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ABSTRACT

A formalism for energy dissipation in physical systems using
ocoupled oscillators is hereby presented. The model demonstrates
energy transfer from a free translational notion of a centre of mass
into intrinsic modes represented by four oscillators of the same
force constant. First, from the classical energy of the system, the
kinetic and potential energy matrices are deduced. These natrices
are used to transformn the natural modes of vibration into nonnal
coordinates which decouple the vibration into the various modes with
particular frequencies. This transformation has Been done through

the application of Llagrangian dynamics. A classically decoupled

total Hamiltonian obtained is written in terms of its quantum mechanical

equivalence. The time-independent Schridinger's equation applied to the

decoupled Hamiltonian of the system qusntizes it, giving the usual
quantum mechanical eigenvalues and eigenfurnctions for both intrinsic
and translational notions.

Collective amplitudes of the motion, or the dissipation functions
of the internal excitation energy, obtained as a multiple integral in
terms of the translational and intrinsic wave functions is solved
analytically exactly.

Numerical values of the normalized collective anplitudes have
been computed and examples of probability distributions for the

intrinsic excitation are presented graphically.
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CHAPTER ONE
INTRODUCTION

A nuclear phenomenon, not yet well understood, which plays a
very important role in the field of fusion and fission dynamics is
the dissipation of energy or friction. By dissipation we mean the
conversion of the kinetic energy of relative motion into other degrees
of freedom, for example intrinsic excitations (Mshelia et al, 1975,
1981). During the historical development of quantum mechanics there
has been little interest in a foralism for systems with dissipations.
This is because most quantum mechanical analyses deal with microscopic
phenamena, while dissipation is a macroscopic concept. However, there
has been some discussion of dissipation in quantum mechanics in
generel, and with reference to the harmonic oscillator in particular.
One method (Xanai, 1948; Kermer, 1958; Stevens, 1958) starts with the
classical equations of motion for a system with dissipation due to
velocity-dependent force, finding a Lagrengian which leads to these
equations of motion, and then quantizirng it by conventional formal
methods.  This method has been shown to be unrealistic (Senitzky,
1960) and cannot describe a true physical system with quantum mechanical
properties because it leads to the violation of Heisenberg's uncertainty
principles. The other method consists of considering the dissipation
as being due to the coupling of two systems, the undamped harmonic
oscillator and the system which produces the damping. Similar systems
considered in classical physics ave the following: when clealing with
dissipation in an electrical system specified by a value for the '
resistance, or dissipatien.in a mechanical system specified by a value
of the coefficient of friction, one is really concerned with the

interaction of two types of systems, one is the harmonic oscillator
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which one wants to describe completely, and the other a complicated
system - the loss mehcanism - which one can describe approximately

Some attempts on the treatment of dissipation for nuclear systems
have shown that the energy of collective degrees of freedom is
converted into intrinsic excitation energy (Swiatecki et al, 1972).
For example, in deep inelastic reactions, the heavy ions lose their
total kinetic energy and are repelled only by their Coulcmb interaction,
indicating that the kinetic energy of relative motion has been dissipated
into intrinsic degrees of freedom. Many authors have used frictional
forces in order to describe the kinetic energy loss theoretically ’
(Bass, 1980). Beck and Gross, 1973 have, in a semi-classical treatment

given a relationship between the frictional force, acting between two

ions moving on classical orbits, and the imaginary optical-model potential.
More recently Glas and Mosel, i97% have muerically demonstrated the
effects of friction in heavy-ion resctions. By using the Landau-Zener
approximation, these authors calculated the probabilities for inelastic
processes and fusion for a head-on collision of the 1658 160 e
This work is promising because it has the following features: the
inelastic excitations occur at the rearrangement point of nuclear shells,
which varies with the mass of the nuclei. ‘'Ihis radius varies as

/3

R:rA1
o

S with TS 0.9 fm according to the two-centre shell nicdel

(Glas and Mosel, 1974). Also various studies have been made with

dissipation (Hasse, 1978; Gross and Kalinowski, 1978). The various
methods of approach include time-dependent perturbation expansions

(Beck and Gross, 1973; Hasse, 1979), linear response theory (Hofmann
and Siemens, 1976, 1977), quantal master equations, Fokker-Planck equations
randommatrix theory for camplex nuclear reactions and tine-dependemt

reaction theories (Mshelia et al, 1964).
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A murber of complicated oscillatory systems car be analysed in
terms of simple ones by converting to mormal modes of vibration
whenever the interparticle forces are linaar functions of the relative
displacements. These normal modes are equivalent to independent
harmonie oscillators. The one-dimensional harmonic oscillator is important
for the quantum mechanical treatment of the vibrations of atoms in molecules
and crystals or nuclear vibrations. It is also important in the study
of inelastic reactions between heavy ions where the energy of the
collective degree of freedom is converted into intrinsic excitation
energy (Mshelia et al, 1975).

In this work we present a model for energy dissipation based on
quantum mechanics, with some classical background theory. Dissipation
is considered as due to the coupling of collective degrees of freedan
to intrinsic excitations. A simplified medel of four oscillators
coupled to a degree of freedem of Iree motion, which can be solved
exactly by analytical methods, is hereby described. This is an
extension of a model developed by Mshelia et al, 1981. This simple
model can be extended to a mare realistic but complex case of heavy
ion collision. The four oscillators represent intrinsic degrees of
freedom relative to a fifth particle whose motion is trenslational only

The model is simple enough and has been solved exactly by analytical

methods.
In Chapter Iwozdescription of the model of four oscillators

coupled to a free motion is made using classical mechanics. Nonml
coordinates . are cbtained for a linear vibration of five particles.
These coordinates decouple the vibrations into different modes of
motion. A decoupled Hamiltonian is thus obtained. In Chapter Three

we gbtain the quantum mechanical equivalence of the total Hamiltonian

being split into two parts: collective and intrinsic Hamiltonians. The
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time-independent Schrodinger's equation is applied to these Hamiltonians
and the quantun mechanical eigenvalues and eigen-functions obtained.

: 4 These tum out to be the usual harmonic oscillator eigenvalues and

. i eigenfunctions. The dissipation function of the internal excitation

energy is calculated by expanding the total wave function in the

orthanormal set of intrinsic wave functions. This dissipation function

-
v —
—e

or the collective amplitude is solved analytically exactly.

In Chapter Four the result obtained in Chapter Three is appl

to the model. We computed some numerical values of the collective

amplitudes and presented graphical examples of probability distributions

for the intrinsic excitation. Finally in Chapter Five conclusions and

further work on the model are proposed.

-
e = T

e it ¥




?' CHAPTER TWO
5.  THE MODEL

2.4  THE CLASSICAL PROBLEM

2.1.1 Linear Vibration of Five Particles

The model consists of five particles on a straight line

and only vibrations along the straight line joining the particles
are cansidered. The potential energies of the particles are
approxinated by assuming four springs of the same force constant
c joining the four particles of the same mass, m, to the central
particle of mass M. The coordinate Z denotes the position of
the particle of mass M relative to which the potential emergy
of the system is determined.

The kinetic and potential energies are thus given by:
L AR R A — @
= 1,2, 3, 4, and 7 are velocities.

where ’ti =

V= lfc[(xl-Z)2 + (x2—2)1 + (x3—Z)2 + (xu'Z)2]

;c[,q+x5+x§+xi+uz= - 2(x1+x2+x3+xu)Z] ----- (2)

Expressed in matrix form,
PO 03D x'i

m
om0 00D 3

=
1

N

o o
=
2 5
g8 o
2 o
38
]

|

I

|

i

-~

w

Y




Fmnen 0 0 2
0 %0 0 x,2
Va3c| o 0 o x2
0 0 0 x5 -qu
~xiZ -le -xaz -qu uZz
POy 0510, | e x4
0 c 0 0 -C Xy
= i(xlxzxaqu) 0 0 c 0 -c Xg | = ()
0 0 0 (c] - Xy
-C -C ~C -C 4Yc Z

m 0 0 0 0

0 m 0 0 0 3

[Tij] = 0 0 m 0 VR (5)
0 0 0 m 0
0 0 0 0 M
e 0 0 0 -c
0 (% 0 0 -
and [Vij] = 0 0 c 0 - | = mee——— )

oA U N e e

These matrices are obtained directly by inspection of equations (1) and

(2) or on application of the lagrangian equation of classical mechanics,

d By _ & - g —— (D)
'dT(iﬁ) 39

where L = T -V and 4 is the first derivative with respect to

time of the generalized coordinate, g (Goldstein, 1978).




2.1.2
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We see that the kinetic energy matrix is diagonal vhile
the potential energy matrix is nondiagonal due to the products
xlz, x,ZZ, xaz, and x,2. These off-diagonal terms give rise to
the coupling of the collective and intrinsic motions. In the
theory of vibrations it is possidle to find a trensfermation
to normal coordinates. These coordinates are uncoupled,
thereby making the problem completely separable into independent

motions, each with a particular normal frequency. We present

this in the foregoing sections.

‘The ‘Eigenfrequencies

By considering the case of small oscillatjons about
positions of stable equilibrium and applying the lLagrengian
formalism one obtains the eigenvalue equations from which the
eigenfrequencies are calculated. These eigenvalve equations
are given by

WA T ) S - = (8)
g(vll ° 13)AJ

. T.. are the potential and kinetic energy
where Vij and 13 ;
matrix elements respectively. The direction of the line
along which the oscillations take place is the direction of

i he
the vector X whose scalar components are Aj' Assuming t!

5 natrix
non-trivial case, where Aj # 0, the fx
S A is singular so that the secular
[Vij] w [lel
determinarmt
= 2R =10 e (9)
det ([Vij] w* Ty

gives f values of w?. Thus the roots of the determinant
i ibrations. We label
provide the modal frequencies w; of the vi

a modal vector associated with the frequency ©; as K‘i :
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oS

With [Tij] and [Vij] given by equations (5) and (6),

the modal frequencies w; are written as:

2

wy = =km e M) = c/y

wg = ¢/m

B (a0
wi = ¢/m

B2 so

where p = mM/(um + M),

Thus the eigenmode corresponding to the eigenfrequency wy
describes the motion in which all the five particles
vibrate about their common equilibrium configuration. The
eigenmodes corresponding to the eigenfrequencies wys W and w,
are degenerate. The eigenfrequency wg vanishes. This implies
that its corresponding eigemmode describes a uniform translational
motion of the system as a whole. This corresponds to the

Z~coordinate.

Natural Modes of Motion and Normal Coordinates '

We proceed to find a trmansformation to normal coordinates
bearing in mind that we are dealing with a system for which
the energy is spall enough to ensure that the system does not
depart appreciably from the equilibrium configuration.

A Lagrangian system is said to be harmonic with respect
to the set of coordinates qj if it is of the form

= i T = LG G e (11
o iij e ij 4 q] )

4, 4 -3V
e S B

- where the matrices [’I‘ij] and [Vi j] are real, constant,

symmetyic and positive definite (Pars, 1965 and Desloge, 1982).

The results of motion of harmonic systems can be summarized as




follows:
Consider a lagrangian system of f degrees of freedom
that is harmmonic with respect to the set of variables 51 .
The system whose lagrangian is given by equation (11) has the
following properties:
(a) There is a set of possible nodes of motion in which the
point in configuration space 3 representing the instantaneous
configuration of the system oscillates in simple harmonic motion
about the origin along a straight line passing through the
origin. These modes of motion are called natural modes of
motion. The directions in E-smce of the straight lines along
which such motion is possible are called modal directions. A
vector A whose direction is a modad direclion is called a
modal vector. In a natural mode of motion all the particles
in the system are oscillating with the same frequency and are
either in phase or 180° out of phase with one ancther.
(b) Associated with each modal direction there is a single
angular frequency of oscillation ws s called a natural or
modal frequency. The value of a particular modal frequency
must be one of the f positive roots of equation (9).
(c) If any of the roots of equation (9) is substituted into
equation (8) then any vector X uhose components , Aj, satisfy
the resulting set of equations will be a modal vector, Ki >
with which the given frequency W is associated. If the
frequency w; is unique, equation (8) will detenmine a unique
one dimensional subspace within which Ki must lie; that is,
the vectors will all lie along a single direction. If the
frequency  w, is onc of a set of 1 identical [requencies,
equation (8) will determine a unigue 1 dimensional subspace
ch A mist lie.
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(d) From the set of all modal directions it is always possible
to choose a set of f linearly independent modal directions.
This follows from the fact that a set of modal directions is
linearly independent if the corresponding modal vectors are
linearly independent.

We can now define nommal coordinates as follows: The
set of coordinates corresponding to the set of orthonormalized
modal vectors Ki’ K?’ -— Kf » designated by g, 8,5 -—;
g are called nomal coorinates (Desloge, 1982). The
transformation is given by the equation

g, = ij Ay i35 e (12)
On application of this equation, with proper choice of the

modal vectors, the normal coordinates are cbtained as:

g * i— (-x:l Xy Xy Xy 4 uz) ]

ERER ) T

ga = X2 - X3 —=== (13)
By = X3 = Xy

gg = _(ﬁm_iﬁf{mxl +mX, +mxg + o + MZ}
The physical meaning of these coordinates is self-explanatory

from equation (13): -5 is the relative coordinate between

Z and the centre of the intrinsic coordinates at %(x3 Xyt Xy 4+ xu);

8ys By and g, are the relative coordinates belween Lhe intrinsic
coordinates Xqs x2, X3 and X, and & is the centre-of-nass

coordinate.

The Decoupled Classical Hamiltonian

By solving simultaneously equations (13) we cbtain, in terms
of the normal coordinates, Xy X5 X35 Xy and Z, and when

substituted into equations (1) and (2) give the decoupled
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kinetic and potential energies as:
T = 3Cu8%" + upl3 + ughh + w8l + BBl e (14)

where the corresponding masses are given by
- _4mM

“. % Tmem
By = 3/tm
i R N (15)
My = 3/4m
Hg = lm +M
and
Vo= deCuguied + wpudgd + uguisy ¢ wufgl) ---- (16)

Having obtained the decoupled energies we can now write down
the total classical Hamiltonian as
H=T+v

= Ul + gy + ugdy gy v ugel)

+

Fyoigd + upudgd + ugulgd + Wofgly  emees 17)
Thus the conplicated motions of the particles have been
transformed into an eguivalence of uncoupled oscillators,
with one free particle, since its motion about the
Z—coordinate is translational only with kinetic energry of the
centre-of-mass as 3ucg2 and frequency wg 30 .

The solution of Schrodinger's equation with the quantized
Hamiltonian (see next section) is equivalent to that of a

collection of independent harmonic oscillators.




3.1

CHAPTER THREE

THE QUANTUM MECHANICAL APPROACH

In this section, a quantum mechanical description of our
model is presented. Here we obtain solutions of Schrodinger's
time-indepdent wave equation by incorporating the classical
formilae obtained in Chapter Two. A collective wave function
obtained as a multiple integral has been solved analytically.
This collective wavefunction provides the probability for

intrinsic excitation.

Eigenvalues and Eigenfunctions of the total Hamiltonian

The oscillators described by the coordinates Xq9 X5
) and x, represent the intrinsic degrees of freedom and the
translational motion described by Z represents the collective
degree of freedom. Thus the Hamiltonian is split into

collective and intrinsic parts as follows:

HE="efl

coll(Z) + ﬁint(xl’ Xpy Xgp X5 2)  =mms (18)
where the collective and intrinsic Hamilton operators are

respectively defined thus:

can i et e T s
Boor1® = - W 3 9

and

¥

= e B a2 0% 32
By pp (Xg0 Xps X3s xu,Z)--g—m(gq“@*W*W)*

}c[(xl-Z)’ + ()<2-Z)2 + (xa-z)’ + (xy=2)?] -—- (20)
Fram the coupled temms of equation (20) energy can be dissipated
fram the collective degrees of freedom into intrinsic degrees
of freedom represented by the four oscillators. With the normal
coordinates the total Hamiltonian in equation (18) decouples
inw®o its normal modes of vibration. We obtain, in terms of the

pormal coordinates, the total Hamiltinian as




L Gy =

2 2 2 2 2
fi = hl(i G i TR R T R 1 3

s - — — — — e e W wal- S
7 Uy 38 W) Wy %gy Wy, o8] Mg %
+ Yuyoigd + upwied + uulgl + wwigh) S E (1)

where L. are the equivaléent masses of the particles
corresponding to the normal coordinates gy » 1= 1,2,3,4,5 .

We now obtain solutions of the time-independent
Schrodinger's equation with the decoupled Hamiltonian, H, '
given by equation (21). The eigenvalue equation is given by

A vte,, g5 35 By, 85) = E u(gy, gy B Bys Bg) —— (22)
Since A describes a free translational motion of the centre
of nass and decoupled harmonic oscillations in the g1s 85> 83

i and 26rg degrees of freedom, the eigenvalues and eigenfunctions

are simply obtained as

s (0+3) + hwo, (s+3) + Ny (t43)
Ekr‘stv = 2u5 + ’hm1 r+i + fw, s+3) + g (t

R

tholutdde 0 oEEe (23)

Uorsty 81> B> B3> By» B5) = U8BV, (81 ¥ (8700 ()
R o R (2y)
where r,s,t,v = 0,1,2, -—~ and k is the wave number for the

plane-wave motion. The plane-wave function for the centre

—— A o =

of mass, normalized by means of the Dirac §-function (Schiff,

1968) is given by
o e 5
Uk(gs) = ;n-— exp(:kgs)

The normalized, bound state, wave functions of the harmonic

—- (25)

oscillators are written as




_iag
v(E) = Noe ' LH (agg)
_&uzgi
v(gy) = Noe 5 Z-Hs(azgz)
'iuégé ----- (26)
Y(gg) = Noe T 7.Hlagey)
-5u2g2
= 48y
v{g) = N e H (a,8,)

where H, denotes the Hermite polynomial of order i and

the nj's denote the inverse oscillator lengths given by
k= w. /N L 2
ay (qu] ) (27)

J =1,2,3,4. The normalization constants are given as

Q.
Ni T (F;h) 3 ———== (28)
1.

where i and j are as defined above.

The Eigenvalues of the Intrinsic Hamiltonian

For the intrinsic Bamiltonian defined in equation (20), we

set
x! = Xy = VA
25 T (29)
xé = Xy - 2
x:; =X - Z

Substituting these values into equation (20), we obtain the

eigenvalue equation,

2 2
HE 9 92 4+ 35+ de(x!® +xi2+
= St sor Y T T 1 2
= LT LD LR
12 12 _ € (] gxb 4x2 %)) === (30)
G e " ¢n1n2n3nu =N ¢n1n2n3nl& 153522 820



This gives,

PN = AN + 2)

- (31)
®nnonon Oaxdsx8axd) = ¢ ey Ode (e (xd)
17273 ny n, g My
where N = n1+n2+n3+nuand
ny, Nys Mg, n, = 05 1,02 ===
The normalized oscillator eigenfunctions are:
T S 2
4O =N e e ) |
el 1l 1l
-3y%x}?
] -
wn?(xz) = Nn2e an(yx'z)
----- (32)
-3y2x4?
1) = 1
wna(xa) n3(.:- H (yxé)
a2 e
v, () =N e i B Gx)
y ny

where the Nn 's are the normmalization constants and y is

J
the inverse oscillator length. These are similarly given by

‘J Y 3
| TR
nj ini 2 ) ny -
|
and
y = (mm)?
3 ===== (3U)
where w = &/m)
i
»
: <72 The Collective Wave Functions

The total wave function can be expanded in temms of the

eigenfunctions of the intrinsic Hamiltonian since these form

a complete set (Enge et al, 1981)

v = d
fk!'sg -7, %0-2,x3-L Xy=2) -~ (35)
I nyn ﬁ% ¢ 0-2,%-2,x3-2.Xy

w =
=t nynyngn, Pynngty
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’ The expansion coefficients are the collective amplitudes

and are obtained by miltiplying equation (35) from the left

i #
4n nyn,n.n, and integrating. The result is
f * krstv ©
; fn(rz])n = I{i)’ ¢ (x1-2 ,x2-2,x3- Z,x,rZ)W dx ydx dX3dxu -—— (36)
, 1723y Yy REH

Inserting the wave functions mk\:‘s‘cv and S given

{ n
I g2ita i)

by equations (24) and (31) respectively, and taking the
formulae in equation (43) for the mormal coordinates, it is
straight forward to evaluate the miltiple integral of equation

(36). This integral can be cast into the form

i krstv 1 42
1 &) = =" NyNgNeNy ffffex:)[— g
T n n
nyny,ngn, 0 l'12

((7%‘1/0)(X714xf))e(ll+1/n)(x§+x§)+

16(1+1/0)22 }+{2y*(1+1/0)+p}(x 1R+

Xa 3, )+ l—-—(3 1/0)(x1x2+x3xu) -

1 Yy
T (X1X3 + XX, + Xpx,) + (4 1/0)x,Xq

+p Lzl H (vl 2] By (r(xp)

e PP NN S

H, (O5=0) H, (1Cxy-D)) Hy (ored-x, X,
: Xy =X, +42)) Hy (— v(x =%,)) B (v(xyx3))

H (-fv(xa-xu))dx dbdadx, e 37

The constants ¢ and b are defined by

4m 3
[_M + 1]

_ Al
b = Tmal

the application of the addition

By a factorization method and

theorem for Hermite polynomials (Morse and Teshbach, 1953),



3 -17 -

(x4y) = -2 7 (0
0 7 o om0,

the final expression £

or .
Jrstv the collective amplitudes esults:
f (2)

‘ ; 1n?n3nl;

n,-n T~
1y T T, semy st “3

it
PR A2 L,

1
™m, = S=m.~m t-
7 | v n m T

.mﬁjz S T 10 e Al g e R

' 13 Ty Mg iy it
e T T e

e Mg Mo
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QHAPTER FOUR

Yy, RESULTS AND DISCUSSIONS

In this section we present same praphical values of
prabability distributions for the intrinsic excitations
calculated with the amplitudes given by equation (40). All
parameters ocouring  in the final formula that enter into
the numerical calculations are dimensionless quantities.
These include the ratio of the oscillator mass m to the
central particle mass M; the ratio of the energy of free
motion E,_ to the energy of oscillator spacing, flk =
E /Ao = 112k*/[2(4m + MYwl; and the ratio of the intrinsic
excitation energy to the energy of oscillator spacing,

&y = ey/fw. These quantities have been varied in order to

study the numerical results systematically.

4.1 Probability Distributions as Functions of Energy in the
Translational Degree of Freedom

In Fig. 1 we have plotted probability amplitudes,

21 i fkr'stv | 2

R ToD0

Ek , for various quantum nurber, n

, as functions of the energy of free motion,
10 Nys Ngs Ty Ty S iES Y
and for fixed ratio m/M = 1. Two sets of quantum numbers

have been chosen: r=s =t=v=0andr =s =2, t=v =0

as illustrated in Figs. 1(a) and 1(b) respectively. In Fig. 1(a)

we have taken (i)n, =ny) =ng =my =0

Mo

orN=0;(ii)n1= n2=1,n3=nu=0,
orN:Z;(iii)nl:nz:n3 = n,
BERGIV) D =2,y =Ry =1,

3,1’12:2, 1"13 :nu—l

u

or N

53 (v) n

u

or N

u

or N 7and(vi)n1=1,n2=2,n3=3,nu=u,
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where N = 0 a5 depicted in Fig. 1(a)(i).

non-zero Value of about o)o, at E’ =0

Its observable

exmn.ential characteristic ig revealed in the interval 1
0 < Ek <1 . This special case can be explained from !
equation (40): AN the quantum numbers are set to zero. Thus
all termns depending on the Quantum states of the system are

reduced to unity or a constant. The only dependent factor is

the exponential function which reduces to one at i‘k =0
and zero at large values of L. Hence the maximun value of
this distribution is at JZL\ = 0 . The distribution, in L3
general , decreases exponentially with increasing fk q
The results of Fig. 1 reveal that for the case where the

quantuwn states r, s, t and v are all zero, probability

amplitudes converge more slowly. When the states r, s, t and

v are not all zero, the amplitudes of the distribution converge

1 bability occurs only
rapidly. In both cases the maximum proba y s
es of the ratio ];:k for each distribution.
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4.2
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WM. The two noticeahle differences in
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Fig. 2 tells ys that there ig strong

coupling between the ogeijlators and the central mass M

for the ratio m/M > 4 and weak coupling for m/N <1, at low

ék values and conversely weak coupling for mM > 1 and strong

caupling for m/M < 1 at high ik values. Hence intrinsic

states are easily excited for higher mass ratios at low i |
energies of free motion and are also excited for low mass

ratios at high cnergies of free motion.

Probability Distributions as Punctions of
Intrinsic States (nj, n,, ng, n,J.

Here, in Fig. 3 we have plotted probabilities as
3

functions of the intrinsic quantum numbers. We have kept n,
i robability distributions
and n, constants and varied n, and p

i in Fig. 3
for 'different values of n, obtained. Note that in Fig we
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We now exanine the behaviour of the probability amplitudes

for different nmass ratios. Figs. 4(a) - u(c) are plots or

probability anplitudes as functions of the ratio m/M. We
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t=v=20and plotted values for
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€ observe that the Probability amplitudes
vanish very slowly with increasing m/M in Fig. 4(b) and more

slowly in Fig. uW(e). In contrast, probability amplitudes

vanish much faster in Fig. 4(a). The physical significance
of this is that intrinsic excitation is possible for large
ratios of masses and also possible for higher-lying energy

states.

The remarkable similarities and differences between the

three figures u4(a) - 4(c) are illustrative: The probability
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pr . The amplitudes of a
co ive motion obtained a5 multiple integrals ha
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solved i
exactly. These amplitudes represent probabilities

of intrinsic energy states being excited:

The probability distributions obtained in the previous
chapter are the amplitudes for transitions into discrete
energy levels. The results calculated and presented graphically
show interesting features which are swmmarized as follows:

The probability distributions are peaked at specific values
of the function variables (energy of free motion, B = E /v 3
principal quantwn nusber, N = 1y *+ Tz +ng +ny ;and the

ratio of masses m/M). These indicate th
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probability amplitude:
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The results obtained are in good agreement with the ones
calculated from a previous work (Mshelia et al, 1981),
Although cur simulation here is based on a sinple nodel, the
formulation we have developed can be extended to the more
realistic but more compiex case of heavy-ion collisions, where
energy dissipation plays a very important role in deciding

whether the fusion of superheavy elements is possible or rot.
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chain of n linear harmonic oscillators can be carried out
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It can be shown that the collective amplitudes,

krstv
f (2)

n nynany

» obtained in equation (40) satisfy the nomalization

conditions. Recall the assertion that the total wave-function
“krstv(xl’ Xg2s X35 X5 Z) can be expanded in terms of the complete
orthonormal set of oscillator functions $;(x1, X2, x3, Xy, 2). The
normalization of gty Blves
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Comparing equations (A.5), (A.6) ang (A7) we have
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Thus the amplitudes in equation (40) satisfy the normalization

conditions ‘
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