( n1 , n2 ' )13 • 'f 

Here , in Fig. 3 we have plotted probabilities as 

functions of the intrinsic quantum numbers. We have kept n 3 

and I\ constants and varied n1 and probability distrirutions 

f'or . different values of n2 obtained. Note that in Fig . 3 !-"! 

cculd have plotted probabilities as functions of the intrinsic energy 

'ff• •ince r. = "N/liw = N + 2 .  '!he basic properties of the no 

'°2ld then be the rumc .  Ill:: c,1n lhcrefo� di::;cu:::; the ploi.i; 

,1.fg. 3 in termS. of intrinsiC energy, eN' 
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� fea�s With large �litudes of oscillatiai in ... '""""'1 1 � "1 � ' • .,,,, "'-sing "'""""'"' ""' "i ' er principal quantum nurrt>er N, the oscillations die out resulting in a Sll'Ooth vanishing of the Probability arrplituctes .  The inference We can dra1<J from the shapes of Fig. 3 is as follows :  The oscillatory structure reveals that intrinsic states can be excited or de-excited in any higher-lying 
energy states other than zero . As an eXdllple, the probability 
of intrinsic excitation in the state n1 = 2 is lower than 
those for n1 = 1 and n1 = 3 in each of the six distributions .  
This means that the state n1 = 2 is rrore stable than its 1-
and 3- states .  

Probability Distributions a:o T\Jnctions of Jl,atToOf MasseSliVM 

We now examine the behaviour of the probability amplitudes 

for di£ferent nass ratios . Figs . 4(a) - 4 (c) are plots or 

probability amplitudes as functions of the ratio m/M. We 

have selected :t)1ree sects of quantum numbers : (a) fixed states 

n1 = n2 = n3 = n4 
= 0 ,  s = t = v = 0 and plotted values for 

various r ; (b) set r = s = t = v = 0 and plotted amplitudes 

for vuriooG v.:ilucG of N ,  .:incl (c)  fixed ::;talc:; 111 = n2 = n3 = n4 = 1 , 

s = t = v = O and plotted values of probability amplitudes for 

var:iais r. 

In Fig. ll(a) the �litudes of the distril:.otions have 

at a JIBS& ratio of alxJUt m/M = 1111 , and vanish as the 

of 1his ratio approaches 7'!'£0· These pro!:ebility anq:ilitudes 

faster for h:i?,heI' quantum rJJJTibet' r .  fb\Vevel' for r = O,  
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all quantum l'll.llnber-s � 2e� and it is evident fu:im equation 
(If()) that all the <IUantum state-ctellendent factors are red.iced 
tr:> one CJ!' ccnstants . The exponential behaviour with an 
asymtotic characteristic at very Sl!all or very large values of mlH canes from the exponential functi.c:n outside the sunnations . 

The plots of Fig. 4(b) reveal the shift in peaJc of probability airplitudes with increasing intrinsic quantum n.unbers to higher rn/M ratios . Fip,. 4 ( c )  shONs an increasine peak of probability arrq:>litude with decreasing collective quantum number r . We observe that the probability amplitudes 
vanish very slowly with increasing m/M in Fig . 4(b) and rrore 
slowly in Fig . 4 (c ) . In contrast , probability arrq:ilitudes 
vanish nuch faster in Fig . 4 (a) . The physical significance 

of this is that intrinsic excitation is possible for large 

ratios of masses and also possible for higher-lying energy 

states. 

The remarka.bl imil' . e s ar1 ties and diff erences between the 

J..gUI'eS 4(a) - 4 ( c )  are illustrative · Th . 
three f '  

. 

· e probability 

creasing quantum numbers 
airplitudes have decreasing peaks with in 

. 

and lie at lower values of m/M ratios apart from those of the 

f '  

. 

irst few sets of quantum numbers , Mm2!1Y those of 

N + r + s + t + v = O and N = 1,  r = s = t = v = o.  A 

noteable difference between the three figures is that the 

peaks of the distributions are fo.md at specific values of 

mlM ani for ratios m/M < 1 in Fig . 4 (a) and m/M > 1 in Figs 4(b) 

and IJ(c) .  This implies that intrinsic excitation is possible 

fer small ratfus of nasses W'!en in the:ir ground states loA'lile 

-=i'tation is possible for large ratios of nasses �en they 

• states other' tha1l their ground states . 



---u� Fivt 

A dam::instr>ation Of' 'the Pl'oblern of energy dissipation 

flom a collective COardina.te into intenia1 de&l'ees of freedom 
bu been Pf'esentect Us:ing an E!Xactly SOlvable l!Odel .  The IK>del �ich consists of fo.ir oscillators coupled to a fifth particle which has the freedom of under-going translational lll)tion is described llla'thematically through both classical and quantum rrechanics via 'the Lagrangian dynamics and SchrOdinger' s equation respectively . The amplitudes of a 
collective rrotion obtained as rrultiple integrals have been 
solved exactly . These amplitudes repre . 

sent probabilities 

of intrinsic ene rgy states be . 

The probabil . 

. mg excited; 

ity distribut . 

cha t 

ions obtained . 

p er are the amplitude 

in the previous 

s for transitions · . 

energy levels 'Th 

into discrete 

. 

. e results calculated and 

show interest . 

presented graphicall 

ing features ..tiich are . 

Y 

The probabilit . 

SUl!m3I'1zed as follows : 

=� ed at s if' Y distril::utions �� peak 

of the f . . 

pee ic values 

W'lCtl.On variables (energy of free t .  
-

pr inc . 

rro ion , f1c = 1'c /1\w 

ipal quantum nwnber' N = n + n + n + 
1 2 3 n4 ; and the 

c. rrw<lJlUJTl probability 

ratio of masses m/M) . These indicate th"t the 
. 

of f indine tl1c m· t:r · · · 
i · · · 

in:,J.C cncn� J.Ct; wJ.tJUJ1 i.l cer'Laiii enerr,y 

interval only . Peaks of probability amplitudes shifted to 

higher values of the energy of free motion with increasing 

'fllm1um nlUibet'S indicate that excitation of intrinsic states 

i8 p:ies.ible at high energf values when states are not all at 

gro.D1d ievelS· A wide range of probability excitation 

and the pr.i.nCipal quantum n .. unlJeI' N .  '!'he .intrinsic 



of freedom, t'epr-esented in a.tr �l by x 1 ' X2 ' X3 
..S X.. tire �ly COUpled to the COllective degree of fl.edca Z tr.hen the mass of intrinsic oscillator is �ter than that of the free Jlarticle when in its low energies , tihile stn:ng ccupling oceurs at m/M < 1 only at high energy values of the free Pdr'ticle . We have also seen that for snall ratios of masses excitation is PQssib1e even at zero levels of the intrinsic states lo.hile for large ratios of 
masses excitation is possible only at non-zero intrinsic states . 

. This is obvious since nothing eoes for nothine. 
The results obtained are in gOOd agreement with the ones 

calculated from a previous w::>rk CMshelia et al , 1981 ) .  
Although our simulation here is based on a simple rrodel , the 

fornulation we have developed can be extended to the rrore 

realistic but ll"Ore ccrnpl� case of heavy-ion collisions , where 

energy dissipation plays a very important role in deciding 

\Jiether the fusion of superheavy elements is possible or not . 

In future developments investigations of a rrodel of a 

chain of n linear harm:mic oscillators can be carried out 

�loying the same forrralism. Secondly work should also aim 

at approaching the same or similar rrodels in two and three 

dimensions using the same tornalism or a modified fonn if 

necessary. Thirdly, application of the time-dependent 

Schr&linger' s  equation to this nodel is recorrmended ; in 

tlhich case c:ne can study the dissipation of energy from the 

�ive degree of rreecJan to the intrinsic ones as a function 

initial energ;/ in the translational degree of 
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APl>nmDc 

1 = (nst1i+n2+n3+n11+r+s+t�!n2 ! n3 ?n4 l r! S! t! Yi ) 
k 1 d = y (1 - ;-> 

• 2( v'CJ/[ S(o + 1) ) ) 2  

aM the ai 1 S are defineq in term; Of the dimensionless quantity 0 as follows: 

(A.1) 

(A.2) 

al = ll(o/ (7o + 1 ) ) 2 
a2 = 2(3o - 1 ) ( 2/( ( 7  0 + 1 ) (  
a = 11 c 2  

170 + S ) } ) ;  
3 a - 3 ) (3 / ( ( 17 

' 

a = ( 3  
o + 6) (530 + 33) ) ) !  

4 0 - 17 ) (2/(5( 
, 

a -

o + 1 ) (530 + 33)])2 
5 - 2 ( ( 70 + 1)/( !7 1 

' 
a + 6 ) ) 2 , 

a6 = 2(1110 - 3 ) ( 2/(3(17 

a -
o + 6H53o + 33) ] )2 ,  

7 - (7o - 13) (1/(< ( � 0 + 1 ) (530 + 33 ) ] } 1  

as = 4C C 17o + 6 ) /(3(530 + 33)])1  

, 

' 

ag = (17o - 3 ) (1/(lO(o + 1 ) (530 + 33)])2 

alO = ( ( 53o + 33 )/[20(a + 1 ) ) ) 2  
' 

, 

, all = 2( (1/(70 + 1 ) ) ) 2 

a12 = 10 ( 2o/[(7o + 1 ) (17o + 6 ) ] ) 2 ,  

a13 = 36(3o/[(i7o + 6 ) (530 + 33 ) ] ) 2 , 

a14 = 8(100/[(o + 1) (53a + 33) ] ) 2, 

a15 = 2(3o/(7o + 1 ) ) 2 ,  

a16 = 2 ( 2o + 1 ) ( 6/((70 + 1 ) (170 + 6)))1,  

4i,7 = 4(4o + 3 ) ( 1/[C17o + 6 ) ( 530 + 33)])2 , 

"i.a = 4C3 Co + 1 >1[1o<s3o + 33>J>2 ,  

.'it = 2 C C 7o + 1)/(170 + s»2 , � 
• 10(4a + 3 ) ( 2/(3 (170 + s )(S3o + 33)] ) , 



4a • (tO (cr + 1 ) /(S3o + 33 ))i , � : 2 < C t7o + 6 ) /( SJo + 3J) ) i ,  423 = 9(3 (o + 1)/[S( S3o + 33) ] ) 2  
ala2 . . . 'nle quantity 1"1.� · . .  in eqllatiai (110 ) is an integral 

(A.3)  

defined by 
�a2 " ' 

I = .. 
"'t�· . .  /exp[-x2 ]  H <a1x> H Ca2x> . . .  dx ----- ml 

� 

CA.4) 

krstv 
It can be shown that the collective amplitudes, 

f (Z) , obta:ined in equation (40) satisfy the nonralization n1�n3nll 
conditions. Recall the assertion that the total wave-function �tv Cxl • x2,  x3 ' x4,  Z) can be expanded in tenns of the complete 

orthononra.l set of oscillator functions 4>i <x1 , x2 , x3 , x4 , Z) . The 
normalization of wkrstv gives 

11ir�i :\�' rlx dx .,<lx3dx1 = i; �� f(�.) t;CZ)Jfiltti/,J· .dx{lx2dx3dx4 - B B 1 £ I .1. J :t J _., 

= � j f . CZ> i 2  
1 1 

since the $ . ' s  are orthonormal. 1 

(A.5) 

On the other hand , the norrralization of i/lkrstv with respect 

to the variables g1
, g2 , g3 and g4 gives 

11i1w *.v dg dg dg dg = wk'" <g5> i/lk<gs >  j i/J/'<g1> 
-.. B B 1 2 3 4 _., 

. "'r<g1 >dg1 _z "'/<g2> "'s<g2 >dg2 
., :\ ( )dg 

j .vt*C g3) ij1t (g3)dg3 ·..£ "'v (g4l !/iv � 4 

- (A.6) 

1 = 2n 

� 1'!].ationShiP � the left hand sides of equatiros (A.5) and 

J• .. &> is given by the transformation 



- 36 -
••• <a,. • ., ...... .. , l •• '&i .. , .., .... .. ,,...,..,...,.,... • • = 1£!/ •s <x1 ,x2 ,xa .x1 pZ) �BCx1'x2 .x3 ,x4,Z) il(p'1 ,e2 tC3 tl'.4) · I  Cl (xl 'x2 ,x3 .x4J I dxl �dx

3dx4 
� values are substituted the Jacobian i s  ac� ·&2 •&3•&4>  I = t I a(xl 'x2 ,x3 ,x4) 

. 
equations (A.5) ' CA.6)  and (A. 7 )  we have 

�mg 

� l fi(Z) j 2  
l. 

- 1 
- 2n 

--- CA.7) 

---- (A.8 ) 

----- (A.9) 

Thus the amplitudes in equation (40) satisfy the nonnalization 

conditions 
kr;,tv 

E If (Z) 1 2 r,s ,t,v n
1

n2
n

3
n

4 

krctv 
E If (Z) 1 2  nln2n3n4 nln2n3n4 

1 
2ii 

----- (A.10 l 
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