
SHORTEST PATHWAY AND TIME DETERMINATION IN
A WIRELESS PACKET SWITCH NETWORK SYSTEM

BY

OFEM, OFEM AJAH
REG. No. MTH/Ph.D/08/002

A Ph.D DISSERTATION CARRIED OUT IN THE
DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF CALABAR-CALABAR
NIGERIA

SUBMITTED TO

GRADUATE SCHOOL
UNIVERSITY OF CALABAR

CALABAR, NIGERIA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
AW ARD OF DOCTOR OF PIDLOSOPHY (Ph.D)

IN COMPUTER SCIENCE

JULY,2016

------~~

•

CERTIFICATION

I, Ofem, Ofem Ajah with registration number MTH/Ph.D/08/002 of the

Department of Computer Science, hereby certify that this dissertation on the

"shortest pathway and time determination in a wireless packet switch network system

in the University of Calabar" is original, and has been written by me. It is a

record of my research work and has not been presented before in any previous

publication.

Ofem, Ofem Ajah
(Student/Candidate)

ii

---f~'(
Signature ~~ .. ~ ...

Date ~~1 .. ~.t../..~l b

•

DECLARATION

We declare that this thesis entitled "shortest pathway and time

determination in a wireless packet switch network system in the University of

Calabar" by Ofem, Ofem Ajah (Reg. Number. MTH/Ph.D/08/002), was carried

out under our supervision, has been found to have met the regulations of the

University of Calabar. We therefore recommend the work for the award of

Doctor of Philosopher (Ph.D) in Computer Science.

Dr. Azom E. Edim
(Chief Supervisor)
Qualification: B.Sc., M.Sc., Ph.D.
Status: Senior Lecturer

Prof. Joseph 0. Esin
(Supervisor)
Qualification: B.Sc., M.A. ED.D .
Status: Professor of Research

Dr. Azom E. Edim
(Head of Department)
Qualification: B.Sc., M.Sc., Ph.D.
Status: Senior Lecturer

Dr. Rufus Okoro
(Graduate Sch. Representative)
Qualification: B.Sc., M.Sc., Ph.D
Status: Reader

Prof. Stephen 0. Olabiyisi
(External Examiner)
Qualification: B.Tech, M.Tech., M.Sc., Ph.D.
Status: Professor of Computer Science

Ill

.4\~ Signature ____ :.::!(. ___ =

Signature---~-~----~
Date---62:.l~-~~~

Signature----~--
Date---~dz/J_Q ___ _

Signature-------------------

2, ~A;t) ~ tl
Date------------------------

,,

ACKNOWLEDGEMENTS

Let me start by thanking the Almighty God for providing His sufficient grace

that sustained me throughout the period of this programme. May His Name continue

to be praised forever more, Amen.

I sincerely acknowledge with utmost gratitude the immense contributions of

my supervisor, Dr Edim, E. A. and Co-supervisor, Prof. Joseph 0. Esin, I appreciate

their guidance, encouragement, useful criticisms and suggestions which enhanced the

completion of this research.

I would like to thank my mentor: Prof. Zolt Lipcsey and Prof. Okecha for their

constant encouragement and stimulating advise. Not forgetting my colleagues, Or.

(Mrs.) Eteng, I.E., Dr. F. U. Ogban, Dr. Arikpo I., Dr. E. E. Williams, Dr. Akpan, S.

S., Dr. Ele, B. I., Mr. Ele, S. I., Engr. Osahon, 0., Mr. Isamo, E., Dr. C. Onwukwe.,

Dr. Effang, 0., Dr. Ernest, E. and others, who have been of great moral inspiration to

th is research work.

My deepest and immeasurable gratitude goes to my wife Mrs. Glory Ofem for

her encouragement. I wish to register my thanks to my children, Master Ofem Ofem,

Joseph Ofem and Elisha Ofem. My appreciation goes to my course mate, Mr. Essien

Eyo, whose contributions served as a motivating factor in writing this thesis.

iv

•

ABSTRACT

The problem of finding the shortest pathway and time between two nodes is a well

known problem in network analysis. Optimal routing has been widely studied for

interconnection networks. This research considers the problem of finding the shortest

pathway and time in a wireless packet switch network system in the University of

Calabar environment, its theoretical approach, implementation and application.

Firstly, the research problem is to design and analyze a wireless packet switch

network system. Some routing policies used for packet transmission in a network can

be a hindrance to efficient transmission of packets in the network, hence, the research

aim is the problem of network routing and packet transmission delay, '" ith an

objective of determining the shortest path diJ and time tiJ taken by a packet to traverse

from a given source node to a given destination (sink) node through an interconnected

communication links. The methodology adopted for this research was a formation of a

modified Dijkstra's algorithm which uses a comparison addition model in determining

the shortest path and time in the network system. The modified Dijkstra's algorithm
finds one shortest path in a network with time dependent costs of link in order of O(n

+ m) time, where n is the number of nodes and m is the number of links in the

network. The second algorithm designed for the purpose of this research was the open

shortest path first (OSPF) which uses the concept of Dijkstra's in transmitting packets

in a network. It also runs in the order of O(n + m) time. Both algorithms were

presented in the context of wireless packet switch network system. Three routes were

considered in the research. Two experiments were carried out in the network known

as Tracet and Ping test. From the simulated results in the wireless packet switch

network, it was found that Route I shows a distance of 120m with a speed of 7.06m/s

and time range of 0.017s to the destination and back through the Internet Control

Message Protocol (ICMP Echo). Route 2 shows a distance of 11 Om with a speed of

6.88m/s and time range of 0.0 l 6s to the destination and back through the Internet

Control Message Protocol (ICMP Echo). Finally, route 3 shows a distance of I OOm

with a speed of 7.69m/s and time range of 0.013s to the destination and back through

the Internet Control Message Protocol (TCMP Echo). This indicates that, distance is

directly proportional to time, and inversely proportional to the speed taken for data to

move to and fro in the packet switch. The researcher recommends that the designed of

an efficient algorithm for the transmission of packets in a network must fulfilled the

following conditions; (i) minimize the utilization of memory core (ii) minimizes the

run time (iii) reduce rate of packet lost (iv) maximizes the efficiency of the system (v)

minimizes system design and maintenance cost. (Word Count: 478) .

v

TABLE OF CONTENTS

TfTLE PAGE

CERTIFICATION II

DECLARATION iii

ACKNOWLEDGEMENTS iv

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF ABBREVIATIONS x

CHAPTER ONE: INTRODUCTION

I. I Background of the study

1.2 Statement of the problem 4 ' (

1.3 Aim and objective of the study 5

1.4 Scope of the study 6

1.5 Significant of the study 7

1.6 Definition ofterms 7

CHAPTER TWO: LITERATURE REVIEW

2.1 Introduction 10

2.2 Shortest Pathway, time dependent and router algorithm 12

2.2.1 Shortest pathway 12

2.2.2 Time dependent 14

2.2.3 Router algorithm 16

2.2.4 Congestion 20

vi

2.3 Shortest pathway algorithm for high time complexity and low accuracy 24

2.3.1 Traditional Dijkstra Algorithm 25

2.3.2 Traditional Layer First Searching (LFS) algorithm 25

2.4 Description and evaluation of shortest path algorithms 27

2.4.1 Dijkstra algorithm 28

2.4.2 Floyd-Warshall algorithm 34

2.4.3 Bellman-Ford algorithm 36

2.4.4 Layer First Searching algorithm 38

2.5 Conceptual implementations of described shortest path algorithms 46

2.5.1 Floyd-Warshall Algorithm implementation 47

2.5.2 Bellman-Ford Algorithm Implementation 48

2.6 Review of Shortest Path Algorithms 48

CHAPTER THREE: METHODOLOGY AND SYSTEM ANALYSIS

3.1 Introduction 57

3.2 Research design 57

3.2.l Model formulation 58

3.2.2 Model specification 62

3.2.3 Model development 63

3.2.4 System analysis of the modified Dijkstra's algorithm model 67

3.2.5 Model validation 72

3.2.6 Algorithm formulation 73

3.2.7 Instrument for algorithm development 74

3.2.8 Reliability test 75

3.2.9 Network design 78

vii

3.2. l 0 Experimental design 81

3 .2.11 Evaluation 81

3 .2.12 Network validation 82

3.3 Research methodology 82

3.3.l General research information 83

3.3.2 Comprehensive site study 86

3.3.3 Analyzing various requirements 89

3.3.4 Collate all relevant data 90

3.3.5 Modification and identification of variables 90

3.3.6 Implementation of the algorithm 92

3.3.7 Modified OSPF (protocol suit for the modified Dijkstra algorithm) 93

3.3.8 Application 96

CHAPTER FOUR: RESULTS AND ANALYSIS

4.1 Introduction 97

4.2 Description 97

4.3 Discussion of findings 113

CHAPTER FIVE: SUMMARY, CONCLUSION AND RECOMMENDATIONS

5.1 Summary 115

5.2 Conclusion 116

5.3 Recommendations/Suggestions for future work 117

REFERENCES 120

APPENDIX 126

Vlll

LIST OF TABLES

TABLEl. The comparison between the time complexity and space 43
complexity of the algorithms.

TABLE 2: The comparison of time consumption between Dijkstra and 45
LFS

TABLE 3: Algorithm of different time complexity 50

TABLE 4: Output result from the simulated experiments 100

ix

LIST OF FIGURES ..
FIGURE 1: Network diagram showing the source to the

destination node 80

FIGURE 2: Hierarchical stages to research formulation 84

FIGURE 3: Google snap shot of the test bed 87

FIGURE4: Test-Bed (Network Design Diagram) 88

FIGURE 5: Speed and Bandwidth measurement 91

FIGURE 6: Diagram of a connected remote network 99

FIGURE 7: Graph showing Route against Distance, diJ (m) 101

FIGURE 8: Graph showing Route against Time, tiJ (s) 102

FIGURE 9: Graph showing Time (ms) against Distance (m) 103

FIGURE 10: A prototype model of an undirected wireless packet
switch network system in the University of Calabar 106

x

LIST OF ABBREVIATIONS

CPM Critical Path Method

CPU Central Processing Unit

EON European Optical Network

HOL Head-Of-Line

ICCRG Internet Congestion Control Research Group

IP Internet Protocol

LAN Local Area Network

LFS Layer First Searching

OSPF Open Shortest Path First

QDA Quantum Dijkastra algorithm

QoS Quality of Service

SANs System Area Networks

SP Shortest Path

SSSP Single Source Shortest Path

SSTDSP Single Source Time-Dependent Shortest Path

STP Spanning-Tree Protocol

PL Permanent Label

TL Temporary Label

FIFO First-In-First-Out

STD SP Single Time Dependent Shortest Path

IS-IS Intermediate System to Intermediate System

GPS Global Positioning System

-•

xi

CHAPTER ONE

INTRODUCTION

1.1 Background of the Study

Packet switch networks are dynamically changing systems that transport

packets of data from different sources to different destinations through a network of

interconnected communication links. The state of communication links can change,

becoming more, less congested or failing completely. Modern telecommunication

traffic is performed through packet switching networks: information is broken into

small pieces (typically I 000 bytes in length, or less) known as packets. Each packet

contains a portion of data as well as some control information. The control

information includes the information required to be able to route the packet through

the network and deliver it to its destination node. At each node, the routing

information is examined and the packet is passed on to the next node. The routing

policy plays significant role in determining the overall network performances. Ideal

algorithm comprises finding the "optimal" path(s) between source and destination

node, enabling high speed data transmission and avoiding a packet loss (Rowe and

Schuh. 2005).

The shortest path problem can be formulated as one of finding a minimal cost

path that contains the designated source and destination nodes.

The apparent solution to shortest path problem is locating a path between two

vertices (or nodes) in a graph such that the sum of the weights of its constituent edges

is minimized. Routing protocols such as Open Shortest Path First (OSPF) uses the

Dijkstra's algorithm in calculating the shortest path in a network. It works first, by

constructing a shortest path tree then the routing table is populated with the resu lting

best paths.

2

Shortest path and time determination in packet switch network system has

been a subject of extensive research, resulting in a number of algorithms for various

conditions and constrains. In a packet switch network system, communication

between two hosts generally are grouped into the following classification; the

transmitting host delivers to a node a block of data, called a packet, which are

addressed to the destination host (David, 2012). Furthermore, Anupama and Anuj

(20 14) opined that such architecture insists routers to broadcast the local resource

status and the local topology information to all routers. They went ahead to explain

that, one manner of providing Quality of Service (QoS) in routers is to apply traffic

prioritization. The idea is to classify the traffic to a multiple level of priority queues.

The priorities are assigned on packet peculiarities; the protocol uses packet type,

source and destination networks. Enhancements are done by subdividing the link

capacity into different classes. The traffic is assigned to each class and the routers

serve each class with different priority (Anupama and Anuj, 2014). However, the

traffic prioritization improves the QoS by class of traffic on a given link, but that link

is chosen by the shortest path routing mechanism, which is independent of the QoS

requirements. The optimal routing algorithm must keep the delays low as the flow

control increases. Hence, the routing increases the throughput and restricts the delay

for the packet, during high traffic conditions. The average delay per packet is reduced

also at steady or low traffic conditions.

The problems associated with routing in packet-switched networks have been

identified and most widely studied by communications network researchers. A large

body of literature reviewed for this study presents the theory and experience gained

• from several decades of progress. One of the earliest research networks was the

original ARPANET experiment (Morley, 2013). During the early years of Arpanet

•

3

development, researchers interested in routing were concerned with issues that

included low bandwidth error-prone links, unreliable electronics, and limited

processing power and storage capacity. Substantial effort was expended to establish

the insight required to understand and solve the resulting routing problems.

Accordingly, Anupama and Anuj (2014) stated that, the function of a routing

algorithm is to guide packets through the communication network to their correct

destination. Routing algorithm, initially inspired by the Hopfield neural network

(Hopfield, 1982), is designed to find the optimal link between source and destination

node taking into account not only the shortest path but also several in-node

constraints, including link bandwidth, incoming flow and flow statistics, addressed to

avoiding the packet loss (Hopfield, 1985).

1n the early years of 21st century, the communication by packet flow in large­

scale computer networks in an information-oriented society has become much more

important in our daily life than ever before. According to Silla and Duato (2000),

adaptive routing algorithms tend to select the route of packets dynamically, have been

widely studied to make the best use of bandwidth in interconnection networks of

massively parallel computers and system area networks (SAN). In the context of SAN

operations proposed simple methods to support adaptive routing in lnfiniBand

switches (Martinez et al. , 2004).

As indicated in Jnternetworking Technology Handbook (ITH) (2002) in

today' s Internet Protocol (IP) networks, routing protocols are responsible for building

a path that carries a data packet to its destination. Each router in the network has to

send the packet to its next hop, independently from what other routers are doing at the

time, on rules based only on its own knowledge base. These routing tables are built

based on topological and traffic information, send and capture from information being

4

received from other routers. Routing forms an integral part of the communications

subnetwork. The routing algorithm is a part of the network layer which is responsible

for deciding on which outbound queue an incoming packet should be transmitted. It

guides packets through the communication network to their correct destinations. If the

network uses datagrams internally, this decision must be made for every arriving data

packet. An ideal routing algorithm should strive to find an optimum path for packet

transmission within a specified time so as to satisfy the Quality of Service (QoS) (Ahn

et al., 200 l). There are several search algorithms for the shortest path (SP) problem

such as the breadth-first search algorithm, the Dijkstra algorithm and the Bellman­

Ford algorithm, to name a few. Since these algorithms can solve shortest path (SP)

problems in polynomial time (Ahn et al., 2001) (for example if the number of steps

required to complete the algorithm for a given input is for some non-negative integer,

and complexity of the input is said to fast), they will be effective in fixed

infrastructure wireless or wired networks. But, they exhibit unacceptably high

computational complexity for real-time communications involving rapidly changing

net work topologies (Ahn et al, 2001). In majority of the current packet-switching

networks, form of SP computation is employed by routing algorithms in the network

layer (Ahn et al., 2001). Specifically, the network links are weighted, the weights

reflecting the link transmission capacity, the congestion of networks and the estimated

transmission status such as the queuing delay of head-of-line (HOL) packet or the link

failure.

1.2 Statement of the Problem

The purpose of this research is to design and analyze a wireless packet-switch

network system in the University of Calabar community. Most routing policies used

for packet transmission in a network can be a hindrance to efficient transmission of

5

packets in the network. Finding the optimal routing algorithm is a major challenge.

The solution to the routing algorithm change will help to keep the delays low,

increase the throughput and restrict the delay in packet transmission and congestion in

the network. Finding the shortest path and considering other in-node constraints will

increase network efficiency and avoid packet loss.

This research study analyses four different algorithms and their efficiencies

and complexities in relation to packet transmission in the network, and will attempt to

bring up a more efficient algorithm to solve the routing problem in a packet switch

network. To achieve this, the researcher decided to modify the data structure for the

Dijkstra algorithm. The modified Dijkstra's algorithm uses the linked-list priority

queue (Anupama and Anuj, 2014), in order to design a network system with the

higher Quality of Service (QoS) and maximizes system efficiency through the

minimal path weight.

1.3 Aim and Objectives of the Study

The aim of this study is to develop a more efficient algorithm to solve the

network routing and packet transmission delay, The specific objectives are to:

a) design and analyze a wireless packet switch network system within unical.

b) determine and identify the shortcomings of the existing shortest path, time

determination techniques and proposed routing algorithms to overcome it.

c) design an algorithm in solving the high time complexity (delay) and low

accuracy.

d) evaluate different algorithms in order to solve the shortest path problem, as

well as to understand the different algorithms in terms of graph

6

e) explain the general concepts and the implementations of Dijskra·s Algorithm,

Floyd-Warshall Algorithm, Bellman-Ford Algorithm, and Layer First

Searching (LFS) Algorithm design.

1.4 Scope of the Study

In this research, four algorithms that were adequately reviewed were: Bellman

Ford, Floyd Warshall, Dijkstra and Layer First Search. It was found that all of them

are suitable algorithms for solving a single source shortest path problems in a

polynomial time. However, due to universal acceptability of Dijkstra's algorithm in

solving shortest path problems with weight costs dij :;:: 0, its data structure was

modified, and the modified Dijkstra's algorithm used in this research prove to be more

efficient than all the other algorithms. The modified Dijkstra's algorithm was used to

investigate the shortest pathway and time in a wireless packet switch network system.

The focus of the study is to investigate the shortest pathway and time

determination in a wireless packet switch network system. The scope of the study will

comprise a network system of six nodes where each node denotes a switch. The

universe of the nodes will include node 1, node 2, nodes 3, node 4, nodes 5 and node

6 located at different geographical sites within the University of Calabar

heterogeneous environment. In this study, we shall design and analyse a complete

wireless network system, run the system with some ping messages from source to

destination nodes and determine the shortest distance and time it takes the message

(packets) to traverse from the source node to the destination node. The protocols suit

for the message in the network uses the Dijkstra's algorithm modified algorithm

known as Open Shortest Path First (OSPF).

7

1.5 Significance of the Study

The University of Calabar does not have a network that links its various

institutions together. Developing this network and an algorithm that will handle the

routing of message will be of immense benefit to the institution. This design can be

adopted and expanded to cover the entire organization. It can also serve as a basis for

other institutions in implementing a network for their daily operations.

The following importance are achieved in optimizing the path and time for

messages to traverse from source to destination node for example;

a) faster and timely communication of data among staff, student and other users

who will be using the network;

b) the network would enhance the sharing of hardware and software system

resources e.g. printers and data files, research materials, and more.

c) with the aid of this network system e-library and e-learning network system

can be developed

d) Optimize the path and time for messages to traverse from source to destination

node.

e) improve the efficiency of the network system, which will lead to improved

quality of service (QoS) in the network.

1.6 Definition of terms

Shortest Path: A path between two nodes in a networking system such that the sum

of the weights of its constituent edges is minimized.

Route: It is a single link between two nodes that are integral part of a larger network

which are identified as tangible routes including roads and rails.

Routing information: Consists of the unit of update used by a given routing

algorithm to communicate current link, node or path status information. This

+

t

8

information is then used by the algorithm to compute routes and build the local

routing table

Network operating system: A network operating system is a computer operating

system that is designed primarily to support workstation, personal computer, and in

some instances, older terminal that are connected on a local area network (LAN).

Packet switch: A packet switch is a node in a network which uses the packet­

switching paradigm for data communication. Packet switches can operate at a number

of different levels in a protocol although the exact technical details differ

fundamentally. However, they all perform the same function; they store and forward

packets.

Bandwidth: In computer networks, bandwidth is used as a synonym for data transfer

rate, the amount of data that can be carried from one point to another in a given time

period (usually a second). Network bandwidth is usually expressed in bits per second

(bps); modem networks typically have speeds measured in the millions of bits per

second (megabits per second, or Mbps) or billions of bits per second (gigabits per

second, or Gbps). Also bandwidth as the range of frequencies -- the difference

between the highest-frequency signal component and. the lowest-frequency signal

component -- an electronic signal uses on a given transmission medium. Like the

frequency of a signal, bandwidth is measured in hertz (cycles per second). This is the

original meaning of bandwidth, although it is now used primarily in discussions about

cellular networks and the spectrum of frequencies that operators license from various

governments for use in mobile services.

Throughput: Throughput is a measure of how many units of information a system

can process in a given amount of time. It is applied broadly to systems ranging from

various aspects of computer and network systems to organizations. Related measures

9

of system productivity include , the speed with which some specific workload can be

completed, and response time, the amount of time between a single interactive user

request and receipt of the response.

Latency (Delay): The amount of time it takes a packet to travel from source to

destination. And when a data packet is transmitted and returned back to its source, the

total time for the round trip. Latency also refers to time interval or delay when a

system component is waiting for another system component to do something.

Propagation time: is the amount of time it takes for the head of the signal to travel

from the sender to the receiver. It can be computed as the ratio between the link

length and the propagation speed over the specific medium.

Transmission time: is the amount of time from the beginning until the end of a

message transmission.

Queuing time: is the time a job waits in a queue until it can be executed.

State of a node: This is the ordered pair of its distance value dlJ and its status label.

. ..,..

2.1 Introduction

10

CHAPTER TWO

LITERATURE REVIEW

There is a wealth of literature on variations of the shortest path problem

however, despite such intense research, very few of the results beyond the classical

algorithms of Dijkstra, Bellman-Ford, Floyd-Warshall, and min-Plus Matrix

multiplication work with real-valued edge lengths using only comparisons and

additions.

Previous experimental studies of shortest path algorithms focus on very

restricted classes of inputs, where the edge lengths were assumed to be uniforml y

distributed, relatively small integers. This approach may be preferable for a specific

application. However, any algorithm implemented for a more general use must be

robust. By robust, it means that it makes no assumptions on the distribution of inputs,

and minimal assumptions on the programming interface to the input (in the case of the

shortest path problems this leads naturally to the comparison-addition model) ; the

algorithm is the best robust SSSP and APSP algorithm for positively-weight sparse

directed graphs.

As explained in the chapter one, chapter two provides a review of the

extensive literature that exists in the area of routing algorithms which are responsible for

forwarding the data packets over routes to provide optimal performance, as relevant to

this research study.

In the area of network routing, OSPF routing protocol is required to maintain

the status of all the routes in the network. A router runs a special routing algorithm to

compute routes to all known destinations. A routing algorithm mainly consists of the

following two parts - an initialization step and a recurring step that is repeated until

the algorithm terminates. The recurring steps involve updating the minimum distance

of each router for all destinations until the algorithm converges to correct shortest

II

path distances. The routing algorithms differ in the way by which the updating step is

implemented.

Earlier researchers have performed various operations on Dijkstra's algorithm

to determine the shortest path between the nodes and ·had obtained good results in

their research for the specified number of nodes. But the results were limited to the

number of nodes fixed at the time.

Fuhao et al. (2016) introduced the classical Dijkstra algorithm in detai I, and

described the useful process of implementation of the algorithm and drawbacks of the

algorithm: it describes the adjacent node algorithm which is a better optimization

algorithm based on Dijkstra algorithm. This algorithm makes correlation with each

node in the different network topology and information, and avoids the use of co­

related matrix that contains huge infinite value, and making it more reliable and

suitable analysis of the network for mass data. It is proved that this algorithm can save

a lot of memory space and is more reliable to the network with huge nodes, but in this

research they found that as node grew larger this approach gets slow in searching

nodes. Liu and Chen (2016) used heap sort for unvisited nodes in geography network

to improve the efficiency and reliability of Dijkstra algorithm but again it is

necessary each time to arrange the heap(sorting) when node is inserted, thus making

the process slow.

In Nikita et al. (2016) studies, introduced the Dijkstra algorithm in detail, and

illustrated the disadvantage of implementation of the algorithm. They applied the

algorithm on directed weighted graph to find shortest path between two nodes, they

worked on non-negative nodes. Nikita and others also, discussed about how they can

improve Dijkstra algorithm in order determining the shortest path according to weight

by increasing some number of nodes. Most of the algorithms were modified to find

12

out useful result using Dijkstra's algorithm. They named Thorup's algorithm, adjacent

node algorithm, a heuristic genetic algorithm, augmented shortest path, and improved

better version of the Dijkstra's algorithm and a graph partitioning based algorithm.

But this algorithm was very complex to sort out the Dijkstra's problem (Ravi et al.,

2016).

Jn this research they used Critical Path Method (CPM) to find out critical

activities on the critical path so that resources may be use in less time to find out the

result. To find out the critical path, three parameters such as latest event time, earliest

event time, and slack time for each of its activities are found. They modified

Dijkstra's algorithm for critical path method to find latest event time, slack time,

earliest event time for each of its activities in a project network (Charika et al., 2016).

They read out how to select a path with the minimum cost in terms of expected end-to

end delay in a network. They worked on the transmission delay and queuing delay in

buffer.

Paramita (2014) formulated the quantum algorithm for the Dijkastra's shortest

path algorithm and introduced as Quantum Oijkastra algorithm (QDA) which gives

fruitful result in quantum network and circuit design, which is first of its kind.

Implementing QDA they obtained good result but again the major problem was

whenever they inserted new node it must be optimized using QDA and they apply

Dijkastra's shortest path.

2.2 Shortest Pathway, Time Dependent and Router Algorithm

2.2.1 Shortest pathway

ln the Internet environment, the routers compute the flow transmissions

according to the shortest path algorithm. This algorithm is efficient in finding optimal

route, according to the link weights presenting the traffic load on them (Anupama and

13

Anuj, 2014). Furthermore, according to them, the limitation of this algorithm is that it

cannot route the flow along alternative paths. ln common network structure there are

several paths between the source and destination nodes. Also, the Open Shortest Path

First (OSPF) protocol routes according to the shortest path criteria, does not estimate

and apply alternative routing to available paths. Thus Quality of Services (QoS) is not

supported only by shortest path management. The optimal routing under (QoS)

requirements is a complex problem for implementation (Dijkstra, 2012; Bellman­

Ford, 2012). Such architecture insists routers to broadcast the local resource status and

the local topology information to all routers. One manner of providing QoS in routers

is to apply traffic prioritization. The idea is to classify the traffic to a multiple levels

of priority queues. The priorities are assigned on packet peculiarities: the protocol

uses packet type, source and destination networks. ·Enhancements are done by

subdividing the link capacity into different classes. The traffic is assigned to each

class and the routers serve each class with different priority.

Dijkstra, (2012) and Bellman-Ford, (2012) went further to say that, the traffic

prioritization improves the QoS by class of traffic on a given link, but that link is

chosen by the shortest path routing mechanism, which is independent of the QoS

requirements. The optimal routing algorithm must keep the delays low as the flow

control increases. The routing increases the throughput and restricts the delay for the

packet, during high traffic conditions. The average delay per packet is reduced also at

steady and low traffic conditions. Open Shortest Path First (OSPF) is a well known

real-world implementation of Dijkstra algorithm used in network routing. In real

networks, particularly in Ethernet networks, the Spanning-Tree Protocol (STP) runs

on the network before the OSPF (Beaubrun and Pierre in Anupama and Anuj, 2014).

14

According to Beaubrun, Pierre in Anupama and Anuj (2014), in a general

way, a spanning tree of a graph is a sub-graph which is also a tree that contains all the

nodes. In other words, in a network environment, where redundant links are common,

the STP causes these links to appear closed for the operation of the network elements,

as to eliminate the appearance of duplicate messages, such as Neighbour discovery

messages. Rings are a particular interesting class of topologies networks, designed to

allow an additional level of connectivity for each node (there are now two possible

paths to the destination node instead of one), with the cost of a single additional link.

Rings are common elements in existing and planned networks, including European

Optical Network (EON) and the NSF net. Short version of EON (known as termed

COST 239) and the NSF net network, - in both figures, among others, several four

node ring sub networks, can be detected, including Amsterdam, Berlin, Prague,

Luxembourg for EON and Pittsburgh, Princeton, Boston and Ithaca for NFS net.

2.2.2 Time dependent

Time-dependent network is provided by Gao and Chabini (2006) who

propose a two-dimensional taxonomy of STDSP problems according to arc cost

dependency and information access. Uncertainty is a fundamental property of

transportation networks which evolve continually due to varying travel demand,

traffic capacity, and individual behaviour.

Over the past decades, the concept of strategic scenario based traffic

assignment has emerged as a promising method to systematically incorporate these

uncertainties into transport models (Hamdouch et al., 2004; Marcotte et al., 2004;

Waller et al., 2013; Dixit et al., 2013). In strategic traffic assignment, the travel

demand is modeled as a random variable which can take a finite number of values

(scenarios). In the process each scenario corresponds to a representation of the

15

network state. However, in a strategic traffic assignment, users minimize their

expected travel time while recognizing the underlying probability distribution for the

scenarios and the network travel times in each scenario. A strategic dynamic traffic

assignment problem requires that users be able to find the Shortest Path (SP) in a

time-dependent network across a set of stochastic demand scenarios.

The case where delay functions are continuous may potentially result in a

non-polynomial complexity of the TDSP problem in First-In-First-Out (FIFO)

networks. This result was recently proven for piecewise linear delay functions by

Foschini et al. (2011) who settled a conjecture established by Dean (2004). In this

context, Waller and Ziliaskopoulos (2002) showed that polynomial time recourse

algorithms can be obtained in the case where arc costs exhibit a limited spatial

temporal dependency.

Furthermore, Rey, Dixit, and Waller (2013), investigates the efficiency of

routing algorithm in stochastic, time-dependent networks with respect to different

probability structures on arc costs as well as different node waiting policies. The

main contribution of stochastic is to characterize the single source time-dependent

shortest path (SSTDSP), which is a variant of the STDSP problem where time­

dependent arc costs are organized by scenarios, and each scenario has an associated

probability of occurrence. The SSTDSP is considered as the least expected time-path

across a finite set of stochastic scenarios, in which the link travel times are

stochastically dependent. Notably, during departure, it is assumed that only one

scenario can be realized. In this vein, there was a complete stochastic dependency of

the link travel times in contrast to the more general STDSP, where the random

variables representing the link travel times are assumed to be independent.

16

Results of findings confirm that the assomptions in the modeling of

stochastic, time-dependent networks can have a significant impact on the

computational efficiency of routing algorithms.

2.2.3 Router algorithm

The routing algorithm is described by Moy in Shree and Garcia-Luna-Aceves

(2014) as Open Shortest Path First (OSPF) that relies on broadcasting complete

topology information among routers and organizes the internet hierarchically to cope

with the overhead incurred with topology broadcast. It also guides packets

information stored as small strings of bits through the communication subset to their

correct destinations. Reasons for the complexity of routing algorithms includes:

coordination between the nodes in the network, failures of the links and nodes;

congestion of traffic links. Two types of algorithms are used for routing in networks

shortest path routing algorithms and Bellman-ford algorithm based on other measures.

The efficiency of a routing algorithm depends on its performance, during congestions

in the network. The routing algorithms must perform route choice and delivery of

messages. The performance of the routing is assessed according to the throughput in

the network quantity of data transfer and the average packet delay quality of service.

Route planners and associated features are increasingly popular among web

users (Delling, 2009). Several web sites provide easy-to-use interfaces that allow

users to select a starting and a destination point on a map, and a path between the two

points satisfying one or more criteria is computed. The possible criteria are, for

example minimize travel time, total path length or estimated travel cost. Similar

capabilities are found in Global Positioning System (OPS) devices and as these

usually have a limited amount of memory and Central Processing Unit (CPU) power,

several devices now use different kinds of wireless connections in order to query a

17

web service, which computes the desired path using more sophisticated algorithms

than those available on the portable device (Delling, 2009).

Goldberg and Harrelson (2005) and Ikeda et al. (2004), users are typically

interested in the fastest path to reach their destination, such as the shortest path in

terms of travel time. However, only static information is taken into account when

computing this kind of shortest paths, while it is well known that the travel time over

a road segment depends on its congestion level, which in turn is dependent on the

time instant at which the road segment is traversed (Goldberg and Kaplan, 2008). This

implicitly requires complete knowledge of both real-time and forecast traffic

information over the whole road network, so that we are able to compute the traversal

time of a road segment for each time instant in the future. Apparently, assumption is

obviously unrealistic; nevertheless, several statistical models exist which are able to

predict to a certain degree of accuracy the evolution of traffic (Schultes, 2005). This

type of analysis is made possible by traffic sensors (electromagnetic loops, cams).

such development are positioned at strategic places of the road network and

constantly monitor the traffic situation, providing both high-level information such as

the congestion level of a highway and low-level information such as the travel time in

seconds over a particular road segment (Sanders and Schultes, 2005).

Pyrga et al. (2005) opined that, using a large database of historical traffic

information and statistical analysis tools speed profiles can be computed for the

different road segments, including cost functions that associate the most probable

travel speed (and thus travel time) over a road segment with the time instant at which

the segment is traversed. However, Mohring et al. (2005), typically put that, there are

several classes of these speed profiles, one class of profiles for weekdays and another

one for holidays. A road network such that the travel time over a road segment

18

depends on the time instant at which the segment is traversed is called time-dependent

(Nannicini et al., 2008). One practical problem arises: as road networks increases,

traffic sensors cannot cover all road segments. Furthermore, Nannicini et al. (2008)

that in real-world scenarios, only a small part of the road network is constantly

monitored, while the remaining part is uncover due to speed profiles. The monitored

part of the road network corresponds to the most important road segments, (I)

freeways (2) intersections (3) highways. For long distance paths, the traffic

congestion status of these segments is the most important for determining the total

travel time, and is also the most significant from a user's point of view: it is

reasonable to assume that a car driver who asks for the fastest path to reach the

destination wants to avoid traffic jams on highways and freeways impact roads, which

have a large influence on the total travel time, and to avoid congestions at local level

near the departure the destination point are less important, as well as more difficult (if

not impossible) (Liberti et al., 2008) to foresee. ln a realistic situation, only a part of

the road network is provided with real-time and forecast traffic information, while the

remaining part is associated with static travel times.

According to Lavor et al. (2006), this scenario further need to be examined

due to the fact that the speed profiles are not accurate traffic information available.

Indeed, it is clear that dynamic network information, as detected by the traffic sensors,

gives the best estimation of travel times for the time instant at which it is gathered.

Several predictive models for short and mid-term traffic forecasting exist, which are

beyond the scope of this work and will not be discussed here; these models are based

on the real-time information and capitalize on the temporal and spatial locality of

traffic jams, so that they are able to predict congestions with a larger degree of

accuracy with respect to speed profiles, which only take into account historical data

-

19

(Kerner, 2004; Hansen et al., 2006). Naturally, the historical speed profiles are not the

only source of traffic information and tend to provide a good estimation of long term

traffic dynamics, but for short and mid-term forecasting more accurate dynamic data

is available. Therefore, the verge process that associate travel times to road segments

and the time at which the segment is traversed should ideally be dynamic, should be

based on historical speed profiles, but they should be frequently updated in order to

take into account both real-time traffic information· and short and mid-term traffic

forecastings. It is contended that the time required for each shortest path computation

is much shorter than the time interval at which real-time traffic information traffic

forecastings. Cornuejols et al. (2008) stated that up~ated must be on a duly bases so

that computation can always be carried out before the cost functions are modified.

This is realistic in industrial applications, since a shortest path should be computed

very quickly no more than a second, whereas traffic information is typically updated

every few minutes (Cornuejols et al., 2008).

2.2.3.1 Common problems in routing network

1. The total path for delivering the packet is not defined in advance, rather each

node decides which line to use in forwarding the packet to the next node.

2. Also, an instantaneous measurement of queue length does not accurately

predict the average delay because there is a si,gnificant real time fluctuation in

queue lengths at any traffic level. Certain variation may occur due to the high

average delay of packet on Central Processing Unit (CPU).

According to Beaubrun and Pierre in Anupama and Anuj (2014), the three

defects are reflection of a single point, namely that the length of an output queue is

only one of many factors that affect a packets delay. The above mentioned routing

20

algorithms is use for the betterment of using fewer network resources, operates on

more realistic estimates of networks conditions, reacts faster to important network

changes and does not suffer for Jong term loops and oscillations.

2.2.4 Congestion

Network management and control is a complex problem, which is becoming

even more difficult with the increased demand to use the Internet for time/delay­

sensitive applications with differing Quality of Service (QoS) requirements for

example, voice over IP, video streaming, Peer-to-Peer, interactive games (Andreas,

2006).

Notably, there is a limit to how much control can be accomplished from the

edges of the network of such an end-to-end implicit feedback based congestion

control. Some additional mechanisms are needed particularly in the routers to

complement the endpoint congestion control methods. Hence, the need for router

control has recently Jed to the concept of active queue management. The problem of

network congestion control remains a critical issue and a high priority; despite the

many years of research efforts and the large number of different control schemes

proposed, there are still no universally acceptable congestion control solutions.

The Internet Congestion Control Research Group (ICCRG) report of (2006)

noted that congestion is a complex process to define. Despite the many years of

research efforts in congestion control, currently there is no agreed definition. One may

refer to the ongoing discussion between the active members of the networking

community as to give the right definition for congestion.

The status of network congestion is a state of degraded performance from the

perspective of a particular user. A network is reported to be congested from the

perspective of a user if that user's utility has decreased due to an increase in network

..

21

load. The user experiences long delays in the delivery of data, perhaps with heavy

losses caused by buffer overflows. There is degradation in the quality of the delivered

service, with the need for retransmissions, there is a drop in the throughput, which

traffic is due to retransmissions in that state not much useful traffic is carried. ln the

region of congestion, queue lengths, hence queuing delays, grow at a rapid pace-much

faster than when the network is not heavily loaded (Keshav 2001).

Pitsillides and Sekercioglu (2000) defined network-centric congestion, as a

network state in which performance degrades due to the saturation of network

resources, such as communication links, processor cycles, and memory buffers. For

example, if a communication link delivers packets to a queue at a higher rate than the

service rate of the queue, then the size of the queue will grow. If the queue space is

finite then in addition to the delay experienced by the packets until service, losses will

also occur. It is observed that congestion is not a state resource shortage problem, but

rather a dynamic resource allocation problem.

Networks need to serve all users requests, which may be unpredictable and

bursty in behaviour. However, network resources are finite, and must be managed and

distributed among all users. Congestion will occur, if the resources are not managed

effectively. The optimal control of networks queues are a well-known, studied, and

notoriously difficult problem, even for the simplest of case (Hassan and Sirisena,

2001; Andrews and Slivkins, 2006).

2.2.4. l Congestion control

The aim of congestion control is to facili tate incoming and outgoing traffic

entry into a telecommunications network to avoid congestive collapse. The process is

in an attempting to avoid oversubscription of any of the processing link capabilities of

the intermediate nodes and networks and taking resource reducing steps, such as the

22

rate of sending packets. It should not be confused with flow control, which prevents

the sender from overwhelming receivers. Congestion control is a critical issue in the

Internet Protocol (IP) networks systems. The majority of research proposals can be

found in the literature to provide means of avoiding and controlling the congestion.

2.2.4.2 Modem theory of congestion control

The modem theory of congestion control was pioneered by Frank Kelly

(1979), who applied microeconomic theory and convex optimization theory to

describe how individuals controlling their own rates can interact to achieve an

"optimal" network-wide rate allocation. Examples of "optimal" rate allocation are

max-min fair allocation and Kelly's suggestion of proportionally fair allocation,

although many others are possible.

The mathematical expression for optimal rate allocation is as follows. Let x,

be the rate of flow i, Ql be the capacity of link l, and T1i be 1 if flow i uses link l and

0 otherwise. Let x, cand R be the corresponding vectors and matrix. Let U (X) be an

increasing, strictly concave function, known as the utility, which measures how much

benefit a user obtains by transmitting at rate x. The optimal rate allocation then

satisfies

such that R.x < C

The Lagrange dual of this problem decouples, so that each flow sets its own

rate, based only on a "price" signalled by the network. Each link capacity imposes a

constraint, which gives rise to a Lagrange multiplier, Pt. The sum of these Lagrange

Yi= LP1T1i,
multipliers, L is the price to which the flow responds.

23

Congestion control then becomes a distributed optimisation algorithm for solving the

above problem. The majority of current congestion control algorithms and modelled

in this framework, with Pl being either the loss probability or the queueing delay at

link l.

2.2.4.3 Congestion control principles

Delling (2009) classify most congestion control approaches into two

categories: approaches for congestion avoidance and approaches for congestion

recovery. Congestion avoidance mechanisms allow a network to operate in the

optimal region of low delay and high throughput, thus, preventing the network from

becoming congested. In contrast, the congestion recovery mechanism allows the

network to recover from the congested state of high delay and losses, and low

throughput. Even if a network adopts a strategy of congestion avoidance, congestion

recovery schemes would still be required to retain throughput in the case of abrupt

changes in a network that may cause congestion.

Both types of approaches are basically resource management problems. They

can be formu lated as system control problems, in which the system senses its state

and feeds this back to its users who adjust their control (Chiu and Jain, 1989). This

simple classification only provides a very general picture of common properties

between separating groups of approaches.

A number of taxonomies of congestion control were considered. A detailed

taxonomy for congestion control algorithms is proposed by Bellman-Ford (2012),

which focuses on the decision-making process of individual congestion control

algorithms. The main categories introduced by the Bellman-Ford (2012) taxonomy

are open loop and closed loop:

24

Open loop: These are the mechanisms in which the control decisions of algorithms

do not depend on any sort of feedback infonnation from the congested spots in the

network, that is, they do not monitor the state of the network dynamically.

Closed loop: These are the mechanisms that make their control decisions based on

some sort of feedback infonnation to the sources. With the provision of feedback,

these mechanisms are able to monitor the network performance dynamically. The

feedback involved may be implicit or explicit. In the explicit feedback scheme,

feedbacks have to be sent explicitly as separate packets (Ramakrishnan, Floyd, and

Black, 200 I).

If there is no necessity of sending the feedback explicitly, the scheme is an

implicit feedback scheme. Some examples of such implicit feedbacks are time delays

of acknowledgment timeouts, and packet loss (Jacobson, 1988; Stevens, 1997).

The feedbacks are further categorised into binary and "full" feedback. A single

bit in the packet header is used as a binary feedback mechanism (Ramakrishnan,

Floyd, and Black, 2001). "Full" feedback incorporates more than one bit in the packet

header and to send "full" infonnation about the status of the network also known as

the round-trip time (Katabi, Handley, and Rohrs, 2002) and explicit multi-bit '·full"

feedback scheme.

2.3 Shortest Pathway Algorithm for High Time Complexity and Low

Accuracy

It is over fifteen years since Keshan (200 I) outlined the need for a scientific

basis of software measurement. Fenton theory is a prerequisite for any useful

quantitative approach to software engineering, although little attention has been

received from practitioners and researchers. Measurement is the process that assigns

numbers and symbols to attributes of real-world entities. Naturally, empirical studies

..... -

25

of software measurements lack a forecast system that combines measurements and

parameters in order to make quantitative predictions.

In one accord, Wei et al. (2010), presented a new approach to software

engineering based on recent advances in complex networks. Furthermore, parameter

global statistics provide explanation of the phrase betweenness centrality to fulfill the

needs of researchers, the inter-reaction of network from the overall perspective.

Consequently, betweenness centrality according to them, is the times of a node being

traveled in all the shortest paths of the software network and it reflects the influence

of the node in the whole network software system.

2.3.1 Traditional dijkstra algorithm

The complexity of betweenness centrality comes from calculating the shortest

path between each two nodes in network (Wei et az.; 2010), and the time complexity

of Dijkstra is O(n3). The existing algorithms based on the shortest path contain

Dijkstra, Floyd-Warshall, and Johnson. Dijkstra is the most popular and classic

algorithm.

However, they opined that, the idea of Dijkstra is to abstract the network into a

graph, put the isolated nodes the nodes with out-degree and in-degree being both 0 in

set V and the nodes having been traveled in set S, then calculate the shortest path

from vi .to any node in the graph. Move the node vk with the shortest path from V-S to

S till V-S is empty.

2.3.2 Traditional Layer First Searching (LFS) algorithm

According to Wei et al. (2010), Dijkstra it has a three-cycle and find out the

shortest path between each two nodes which, then add 1 to between centrality of the

nodes being on the path. The application range is limited to its high time complexity

26

and the time consumption is unavailable when it is applied into large network of

thousands of nodes.

As identified by researchers such as Fortz and Thorup (2002) Retvari and

Cinkler (2004) Soltani et al. (2002), the length of shortest path between each two

nodes wouldn't exceed a constant. For example, Pioro et al. (2002) noted that the

average length is 15 .2 I. Based on this method, Layer First Searching (LFS) is

proposed. Starting from a node in the network, put the connected nodes with the

shortest path of 1 into array, and then put that of 2 into the array and so on ti 11 that of

n in the array but there's no connected node with shortest path of n+ I. Add I to the

nodes on the paths which just have been found. The time complexity of LFS is the

summation of length of all the shortest path between each two nodes, that is O(V2).

Compared with Dijkstra, the time complexity of LFS is reduced obviously.

The preparation of layer first searching is similar to Dijkstra: abstract the

network into a graph, set up an adjacent list which makes single-link lists for all non­

isolated nodes in the graph and the i-list contains the nodes directly connected to the

non-isolated node vi. Each node is composed by two parts: neighboring nodes field

adjvex and linking field nextarc. The neighboring nodes field marks where the nodes

connected to node vi are in the graph and the linking field marks the next node. Each

single-link has a head node which is composed of data field data and linking field

(firstarc). Data field marks the number of vi in the graph and liking filed marks the

first node that is connected to vi (Wei et al., 2010). LFS only has one-cycle, and

travels nodes in the net-work one by one, then find out the shortest path from starting

node to the other nodes. The time complexity of LFS is O(V2) and the space

complexity is T(V2). De-pending on the process stated above, LFS has great

advantages both in time complexity and in space complexity.

•

27

Consequently, Wei et al. (2010) asserted that, betweenness centrality helps

researcher to master the changes of the system from the overall perspective in

software network. The existing betweenness centrality algorithm has high time

complexity, but low accuracy. Therefore, Layer First Searching (LFS) algorithm is

proposed that is low in time complexity and high in accuracy. LFS algorithm

searches the nodes with the shortest to the designated node, then travels all paths and

calculates the nodes on the paths, at last get the times of each node being traveled

which is betweenness centrality. The time complexity ofLFS algorithm is O(V2).

2.4 Description and Evaluation of Shortest Path Algorithms

According to Kairanbay and Hajar (2013), the shortest path problem is a

process of finding the shortest path or route from a starting point to a final

destination. Generally, in order to represent the shortest path problem graphs is used

to illustrate the process. It was further demonstrated that, a graph is a mathematical

abstract object, which contains sets of vertices and edges. Edges connect pairs of

vertices. Along the edges of a graph it is possible to walk by moving from one vertex

to other vertices. Depending on whether not one can walk along the edges by both

sides and by only one side determines if the graph is a directed graph or an

undirected graph. In addition, lengths of edges are often called weights, and the

weights are normally used for calculating the shortest path from one point to another

point. In the real world, it is possible to apply the graph theory to different types of

scenarios. For example, in order to represent a map a graph can be used, where

vertices represent cities and edges represent routes that connect the cities. If routes

a re one-way, then, the graph will be directed; otherwise, it will be undirected . There

exist different types of algorithms that solve the short~st path problem.

-

28

In a study conducted by Li, Qi, and Ruan (2008), an efficient algorithm

named Li-Qi (LQ) was proposed for the single source shortest path (SSSP) problem

with the objective of finding a simple path of the smallest total weights from a

specific initial or source vertex to every other vertex within the graph. The ideas of

the queue and the relaxation form the basis of this newly introduced algorithm; the

vertices may be queued several times, only the source vertex and relaxed vertices are

being queued (Li, Qi, and Ruan, 2008).

2.4.1 Dijkstra algorithm

Dijkstra's algorithm is a procedure for finding the shortest paths between

nodes in a graph, which may represent, for example, road networks. It was conceived

by computer scientist Edsger W. Dijkstra in 1956 and published three years later

(Frana, 2010; David, 2012).

According to David (2012), algorithm exists in many variants. The original

variant found the shortest path between two nodes, and more common variant fixes a

single node as the "source" node and finds shortest paths from the source to all other

nodes in the graph, producing a shortest path tree. For a given source node in the

graph, the algorithm finds the shortest path between that node and every other nodes

(Melhorn et al., 2008). It can also be used for finding the shortest paths from a single

node to a single destination node by stopping the algorithm once the shortest path to

the destination node has been determined. If the nodes of the graph represent cities

and edge path costs represent driving distances between pairs of cities connected by a

direct road, Dijkstra's algorithm can be used to find the shortest route between one

city and all other cities. As a result, the shortest path algorithm is widely used in

network routing protocols, here Intermediate System to Intermediate System (IS-IS)

29

and Open Shortest Path First (OSPF). It is also employed as a subroutine in other

algorithms such as Johnson's algorithm.

Algorithm

Let the node at the starting be known as the initial node. Let the distance of

node Y be the distance from the initial node to Y. Dijkstra's algorithm will assign

initial distance values and will try to improve step by step.

Assign to every node a tentative distance value and .set it to zero for the initial node

and to infinity for all other nodes.

a) Set the initial node as current. Mark all other nodes unvisited. Create a set of

all the unvisited nodes called the unvisited set.

b) For the current node, consider all of its unvisited neighbors and calculate the

tentative distances. Compare the newly calculated tentative distance to the

current assigned value and assign the smaller one. If the current node A is

marked with a distance of 6, and the edge connecting it with a neighbor B has

length 2, then the distance to B (through A) will be 6 + 2 = 8. If B was

previously marked with a distance greater than 8 then change it to 8.

Otherwise, keep the current value.

c) Upon completion considering all of the neighbors of the current node, mark

the current node as visited and remove it from the unvisited set. A visited node

will never be checked again.

d) If the destination node has been marked visited (when planning a route

between two specific nodes) or if the smallest tentative distance among the

nodes in the unvisited set is infinity (when planning a complete traversal;

occurs when there is no connection between the initial node and remaining

unvisited nodes), then stop. The algorithm has completed.

30

e) Otherwise, select the unvisited node that is marked with the smallest tentative

distance, set it as the new "current node", repeat step 3.

Description

Attempt to locate the shortest path between two intersections on a city map: a

starting point and a destination. Dijkstra's algorithm initially marks the distance from

the starting point to every other intersection on the map with infinity. This is done not

to imply there is an infinite distance, but to note that those intersections have not yet

been visited; some variants of this method simply leave the intersections' distances

unlabeled. Each iteration, select the current intersection. For the first iteration, the

current intersection will be the starting point, and the distance to it the intersection's

label will be zero. For subsequent iterations after the first, the current intersection will

be the closest unvisited intersection to the starting point this will be easy to find.

From the current intersection, update the distance to every unvisited

intersection that is directly connected to it. This is done by determining the sum of the

distance between an unvisited intersection and the value of the current intersection,

and relabeling the unvisited intersection with this value the sum, if it is less than its

current value. In effect, the intersection is relabeled if the path to it through the

current intersection is shorter than the previously known paths. To facilitate shortest

path identification, use pencil to mark the road with an arrow pointing to the relabeled

intersection if you label/relabel it, and erase all others pointing to it. After you have

updated the distances to each neighboring intersection, mark the current intersection

as visited, and select the unvisited intersection with lowest distance from the starting

point - or the lowest label-as the current intersection. Nodes marked as visited are

labeled with the shortest path from the starting point to it and will not be revisited or

returned.

31

Continue this process of updating the neighboring intersections with the

shortest distances, then marking the current intersection as visited and moving onto

the closest unvisited intersection until you have marked the destination as visited.

Once you have marked the destination as visited as is the case with any visited

intersection you have determined the shortest path to it, from the starting point, and

can trace your way back, following the arrows in reverse; in the algorithm's

implementations, this is usually done after the algorithm has reached the destination

node by following the nodes' parents from the destination node up to the starting

node; that's why we keep also track of each node's parent.

This algorithm makes no attempt to direct "exploration" towards the

destination as one might expect. Rather, the sole consideration in determining the next

"current" intersection is its distance from the starting point. This algorithm tliereby

expands outward from the starting point, interactively considering every node that is

closer in terms of shortest path distance until it reaches the destination. When

understood in this way, it is clear how the algorithm necessarily finds the shortest

path. However, it may also reveal one of the algorithm's weaknesses: its relative

slowness in some topologies (https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#Algorithm}.

Rule

The algorithm perfonns several rules as stated by Dijkstra (2010):

Rule l: A graph of the network is built network and the adjacency matrix a [i,

j] with the weight of links is defined. For the case when a direct link between node Vi

and Vj is missing, the weight of the link is assumed as infinity. The source and the

destination nodes are noted as NS and NT.

Rule2: A status record set is established for every node with three fields:

32

The first field that shows the previous node, named "predecessor" field. The second

filed is named "Length" field and it shows the sum of weights from source to that

node. The last field named "Label" filed, shows the status of the node. Each node can

have one status mode: "Permanent" or "Tentative".

Rule3: Initialization of the status record set for all nodes and setting all

"Length" to Infinity, and all "Label" as tentative.

Rule 4: Labelling node NS as t node and marking its "Label" as "Permanent'·.

When a label changes to permanent, it never changes again. T node rules as a current

chosen node.

Rule5: For all tentative nodes, directly linked to t node, status record set is

updated.

Rule6: From all the tentative nodes, choose the one whose weight to NS is less

and set it as t node.

Rule7: If this node is not the destination NT, then, go to step 5.

Rule8: If this node is NT, then extract its previous node from status record set

and do this until return to NS. The nodes show the best route from NS to NV

Notation:

Di= Length of shortest path from node 'i' to node 1.

dij =Length of path between nodes i andj.

Algorithm

Each node j is labelled with Dj, which is an estimate of cost of path from node

j to node I. Initially, let the estimates be infinity, indicating that nothing is known

about the paths. We now iterate on the length of paths, each time revising our estimate

to lower values, as we obtain them. Actually, we divide the nodes into two groups ;

the first one, called set P contains the nodes whose shortest distances have been

33

found, and the other Q containing all the remaining nodes. Initially P contains only

the node 1. At each step, we select the node that has minimum cost path to node 1.

This node is transferred to set P. At the first step, this corresponds to shifting

the node closest to 1 in P. Its minimum cost to node 1 is now known. At the next step,

select the next closest node from set Q and update the labels corresponding to each

node using:

Dj =min [Dj , Di + dj,i]

Finally, after N-1 iterations, the shortest paths for all nodes are known, and the

algorithm terminates.

Traditional method

The complexity of betweenness centrality comes from calculating the shortest

path between each two nodes in network, and the time complexity of Dijkstra is

O(n3). The existing algorithms based on the shortest path contain Dijkstra, Floyd­

Warshall, and Johnson. Dijkstra is the most popular and classic algorithm.

The idea of Dijkstra is like this. Abstract the qetwork into a graph, Put the

isolated nodes (the nodes with out-degree and in-degree being both 0) in set V and the

nodes having been traveled in set S, then calculate the shortest path from vi to any

node in the graph. Move the node vk with the shortest path from V-S to Still V-S is

empty.

CD Initialization: Set up a two-dimensional array a to mark whether the shortest path

has been found out between the two nodes. Set up a none-dimensional array to store

the betweenness centrality. Set up a adjacency ma-trix arcs with 1 if there exist edge

between the nodes, else with oo. V is a set of all nodes and S is a set of all marked

nodes. The value from vi to vj is initializes as follows:

D[j]=arcs[vi][j) vjEV

Then put vi into S.

® Pick up vk which satisfies

D[k]=min{DO] I vj fEl/-S}

34

vk is the end point of the shortest path starting from vi. Put vk into S.

® Calculate the length of the shortest path from vi to each accessible node in set V-S

D[k)+arcs[k][m]<D[m]

and revalue the D[m] as

D[k]+arcs[k][m]=D[m]

@ Add 1 to betweenness centrality of nodes if only they are on the shortest path from

vi to any node in the graph. Then mark these nodes being travelled in the two

dimensional array a. Repeat 0 , 0 n-1 times. At last, it gets all the shortest paths

from vi to the other nodes in the graph.

® It is the end.

Repeat the process for n times and get the shortest path between each two nodes.

Since each time contains a two-cycle, the time complexity of Dijkstra is O(V3). The

space complexity is T(V2).

2.4.2 Floyd-Warshall algorithm

In computer science, the Floyd-Warshall algorithm is an algorithm for

finding shortest paths in a weighted graph with positive or negative edge weights (but

with no negative cycles).

According to Kenneth (2003), a single execution of the algorithm will find

the lengths (summed weights) of the shortest paths between all pairs of vertices,

though it does not return details of the paths themselves. Versions of the algorithm

35

can also be used for finding the transitive closure of a relation R, or (in connection

with the Schulze voting system) widest paths between all pairs of vertices in a

weighted graph.

Algorithm

The Floyd-Warshall algorithm compares all possible paths through the graph

between each pair of vertices. It is able to do this with <9(1 Vj3) comparisons in a graph.

This is remarkable considering that there may be up to Q(I Vj2) edges in the graph, and

every combination of edges is tested. It does so by incrementally improving an

estimate on the shortest path between two vertices, until the estimate is optimal.

Consider a graph G with vertices V numbered I through N. Further consider a

function shortestPath(i,j, k) that returns the shortest possible path from i to j using

vertices only from the set { 1,2,. . .,k} as intermediate points along the way. Now, given

this function, our goal is to find the shortest path from each i to each j using only

vertices l to k + I.

For each of these pairs of vertices, the true shortest path could be either

(I) a path that only uses vertices in the set {l, .. ., k}

or

(2) a path that goes from i to k + I and then from k + 1 to j.

We know that the best path from i toj that only uses vertices I through k is defined by

shortestPath(i,j, k), and it is clear that if there were a better path from i to k + I to j,

then the length of this path would be the concatenation of the shortest path from i to

k + 1 (using vertices in {I, .. ., k}) and the shortest path from {k + I} to j (also using

vertices in {I, .. ., k}).

If w(i, j) is the weight of the edge between vertices i and j, we can define

shortestPath(i,j, k + I) in terms of the following recursive formula: the base case is

..

37

According Vaibhavi and Chitra (2014), Bellman-Ford algorithm uses

relaxation to find single source shortest paths on directed graphs. And it is also

contain negative edges. The algorithm will also detect ifthere are any negative weight

cycles (such that there is no solution). With specific reference to distances on a map,

there is no any negative distance. The basic structure of Bellman-Ford algorithm is

similar to Dijkstra algorithm. It relaxes all the edges, and does this IYI - 1 time, where

IYI is the number of vertices in the graph (David, 2012). The cost of a path is the sum

of edge weights in the path. This algorithm return value that negative cycle is present

or not and also return shortest path. This algorithm find shortest path in bottom up

manner (Greeks for Greeks, 2011).

Algorithm

Like Dijkstra's Algorithm, Bellman-Ford is based on the principle of

relaxation, in which an approximation to the correct distance is gradually replaced by

more accurate values until eventually reaching the optimum solution. In both

algorithms, the approximate distance to each vertex is always an overestimate of the

true distance, and is replaced by the minimum of its old value with the length of a

newly found path. However, Dijkstra's algorithm greedily selects the minimum­

weight node that has not yet been processed, and performs this relaxation process on

all of its outgoing edges; by contrast, the Bellman- Ford algorithm simply relaxes all

the edges, and does this IVI - 1 times, where IYI is the number of vertices in the graph.

In each of these repetitions, the number of vertices w,ith correctly calculated distances

grows, from which it follows that eventually all vertices will have their correct

distances. This method allows the Bellman- Ford algorithm to be applied to a wider

--

38

class of inputs than Dijkstra. Bellman-Ford runs in 0(1 VI . IEI) time, where I Vj and IEI

are the number of vertices and edges respectively.

In comparison to Dijkstra's algorithm, the Bellman-Ford algorithm

acknowledges the (Bellman-Ford, 2012) edges with negative weights. According to

his studies revealed that a graph can contain cycles of negative weights, which will

generate numerous number of paths from the starting point to the final destination,

where each cycle will minimize the length of the shortest path. Taking into

consideration, this fact let's assume that our graph does not contain cycles with

negative weights .The array d[b] will store the minimal length from the starting points

to other vertices. The algorithm consists of several phases, where in each phase it

needs to minimize the value of all edges by replacing d[b] to following statement d[a]

+ c; a and bare vertices of the graph, and c is the corresponding edge that connects

them. This algorithm iterates on the number of edges in a path to obtain the shortest

path. Since the number of hops possible is limited (cycles are implicitly not allowed),

the algorithm terminates giving the shortest path.

Algorithm:

Initial condition :

Iteration :

over all values of j

Termination:

D[i, O] =infinity, for all i (i !=1)

D[i, h+l] =min { dij + D[j,h]}

The algorithm terminates when

D[i, h] = D [i, h+l] for all i.

2.4.4 Layer First Searching algorithm

It is over fifteen years since Norman Fenton outlined the need for a scientific

basis of software measurement. Such a theory is a prerequisite for any useful

40

complexity and high time in accuracy. LFS algorithm searches the nodes with the

shortest to the designated node, then travels through all paths and calculates nodes on

the paths and at last, get the times of each node being traveled which is betweenness

centrality. The time complexity of LFS algorithm is O(V2).

Algorithm

Accordingly, Dijkstra, it has a three-cycle and with ability to find out the

shortest path between each two nodes which, then add 1 to between centrality of the

nodes being on the path. However, application range is limited for its high time

complexity and the time consumption is unavailable when it is applied into large

network of thousands of nodes.

Fortz and Thorup (2002), Retvari and Cinkler, (2004), and Soltami et al.

(2002) stated that the length of shortest path between each two nodes wouldn't exceed

a constant. For example, Pioro et al. (2002) noted that the average of the length is

15.21.which lead to the integration of LFS Algorithm process. Starting from a node in

the network, place the connected nodes with the shortest path of I into array, then

place that of 2 into the array till that of n in the array inducting that, there is no

connected node with shortest path of n+ 1. Add 1 to the nodes on the paths that has

just have been found. The time complexity of LFS is the summation of length of all

the shortest path between each two nodes, that is 0 (V2). Compared with Dijkstra, the

time complexity of LFS is reduced obviously.

The preparation of LFS algorithm is similar to Dijkstra: abstract the network

into a graph, set up an adjacent list which makes single-link lists for all non-isolated

nodes in the graph and the i-list contains the nodes directly connected to the non­

isolated node vi. Each node is composed of two parts: neighboring nodes field

(adjvex) and linking field (nextarc). The neighboring nodes field marks where the

41

nodes connected to node vi are in the graph and the linking field marks the next node.

Each single-link has a head node which is composed of data field (data) and linking

field (firstarc). Data field marks the number of vi in the graph and liking filed marks

the first node that is connected to vi.

CD Initialization: Set up a two-dimensional array c initialized maximum to store the

length of the shortest path between each two nodes in the graph, then set up a one­

dimensional array be initialized 0 to store the betweenness centrality of each node. V

is the number of non-isolated nodes in the graph.

® Set up array a and b. a is used to restore the end node of the shortest path. b is used

to restore the number of nodes with the same starting node and the same length and

put the starting point into a and put la=O into b. At last, set the relative element 0 in

array c.

® Judge whether it is the end of array a. If it is, turn to

@; else turn to@ .

@ Check out the number of nodes with the length of shortest path la, and set it to be

n.

@ Travel the next node in array a and the find ou.t all child nodes which are

connected to this node (parent node) directly. If the value from starting node to this

node in array c is bigger than la, set the value from the starting node to thi s node and

the value from this node to starting node in array c to be la+ 1, then put the id of parent

node and the id of child node into a. The same nodes being put into an m times means

that there are m shortest paths from the starting node to this node. Add I to num

which is the number of nodes on layer la+ 1. Because the id of parent node can be

found by the id of child node, the shortest paths from the starting node to the other

nodes in array a can been found, then add I to the nodes on each shortest path.

42

® repeat @ n- I times.

CJ) put num into array b, la= la+ 1, tum to :::J .

® repeat @-CT) V- I times.

® It is the end.

According to the description above, the time complexity of LFS is the

summation of all the shortest path in the network, that is O(V2). And V is the number

of non-isolated nodes in the network. The space complexity is T(V2) which is equal

to that of Dijkstra.

43

TABLE 1

The comparison between the time complexity and space complexity of the algorithms.

Algorithm
Dijkstra

Layer First Searching

Time complexity
0(3)

0(2)

Space complexity
T(V2)

T(V2)

44

Performance evaluations

Dijkstra takes breadth-first method to travels all the nodes in the software

network, find out all the shortest paths, obtain the nodes on the shortest path, (Wang,

2001; Pioro and Medhi, 2004; Ben-Ameur and Gourdin, 2003) and calculate

betweenness centrality. Dijkstra has a three- cycle which makes the time complexity

is so high that it is a fatal shortcoming when applied into large-scale software

network.

Layer First Searching (LFS) only has one-cycle, and travels nodes in the net­

work one by one, then find out the shortest ·path from starting node to the other nodes.

The time complexity of Layer First Searching is O(V2) and the space complexity is

T(V2). Depending on what mentioned above, LFS has great advantages both in time

complexity and in space complexity.

Accordingly Wei et al. (2010) says that, with the development of computer

science, the computer memory becomes bigger and bigger which can satisfy all kinds

of demands and no longer need to be considered. However, they get satisfying result

with the help of HP computer which is composed of Core Duo 6300 CPU, l .86GHz

Frequency, DDR2 667 IGB Memory and Windows XP SP2 Operation System. Wei

et al. (2010) went further to say that, in order to verify that LFS has great advantages

in time complexity, a samples of twenty-two(22) software of different sizes are

selected and sorted ascending which can justify whether LFS is valid. The

comparison of time consumption between Dijkstra and Layer First Searching is

shown as follows: OT is the time cost by calculating betweenness centrality of the

software by Dijkstra, and WT is that by LFS. Time units are seconds. OT/WT which

marks advantages of LFS in time consumption is the ratio of OT and WT.

45

TABLE2

The comparison of time consumption between Dijkstra and LFS

software number Number number DT Cs) WT(s) DT/W
of nodes of edges of non- T

isolated
nodes

Waimea 116 193 86 0.359 0.032 11.22

Ki cad 212 300 180 0.609 0.110 5.54

ktorrent 263 335 217 3.313 0.250 13.25

rhythm box 366 342 252 8.349 0.531 15.72

Filezilla 431 577 358 5.500 0.563 9.77

licq 574 633 491 12.110 1.282 9.45

freemind 713 933 562 53.1 72 1.812 29.34

Esp gs 1339 1271 955 150.094 7.063 21.25

abiword 1300 2124 1167 384.391 11.53 1 33.34

ArgoUML 2031 2217 1731 747.093 31.718 23.55

kdegraphics 2014 3498 1749 1036.781 44.688 23.20

Mysql-5.0.56 3132 3837 2182 1685.828 54.453 30.96

Mysql_6.0.6 3793 5368 2889 3131.318 104.531 29.96

Kdepim 3518 4447 3008 2933.594 136.047 21.56

Koffice 4580 5892 3883 48.53.296 185.891 26.11

Linux 7343 6045 4238 6756.612 296.313 22.80

resin 5076 7875 4261 10613.281 389.072 27.28

node 5418 11451 5418 13693.187 553.985 24.72

Firefox 9261 15533 5781 18167.438 725.530 25.04

Firefox 7100 48236 7100 24267.391 942.793 25.74

Mozilla 8354 13878 7195 37298.863 1315.750 28.35

Firefox 10115 17469 8830 120818.08 3152.580 38.32

9

Source: Research on LFS Algorithm in Software Network (Wei, W. et al, 2010).

46

2.5 Conceptual Implementations of Described Shortest Path Algorithms

Dijkstra's Algorithm implementation

According to Kairanbay and Hajar (2013), for each vertex within a graph they

assign a label that determines the minimal length from the starting point s to other

vertices v of the graph. In a computer they went further, to declare an array d[]. Their

algorithm works sequentially, and in each step it tries to decrease the value of the

label of the vertices. However, Their algorithm stops when all vertices have been

visited. The label at the starting point s is equal to zero (d[s}=O); however, labels in

other vertices v are equal to infinity (d[v]=oo), which means that the length from the

starting point s to other vertices is unknown. In a computer they used a very big

number in order to represent infinity. Kairanbay and Hajar (2013) added that, for each

vertex v'" have to identify whether it has been visited o~ not. In order to do that, they

continue to declare an array of Boolean type called u[v], where initially, all vertices

are assigned as unvisited (u[v} =false).

The Dijkstra's algorithm consists of n iterations (Kairanbay and Hajar, 20 13).

If all vertices have been visited, then the algorithm finishes; otherwise, from the list of

unvisited vertices they choose the vertex which has the minimum (smallest) value at

its label (At the beginning, they choose a starting points). After that, Kairanbay and

Hajar (2013) considered all neighbors of this vertex (Neighbors of a vertex are those

vertices that were having common edges with the initial vertex). For each unvisited

neighbor, their consideration was on a new length, which is equal to the sum of the

label 's value at the initial vertex v (d[v]) and the length of edge l that connects them.

If the resulting value is less than the value at the label, then they changed the value in

that label with the newly obtained value (Jordan, 2005).

d [neighbors}= min (d [neighbors}, d[v} + I) (1)

47

Accordingly, after they considered all of the neighbors, Kairanbay and Hajar

(2013) assign the initial vertex as visited (u[v] = true). After repeating this step n

times, all vertices of the graph was visited and the algorithm finishes or terminates.

The vertices that are not connected with the starting point was remained by being

assigned to infinity. Consequently, in order for them to restore the shortest path from

the starting point to other vertices, they need to identify array p [}, where for each

vertex, where v I- s, the number of vertex p[v] was store, which penultimate vertices

in the shortest path. In other words, a complete path from s to v was equal to the

following statement (Chamero, 2006).

p = (s ' ... ' p [p [p [v J J J' p [p [v J J ' p [v J ' v) (2)

2.5.1 Floyd-Warshall algorithm implementation

According to Kairanbay and Hajar (2013) explanation the graph G were

considered, where vertices were numbered from 1 to n. The notation dijk means the

shortest path from i to}, which also passes through vertex k. Obviously if there was

exists edge between vertices i and j it will be equal to dijO, otherwise it can assigned

as infinity. However, for other values of dijk there can be two choices: (1) If the

shortest path from i to j does not pass through the vertex k then value of dijk will be

equal to dijk-1. (2) If the shortest path from i to} passes through the vertex k then first

it goes from i to k, after that goes from k ·to j. In this case the value of dijk will be

equal to dikk-1 + dkjk-1. And in order to determine the shortest path we just need to

find the minimum of these two statements (Shiana, 2014):

dijO = the length of edge between vertices i and j (3)

dijk = min (dijk-1, dikk-1 + dlgk-1)

48

2.5.2 Bellman-Ford algorithm implementation

In comparison to Dijkstra's algorithm, the Bellman-Ford algorithm admits or

acknowledges the edges with negative weights. That is why, a graph can contain

cycles of negative weights, which will generate numerous number of paths the

starting point to the final destination, where each cycle will minimize the length of

the shortest path. Taking into consideration this fact let's assume that our graph does

not contain cycles with negative weights. The array d[} will store the minimal length

from the starting point s to other vertices. The algorithm consists of several phases,

where in each phase it needs to minimize the value of all edges by replacing d[b] to

following statement d[a} + c; a and b are vertices of the graph, and c is the

corresponding edge that connects them. And in order to calculate the length of all

shortest paths in a graph it requires n - 1 phases, but for those vertices of a graph that

are unreachable, the value of elements of the array will remain by being assigned to

infinity (Haugardy, 2010).

2.6 Review of Shortest Path Algorithms

Xi, Qi and Wei (2006) used a heuristic method for computing the shortest path

from one point to another point within traffic networks. They proposed a "new

dynamic direction restricted algorithm obtained by extending the Dijkstra's

algorithm. Li, Qi and Ruan (2008) proposed an algorithm (Li-Qi) to solve the single

source shortest path (SSSP) problem with the obje~tive of finding a simple path of

the smallest total weights from a specific initial or source vertex to every other vertex

within the graph. The ideas of the queue and the relaxation form the basis of the

algorithm. Layer First Searching (LFS) can solve a series of problems brought by the

traditional algorithms of Dijkstra, Floyd-Warshall and Bellman-ford. It has

49

advantages both in time complexity and accuracy which are so important in practical

research work that may result in disaster conclusion without it. LFS improve the

efficiency and the accuracy to calculate the betweenness centrality, which ensures

the further research to be continued smoothly. Kairanbay and Jani (2013) then

compared four (4) algorithms namely: Dijkstra, Floyd-Warshall , Bellman-Ford, LFS

Algorithms by using pre-defined test cases and automated checking systems

available in websites to find out that all could solve the SSSP at different time

complexity.

Algorithm

Dijkstra

Bellman-Ford

Floyd-Warshall

50

TABLE3

Algorithm of different time complexity

Time complexity

n +m

n3

Nm

51

The loop-free path-finding algorithm (LPA) has been shown to maintain loop­

free routing tables. LPA obtains correct routing tables after topological and link-cost

changes faster and with less processing and communication overhead than link-state

algorithms and prior loop-free routing algorithms based on vectors of distances. The

limitation ofLPA and prior routing algorithms based on routing trees is that it requires

the routers to maintain "host routes" than would be needed in a traditional distance­

vector algorithm.

Routing information maintained at each router has to be updated frequently to

adapt to changes in the topology and congestion of the internetwork. In an

internetwork with a flat routing structure, the size of the routing tables grow linearly

with the number of destinations in the network. Due to this, the routing information

that is required to be maintained at a node may become excessive in terms of storage

and CPU utilization. The information exchanged among nodes may prove to be

expensive in terms of channel bandwidth since updates need to be exchanged

frequently in order to maintain up to date network state information. Accordingly,

aggregation of routing information becomes a necessity in any type of routing

protocol.

For routing in large networks, the aggregation of routing information is

achieved through a hierarchical partitioning of the ·network. The main idea of

hierarchical routing is to maintain exact routing information regarding nodes very

close to it and less detailed information regarding nodes that are farther away from it.

The goal of maintaining hierarchy of information is to reduce the size of the routing

database maintained at each router so that the exchange of topology information

among the routers can be minimized. The objective of doing so is to obtain a

reasonable compromise among the size of routing tables, number of updates required

52

to maintain such tables and the speed with which updates are propagated.

However, in order to accomplish a workable system model for suitable system

development, the researcher will present a new approach to routing algorithms which

is call Layer First Searching (LFS), used in large system based on recent advances in

complex networks. As a typical parameter and ·an important global statistics,

betweenness centrality can meet he needs of researchers to know the inter-reaction of

software network from overall perspective.

According to Wei et al. (2010) betweenness centrality is the times of a node

being traveled in all the shortest paths of the software network and it reflects the

influence of the node in the whole network. Betweenness centrality is an indicator of

a node's centrality in a network. It is equal to the number of shortest paths from all

vertices to all others that pass through that node. A ·node with high betweenness

centrality has a large influence on the transfer of items through the network, under the

assumption that item transfer follows the shortest paths. The concept finds wide

application, including computer and social networks, biology, transport and scientific

cooperation. Development of betweenness centrality is generally attributed to

sociologist Linton Freeman (Barthelemy, 2004). The idea was earlier proposed by

mathematician J. Anthonisse, but his work was never published (Newman, 20 I 0).

In calculating betweenness and closeness centralities of all vertices in a graph,

it is assumed that graphs are undirected and connected with the allowance of loops

and multiple edges. When specifically dealing with network graphs, often graphs are

without loops or multiple edges to maintain simple relationships (where edges

represent connections between two people or vertices). In this case, using Brandes'

algorithm will divide final centrality scores by 2 to account for each shortest path

being counted twice (Ulrik, 2004).

>

53

Another algorithm generalizes the Freeman's betweenness computed on

geodesics and Newman's betweenness computed on all paths, by introducing a hyper­

parameter controlling the trade-off between exploration and exploitation. The time

complexity is the number of edges times the number of nodes in the graph (Amin,

2010).

The concept of centrality was extended to a group level as well (Puz is, 2010).

Group betweenness centrality shows the proportion of geodesics connecting pairs of

non-group members that pass through a group of nodes. Brandes' algorithm for

computing the betweenness centrality of all vertices was modified to compute the

group betweenness centrality of one group of nodes with the same asymptotic running

time (Puzis et al., 2009). Betweenness is a centrality measure based on shortest paths,

widely used in complex network analysis. It is computationally-expensive to exactly

determine betweenness; currently the fastest-known algorithm by Brandes requires

O(nm) time for unweighted graphs and O(nm + n2 log n) time for weighted graphs,

where n is the number of vertices and m is the number of edges in the network. These

are also the worst-case time bounds for computing the betweenness score of a single

vertex (David et al., 2006).

Betweenness is also used as the primary routine in popular algorithms for

clustering and community identification (David et al., 2006) in real-world networks.

For instance, the Girvan-Newman (Puzis et al., 2009) algorithm iteratively partitions a

network by identifying edges with high betweenness scores, removing them and

recomputing centrality scores. Betweenness is a global centrality metric that is based

on shortest-path enumeration. Consider a graph G = (V;E), where V is the set of

vertices representing actors or nodes in the complex network, and E, the set of edges

54

representing the relationships between the vertices. The number of vertices and edges

are denoted by n and m respectively. The graphs can be directed or undirected.

In prior work, we explored high performance computing techniques (Bader

and Madduri, 2006) that exploit the typical small-world graph topology to speed up

exact centrality computation. We designed novel parallel algorithms to exactly

compute various centrality metrics, optimized for real-world networks. We also

demonstrate the capability to compute exact betweenness on several large-scale

networks (vertices and edges in the order of millions) from the Internet and social

interaction data; these networks are three orders of magnitude larger than instances

that can be processed by current social network analysis packages. Fast centrality

estimation is thus an important problem; as a good approximation would be an

acceptable alternative to exact scores. Currently the fastest exact algorithms for

> shortest path enumeration-based metrics require n shortest-path computations;

however, it is possible to estimate centrality by extrapolating scores from a fewer

number of path computations. Using a random sampling technique, Eppstein and

Wang (2001) show that the closeness centrality of all vertices in a weighted,
'

undirected graph can be approximated with high probability in 0(log n1 2 (n log n

+m)) time, and an additive error of at most 2¢G (2 is axed constant, and ¢G is the

diameter of the graph) . However, betweenness centrality scores are harder to estimate,

and the quality of approximation is found to be dependent on the vertices from which

the shortest path computations are initiated from (in this paper, we will refer to them

as the set of source vertices for the approximation algorithm). Recently, Brandes and

Pich (2007) presented centrality estimation heuristics, '¥here they experimented with

different strategies for selecting the source vertices. They observe that a random

selection of source vertices is superior to deterministic strategies. In addition to exact

'

SS

parallel algorithms, we also discussed parallel techniques to compute approximate

betweenness centrality in (Bader and Madduri, 2006), using a random source

selection strategy.

Among several variants of the SP algorithms there is a group of algorithms

which could be applied to solve the present issue, but the solution would not be

efficient. An obvious group of algorithms is the one that gives a more general solution

than needed and their solution would be redundant. A good example of a group giving

a redundant solution is the 'all pairs' group of the SP algorithms: only one pair of

nodes would be used from the set of all pairs.

Matrix algorithms are not of a good use for sparse networks. Matrix

algorithms are memory consuming and for sparse networks time consuming. Bellman

(2012) designed an algorithm for networks with also negative link lengths. The

concern about negative link length made the Bellman algorithm more general than

Dijkstra algorithm, but it also made it less efficient for the networks without negative

links. Since the report deals with road networks (of which the inherent feature is the

nonnegative link lengths) only, the study of the Bellman algorithm will not be of

much interest for the report.

Another example of an algorithm providing a solution more general than

needed is the algorithm devised by Cai et al (1997). This algorithm is an enhanced

Dijkstra algorithm. The algorithm processes a network to whose links two attributes

are ascribed: cost of traversing and time of traversing. The algorithm searches for the

cheapest path (the shortest path in terms of the cost) which satisfies an extra

condition: the overall time of such a path (the time required to traverse the links of the

path) does not exceed a given T.

57

CHAPTER THREE

METHODOLOGY AND SYSTEM ANALYSIS

3.1 Introduction

This chapter starts with finding the shortest path for transmitting packets and

critically understanding the existing models and algorithm of shortest pathways with a

view to proposing a new algorithm that will. be devoid of the identified limitations.

3.2 Research Design

According to De Vaus (2006), research design refers to the overall strategy

designed to integrate the different components of the study in a coherent and logical

way, thereby, ensuring effective executing of the research problem. In addition, it also

constitutes the benchmark for the collection, measurement, and analysis of data.

The research design adopted for this research study was modified Dijkstra' s

algorithm with open shortest path first (OSPF) router protocol suite. Research

problem determines the type of design use in a study. The modified Dijkstra's

algorithm was used because its has high acceptability in terms of overall performance

in solving shortest path problem in a single source, one-to-all sparse network system.

While the OSPF provides quality of service (QoS) and high link utilization with

minimal losses, and bounded queue fluctuations and delays.

The research design applied in this study is as follows:

a) Model formulation

b) Model specification

c) Model development

d) System analysis of the modified Dijkstra's algorithm model

e) Model validation

58

t) Algorithm formulation

g) Instrument/ Algorithm development

h) Modified Dijkstra's algorithm

i) Reliability test

j) Network design

k) Experimental design

I) Evaluation

m) Network validation

3.2.1 Model formulation

Apparently, the research problem is to determine the shortest pathway and

time in a wireless packet switch network system in the University of Calabar. To

solve this problem and to give the best solution for increasing number of nodes, the

researcher decided to replace the data structure with the priority queue link li st hav ing

the capacity to store N nodes with some constraints containing the value of

predecessor (the node preceding a current node) , status (a label, which is either

temporary or permanent) and distance.

Problem: Given a graph G = { V, E} where Vis the set of nodes (or vertices) in G and

E the set of edges in G, if n = I VI is the number of vertices in G, then the size of the

adjacency matrix required to store G in a computer memory is n x n (or n2
):

m =

m, 1 m,2 m,3 ... lnin

m 21 m22 m23 · · .m2n

59

It is required to represent G in a computer memory with an adjacency matrix

of size N<n2
.

Solution

Consider a graph G having n = 6 nodes or vertices as shown.

G requires a 6 x 6 (or 36) adjacency matrix to represent it in a computer

memory. This representation is shown below.

0 30 70 40 0 0
30 0 20 0 0 90
70 20 0 10 30 60

m=
40 0 10 0 30 0
0 0 30 30 0 30
30 90 60 0 30 0

Notice that this adjacency matrix is a symmetric matrix that is MT= M thus, m1 = mii

V ij e { 1,2,3,4,5,6} and m lf = 0, i =j. Hence, if all duplicate is remove, starting from i

= j downward, as follows;

30 70 40 0 0

20 0 0 90

10 30 60

30 0

30

60

Thus, the size of this new matrix is the sum of the elements in all the rows i.e.

5+4+3+2+1=15.

Then, in general,

n-1 +n-2+n-3+ . . . 2+ I

Hence, the size of the new matrix is

_ I / (n - l)(n)
- 2

and this agree with the preceding result if n = 6 is substituted.

Note: n is the number of nodes.

Clearly N < n2
•

2

T heorem: N is less than 50% ofn2 that is, N < 50% n2 or N < !!_
2

Pr oof:

Since the computer requires n x n = n2 elements for the storage in the memory

and the number of elements of the new matrix
n

is "2 (n - l) , the ratio

n(n - l) 1

2 n2

(n - I) 1 I I
=-- =- - -<-

2n 2 2n 2

~ the number is n > 2 less than 50%. i.e 36 memory core= 100%

~ 1 memory core = 100
/36, : .

~ Thus, % reduction = 100 - 41 .67 = 58.33%

l 2 3 4 5 6 7 8 9 10 11 12 13 14 15
I 30 : 70 : 40 0 0 20 : 0 o 90 I i o : 30 : 60 I 30 : o I 30 I

Observe that each element has been isolated with a faint line while each row

61

. . 2 D array m.. hence, we
separated by thick line as shown above. But matrix m lS a • 1

1'

'} need to provide an interface for this new one dimensional array so as to make it appear

multi-dimensional.

Row Rm and Column Cu.

2-Dimensional array is divided into rows and columns. In the case of matrix

.. "" - d -th my, 1 - row an J =column numbers. Hence, we need to find a formula R111 for the

row m and cij for the column c.

1st row begins at element 3

2"d row begins at element 2 => 6-1+1

,.. .. . ,.. "'\ ...

)

61

separated by thick line as shown above. But matrix m is a 2-D array miJ, hence, we

need to provide an interface for this new one dimensional array so as to make it appear

multi-dimensional.

Row Rm and Column CIJ.

2-Dimensional array is divided into rows and columns. 1n the case of matrix

mi}, {h =row and/h =column numbers. Hence, we need to find a formula R,,. for the

row m and CiJ for the column C.

1st row begins at element 3

r2 = n-1 +1 2"d row begins at element 2 => 6-1+1

3rd row beings at element 1 => 6-1+6-2+1

r4 =n-1+n-2+n-3+1 4th row begins at element 3 => 6-1+6-2+6-3+1

II II

rm= n-1+n-2+n-3+ ... +n-(m-1)+1

rm= (m -1) n - (2+3+4+ ... + m - I) + I

rm =(m-1) n-[(m-l) ~m - 2)] + 1

Thus,

r = 2n(m-l) - m(m + l) + 1
m 2

Equation (2) is the required fonnular for the row number m

If m = I, we have ri = Ci - 1)(2n - i) + l
2

Column

II II II II

Given a pair of vertices i , } , where i<j, then the column where the weight of

the graph G is stored is given by.

62

Cv = }- i - 1 (3.1)

i<j

Therefore, given two vertices (or nodes) i and}, the edge from i to} or j to i is

given by

Aij = ri + Cii (3.2)

Equation (4) is the formular that turns A (a single dimension array) into Ai} (a

multidimensional array).

Proof:

We must show that Aij = Aji V ij E { 1,2,3,4,5,6}

M12 = 3,

A12 = r1 + C12 ~ ((1 - 1)(2(6)-1))/2 + 1 + (2- 1 - 1)

A12= 0+1+2 -2= 1 check the index 1 inA

MJs= 3,

AJs = r3 + C3s ~ ((3 - 1)(2(6) - 1))/2 + 1 + (5 - 3 - I)

A 35 = l 2 + I = 13 ... check the index 3 in A o

3.2.2 Model specification

Model specification or requirements is the process of understanding and

defining what components are required for the network system and identifying the

constraints on the network system's operation and development. Model requirement is

particularly critical stage of a model development as errors at this stage inevitably lead

to later problems in the system design and implementation.

tn this research, the model specification is to develop a model which is capable

of determining the shortest pathway and time for a packet to traverse the network from

source node to destination node through a network of interconnected communication

63

links in the University of Calabar. In achieving this model requirement, some tools are

needed for the development of the network system.

These required tools are:

1. Measuring tapes for the measurement of physical distances between the nodes

in the network.

2. A map of the unical environment which enhance the researcher to locate the

network mask that provided the network physical infrastructures.

3. Two HP laptops used as the sending and receiving terminal in the network.

4. The state of each node, predecessor, distance (dij) and status. With the aid of

these set of network system requirements, the researcher was able to obtain the

physical distances dij between any node and its predecessor in the networks

which served as the input data to the network system that receive the data,

processed the received data transmit the packets of the received data and

finally produced the output of the packet transmission through the shortest

pathway. Also determined the time taken for the packet to traversed the

network system from source to destination node through interconnected

network of communication links. From the simulated network the shortest

pathway and time for the packet of data to traverse from a source node to a

destination node is immediate known through the help of the developed

modified Dijkstra's algorithm.

3.2.3 Model development

A Comparison-Addition Model (CAM) for the modified Dijkstra's algorithm

was developed in this research for the determination of the shortest path in a wireless

packet switch network system in the University of Calabar.

ln developing this model, a topological survey was made for the network

J

64

system to determine the following parameters:

(1) number of nodes in the network

(2) physical topology of the network

(3) the link (edge) distance between a node in the network and its predecessor

(4) the source node

(5) the destination node

(6) the status of a node (either temporary or permanent)

The above named parameters or variables from the network system were used

to developed the model using the following keynotes:

(i) TL = temporary label of a node

(ii)

(iii)

(iv)

(v)

(vi)

PL

0

0

*

n

(vii) dij

= permanent label of a node

= permanent label of a node

=temporary label of a node

= permanent label of a node

=a node in the network i.e n1 =node 1, n2 =node 2, n3 =node 3, n4 =

node4, n5 = node5 and n6 = node 6. ·

=transit or distance cost between node i and} in the network

The model was developed using six different level of priority queues to

classify the packet traffic to a multiple level of priorities. The priorities are assigned

on packet peculiarities. The protocol uses packet type, source and destination

networks. The link capacity is divided into different classes (levels). The traffic is

assigned to each class and the routers serve each class with different priority.

At level 1.

TLn1, TLn2 and TLn3 are given distances dij = their distance costs from the

source node to the node in question, since they are directly reachable from the source

,,. -

65

node. n5 and n6 are not directly reachable from the source node and their distance are

TLns = TLn6 = +oo

At level 2.

Compare TLs for n2, n3, n4 and make the smallest of them a PL. No TL update

is required at this level. Only one comparison test ~as needed at this level to take a

decision.

At level 3

Update TLs for node 6 and 3 that are directly reachable from node 2, compare

TLs for n3, 04 and n6 and make the smallest of them the new (current) PL. Two

comparison test was required at this level to take a decision.

At level 4

Update TL for n5, compare TLs for n3, n5 and n6 and make the smallest of them

a PL. One comparison test was needed here to take a decision.

At level 5

Update the TLs for node 5 and 6, compare TLs for node 5 and 6 and make the

smallest of them the current PL. One comparison test was needed here to take a

decision.

At level 6

Node 6 was the last node to be visited, update its TL status and make it a PL.

66

Comparison-Addition Model (CAM) for the modified Dijstra's algorithm

Node 6 is the last node to be visited. Update its TL status and make
ita pL.

Update the TLs for nodes 5 and 6 compare TLs for n5 and n6 and
make the smallest of them the current pL

Update TL for n5, compare TLs for n3, n5 and n6 and make the
smallest of them a pL

Update TL for "6, compare TLs for n3, 14 and n6 and make
the smallest of then the new current pL.

Compare TLs for n2, n3 and n4 and make the
smallest of them the current pL. o TL update

n2, n3 and 14 are directly reachable from node
I, TL = dij, No TL update is required.

TL2 = ni
TL3 = nJ

TL4 = n4
TLK

n5 and n6 are not reachable from
n·,, di) = + «> = TL

IF TL n2 9'Ln3 and TLnl.'.S TLn4 then pL = TLn2

otherwise pl4 TLn2 subject to further
comparison test.

IF TLn3~ TL n4 and TLn3 ~ TLn6

Then pL = TLn3 otherwise pl4TLn3 subject to further
comparison test.

[f TLn3~ TLn5 and TLn3 ~ TL"6
Then pL = TLn3 otherwise pLtTLn3 subject to further comparison
test.

[f TLn5~ TL"6
Then pL = TLn5 otherwise PLtTLn5

Min{«>, 50 + 60} = 110, min{«>, 70 + 30} = 100. Then current TL
= L= JOO

The generalized comparison test condition is as follows:

PL = TLn2 otherwise PI4 TLn2

Subject to further comparison test.

67

3.2.4 System analysis of the modified Dijkstra's algorithm model

The model of this research, is designed using the linked-list priority queue data

structure. The simulation is done at different levels of priorities. The priority levels are

as fo llows:

At level 1:

Node 1 ~ [QJ
Reachable nodes from node 1 are nodes 2, 3 and 4. The temporary labels for

these nodes are their direct distances from node 1 to the node in question. No

temporary label distance is updated here from upper boundary to a lower boundary.

Nodes that cannot be reached directly from node 1 have oo as their temporary label. In

this model, the researcher used full line for edges that are reachable from the source

nodes and broken lines for edges that cannot be reached directly from the source node.

Thus, the node model at this level is:

_____ 3~ID-----------~n6

--~~
6001.- .- .-,,. .------

30m
node 1 ~ -----

-----3.0!!1

-------------~=====-c;)ni 30m

68

At level 2:

Compare the temporary labels of n2, n3 and f4 and make the smallest of them

the current pennanent label. No temporary label is updated at this stage.

pL = n2 else pL :/: n2

:. Since 30 ~ 70 and 30 ~ 40

n2 ~~
Thus, the logical structure of the model at level 2 becomes:

0
70m

-------~~~---------------06
'---~~ -----60m --- I ..,,.,,...,,.,,.,...,,.,,. I

_,,,./..,,.,,. I
..,,.,,...,,.,,...,,.,,. I

,..,,.,,.' I
..,,.,,...,,.,,...,,.,,. I

130m I
I
I

----- I
---- I

---...:tom : ---
------------------~~~~~~~()"'

30m

30

...

40m

69

At level 3:

Update the temporary labels for the nodes that are directly reachable

from node 2; compare their TLs and make the smallest TL a permanent label.

The new TL for node 3 = min {oo, 30 + 20} = 50

min {oo, 0 + 70} = 70

:. new TL for node 3 = 50 Since 50 < 70

and new TL for node 6 =min {oo, 30 + 90} = 120

now compare the TL5 and make the smallest of them a permanent label.

pL = n3 otherwise pL j n3

:. Since the IF statement = False

Another comparison was tested with f4

pL = n4 Else pL :f n4

Since 40 ~ 50 and 40 ~ 120 then

n4 ~~
Thus, the logical structure of the model at level 3 becomes:

90m

60m - -

0
---------- ----..30m

--

-- I
I
I
I
1
I
130m
I
1
I
I
I
I
1 ----- GI ---

----------------------- CX) ns
30m

0

70

At level 4:

Update temporary label for node 5:

TL(5) =min {oo, 40 + 30} = 70

Compare TLs for n3, n5 and n6 and make the smallest a permanent label.

If n3 ::: ns and n3 ::: n6 then pL = n3

Else pL i- n3 since 50,::: 70 and 50,::: 120

n3~~
Thus, the logical structure of the model at level 3 becomes:

ni

30
90m

60m ----------
.--~3'---l ________________ _

50m
50

-- -----
-- -..3Qm

40

30m

At level 5:

Update temporary label for node 5 and 6

n5: min{oo, 50 + 30} = 80

min {oo, 40 + 30} = 70

TL for n5 = 70

n6: min {oo, 30 + 90} = 120

min {oo, 50 + 60} = 110

TL for n6 = 110

-- ---

Now compare TLs for node 5 and 6 and make the smallest a pL.

IF n5 _::: n6 then

ns ~0

I
I
I
I
I
I
130m
I
I
I
I
I
I
I
I

ns

n

0

71

Thus, the logical structure of the model at level 5 becomes:

90m

n

40
30m

At level 6:

I
I
I
I
I
I
130m
I
I
I
I
I
I
I

70

Node 6 is the last node to be visited. Update the temporary label of node 6 and
make it permanent.

0

fl(;: min {oo, 50 + 60} = 110
min {oo, 70 + 30} = 100

:. TLn6 = 100 =PL

Note: Distance were measured in meters'

30m

Thus, node 6 has a new TL of 100 and it is automatically made permanent.

The algorithm converges at this point. The shortest path dij of the network mode is

I 00 and the path length or link whose dij = 100 is the shortest path of the network.

From the logical simulation of the wireless packet switch network model in the

JOO

30m

L--70 _ _,ns

72

University of Calabar, the shortest path for the packets to traverse from the source

) node to the destination node is as follows:

ns
0 40 70 100

The generalized condition for the comparison test is as follows:

Then PL = TLn2 otherwise PL -!- TLn2

Subject to further comparison test.

3.2.5 Model validation

This section of the research validates the practical efficiency of a new shortest

path algorithm for a wireless packet switch network system, which was modeled as an

undirected graph. The modified Dijkstra's algorithm outperforms the traditional

Dijkstra's algorithm for all pairs shortest path problem, and more generally path

problem, for the challenges of computing single source shortest path from w(i)

different sources. The term model validation or, more generally, verification and

validation (V & V) is intended to show that the model conforms to its specification

and that it meets the expectation of the system.

However, the validation of the developed model was done at different levels

before testing the entire model to determined the shortest pathway and time that a

packet will take to traverse the wireless packet switch network from source to

destination. At the end of the validation test for the developed model, it was found that

the model was an adequate instrument for the determination of the shortest pathway

and time in a wireless packet switch network of six nodes.

73

3.2.6 Algorithm formulation

The formulation of the modified Dijkstra's algorithm follow the steps, having

abstracted the wireless packet switch network system as a graph structure G = (V, E).

In graph theory, the shortest path algorithm can be used to find the path between

source node to destination node such that the sum of the weights of its constituent

edges is minimized.

General description

Basically, the shortest path from a given nodes to other nodes in a wireless

packet switch network is a one-to-all single source problem. The modified Dijkstra's

algorithm solves this class of problem, by finding the shortest path from a given

source nodes to a given destination node in the network. Node S is called the starting

node or an initial node. The algorithm starts by assigning some initial values for the

distance from node Sand to every other node in the network, the modified Dijkstra's

algorithm operate in steps, where at each step the algorithm improves the distance

value. At each step, the shortest distance from node Sto another node is determined.

The algorithm characterizes each node by its state. The state of a node consists

of two features: distance (dij) and status label. The distance value of a node is a scalar

representing an estimate of its distance from node S. Status label is an attribute

specifying whether the distance value of a node is equal to the shortest distance to

node Sor not. The status label of a node is permanent if its distance value is equal to

the shortest distance from node S. Otherwise the status label of a node is temporary.

The algorithm maintains a step by step updates of the states of the nodes. At each step

one node is designated as current.

74

Notation

d, denotes the distance of a node I

p or t denotes the status label of a node, where

P stands for permanent and

t stands for temporary

du is the distance weight cost for traversing link (iJ) as given by the problem.

The state of a node I is the ordered pair of its distance value d1 and its status label.

The procedure for the modified Dijkstra's algorithm is given as follows:

1. Initially make the source node permanent and make it the current working

node. All other nodes are made temporary.

2. Examine all the temporary neighbours of the current working node after

checking the condition for minimum weight, relabel the require node(s).

3. From all the temporary nodes, find out the nodes which have the minimum

value of distance and make it permanent and this became the current working

node.

4. If there is a tie in step 2 and 3, choose any one but exactly once.

5. Repeat step 2, 3, and 4 until destination node is made permanent.

3.2.7 Instrument for Algorithm development

Specifically, the aim of this research is to design and analyze a wireless packet

switch network system in the University of Calabar environment with the objective of

determining the shortest distance (path), dv and time, tu for network packets to traverse

from the source node to the sink node (destination). The problem domain is a direct

implementation of a network routing concepts.

The instrument used for the development of the algorithm are:

•

75

I . Source node

2. Destination node

3. four intermediate nodes

4. 2 HP laptops

5. Measuring tapes

6. UNICAL scale map

7. Status of each node, predecessor and distance

This research implements a totally different concept to find out shortest path

using scaled map of the University of Calabar environment. The map which the

researcher used was scaled and returns correct distance between the nodes in the

network model. Here the researcher used linked list to store and traverse N nodes or

vertices. The researcher labeled each node with distance, predecessor and status.

Distance of node represents the shortest distance of that node from the source node,

and predecessor of node represents the node which proceeds the given node in the

shortest path from source. Status of a node can be permanent or temporary.

3.2.8 Reliability test

The wireless packet switch network system was tested using a modeled

undirected weighted network graph (V, E, d) with node set V, edge set E, and the

weight set d specifying diJ for the edges (iJ) eE. This solves only the problems with

non-negative costs, i.e, dij ~ 0 for all (i,j) e E.

In this research, two experiment were carried out: tracet and ping test. The

ping test was carried out in three different routes of the network, including the shortest

path route. The network was simulated with 30MB data for each route. From the

output (result) it was found that the shortest path route took the smallest time interval

for the packet to traverse from the source node to the destination node and back.

..

76

The research problem is one-to-all, single source shortest path algorithm. The

weight on the link are also referred as cost. The modified Dijkstra's algorithm solves

only the problems with non-negative costs, i.e, dij ~ 0 for all (i, j) E £. Having

abstracted the network model as a graph G, the modified Dijkstra's algorithm can find

a shortest path from a given node S to other nodes in the network (one-to-all shortest

path problem). The modified Dijkstra's algorithm solves this problem better. It finds

the shortest path from a given node S to all other nodes in the network. Node S is

called a starting node or an initial (current) node.

The modified Dijkstra's algorithm starts by assigning some initial values for

the distances from node S and to every other node in the network. The algorithm

operates in steps, where at each step the algorithm improves (update) the distance

values. At each step, the shortest distance from node~ to another node is determined.

The algorithm characterizes each node by its state. The state of a node consists

of two features:

i) distance value and

ii) status label

Distance value of a node is a scalar representing an estimate of its distance

from node S. Status label is an attribute specifying whether the distance value of a

node is equal to the shortest distance to that node or not. The status label of a node is

permanent if its distance value is equal to the shortest distance from node S otherwise

the status label of a node is temporary. The algorithm maintains a step-by-step updates

of the status of the nodes. At each step, one node is designated as current. dij denotes

the distance value of a node P or t represented as o and 0 which denotes the status

label of a node, where P stands for permanent and t stands for temporary. dij is the

costs of traversing link (ij) as given by the network model. The state of a node is the

>

77

ordered pair of its distance value dij and its status label.

The algorithm steps:

Step 1 (Initialization)

a) Assign the zero distance value to node S, and label it as permanent [The state

of node Sis (0, P)].

b) Assign to every reachable node from S, a distance value of di} and label them

as temporary [The state of these nodes are (dij, t)].

c) Assign to every node not reachable from S a distance value of oo and label

them as temporary [The state of these node are (co, t)].

d) Designate the node Sas the current node.

Step 2

Distance value update and current node designation update.

Let i be the index of the current node.

a) The algorithm find the set J of nodes with temporary labels that can be reached

from the current node i by a link (iJ). Update the distance value of these nodes.

For each} et, the distance value dj of node} is updated as follows:

new dj =min {dj, di+ dij}

where dij is the cost link (iJ) as given in the network problem.

b) Determine a node j that has the smallest distance value dj among all nodes j

eJ,

find}* such that;

min dj = dj*

jeJ

c) Change the label of node j* to permanent and designate this node as the

current node.

78

Step 3 (termination criterion)

· If all nodes that can be reached from node S· have been permanently labeled,

then stop, which indicates completion. If the temporary labeled node cannot be reach

from the current node, then all the temporary labels become permanent (for directed

graphs), which signify completion, otherwise go to step 2.

3.2.9 Network design

There are several algorithms to determine and find the shortest path. This

research study is compatible with modified Dijkstra's algorithm. The network design

for a wireless packet switch network system in the University of Calabar, was

abstracted as a graph. The algorithm works efficiently for both directed and undirected

network system. The network design is as follows;

*Temporary label = 0 , Permanent label = D

Each node is labeled as diJ distance of a node represents the shortest distance of

that node from the source node, and predecessor of node represents the node which

precedes the given node in the shortest path from the .source node. The status of a

79

node may be permanent or temporary. In the context of this research, keynote o is

used for permanent label of a node and O for temporary label of a node. Making a

node pennanent means that it has been included in the shortest path. Temporary node

can be relabeled if required but once a node is made permanent, it cannot be relabeled.

The procedure of the algorithm is as follows:

1. Initially make the source node permanent and make it the current working

node. All other nodes are made temporary.

2. Examine all the temporary neighbours of the current working node and after

checking the condition for minimum weight, re-label the required nodes.

3. From all the temporary nodes, find out the nodes which have the minimum

value of distance and make it permanent and this becomes the current working

node.

4. If there is a tie in steps 2 and 3, choose any one but exactly once.

5. Repeat step 2, 3 and 4 until destination node is made permanent.

80

Hodo 2

0.1UnatJon

Source

Figure I: Network diagram showing the source to the destination node

...

81

3.2.10 Experimental design

ln this research, two experiments were carried out in the network known as

Tracet and Ping test. However, Tracet experiment allows the researcher to choose

alternative route for the packets to traverse from the source node to the destination

(sink) node through a network of interconnected communication links. The Ping test

experiment was design to determine the average time taken for a packet to traverse in

the chosen route from a source node to the destination (sink) node through a network

of interconnected communication links.

3.2.11 Evaluation

Jn this research, the algorithm evaluates the performance of the recent

undirected wireless packet-switch network system in the University of Calabar

environment. The algorithm is a robust, comparison-addition based algorithm for

solving undirected SSSP from multiple specified sources (MSSP). Abstract was made

in the wi reless packet switch network in the University of Calabar to a model of a

graph G. In this model the following assumptions were made:

i) dij are non-negative edge weights costs.

ii) The graph is undirected network.

iii) Node l is designated as the source node.

iv) Node 6 is designated as the destination node.

v) Nodes that can be reached directly from the source node have dij as their

temporary labels.

vi) Nodes that cannot be reached directly from the source node have +co as their

temporary labels from the source node.

vii) Temporary labels are updated base on the current position of the current

visited node.

.. -

82

3.2.12 Network validation

From the topological analysis of the wireless packet switch network, it was

found that the shortest weight cost was lOOm and the shortest path was 'ode I -7

Node 4 -7 Node 5 -7 Node 6. The test tool employed was the ping test which uses an

ICMP ECHO from source to destination and back. Therefore, the time recorded fo r a

ping response is twice the distance covered. The ICMP ECHO shortest path was;

Node 6 -7 Node 5 -7 Node 4 -7 Node l

Route l - uses 1 -7 2 -7 6, dij = 120, t = 0.0l 7s

Route 2 - uses l -7 4 -7 3 -7 6, dij = 110, t = 0.016s

Route 3 - uses l -7 4 -7 5 -7 6, dij = JOO, t = 0.013s

From the above results obtained from the network simulation, it was found that

the shortest path took the smallest time for the packet to traverse from source to

destination and back thus, validating the efficiency of the network system.

3.3 Research methodology

Irony and Rose (2005) asserted that, methodology is the systematic and

theoretical analysis of the methods applied to a field of study. It consists of the

theoretical analysis of the body of methods and principles related with a branch of

knowledge. It also includes concepts such as paradigm, theoretical model, phases and

quantitative or qualitative technique. Creswell (2003) defined methodology as the

analysis of the principles of method, rules and hypothesis employed by a discipline.

Creswell went further to state that, methodologies go beyond the approach of

incorporating guidance for business analysis, project planning and management,

project processes (examples: estimation, metrics, risk management), quality assurance,

testing, role and responsibilities, reuse and architectural design.

•

83

Methodology adopted for this study is outlined below:

a)

b)

General research information

Comprehensive site study

c) Analyzing various requirements

d) Collate all relevant data

e) Modification and identification of variables

f) Implementation of the algorithm

g) Modified OSPF (protocol suit for the modified Dijkstra algorithm)

h) Application

3.3.1 General research information

A successful wireless packet switch network system is produced in sequence

of stages that are typically managed by separate teams of developers. The stages are as

follows:

.-

.....

84

Problem f efinition

Feasibility study
1-.. -

System requirements

i .
System analysis

r
System design

S . i 1 . ystem imp ementat1on

S
i .

ystem testing
I

Solution t~ the problem

Figure 2: Hierarchical stages to research formulation

•

85

The first stage is a recognition of the problem to be solved (the shortest path

and time determination in a wireless packet switch network system in the University

of Calabar environment) with a view of determining the shortest pathway, dij, and

time ti) taken by a packet to traverse in the network from the source node to the

sink(destination) node.

The second stage deals with the availability and feasibility of tools that aid the

development of a successfully wireless network system in the University of Calabar

environment.

This stage is to determine the shortest path and time taken by packet to

traverse from a source node to a destination node, thus it solves the optimal routing

problem in the network. This requirement document should have enough detail to be

used as a standard when the network system is tested.

In the fourth stage, a thorough analysis is done before any effort or resources

are spent designing and implementing the network s"ystem. This could include a

survey of comparable networks system already available and a cost benefit analysis of

the value of spending the anticipated resources. Once a decision has been made to

proceed, the network designer, then works from the requirement document to design

the network system. Thus, including the specification of all the networks components

and their interrelationships. It may also require the specification of specialized

algorithms that would be implemented in the network system.

The system implementation consists of network engineers running the

developed system to produce the results.

The system testing team attempts to ensure that the resulting network system

satisfies the requirements document. Failure at this point may require a design or even

some fine tuning of the requirements. Those eventualities are represented by the two

v

86

feedback loops as shown in figure 1. System testing occurs at several levels.

Individuals route have to be tested separately and their success at working together

must be verified (Tracet). Finally the entire network system is tested against the

requirement document. One final aspect of network development, is the maintenance

process. After the network has been designed, its designers remains obliged to

maintain it with corrected tools and major alterations. Any major alteration would

follow the same life cycle steps.

3.3.2 Comprehensive site study

The University of Calabar - also known as UNICAL - is a federal

university situated in Calabar, Cross River State, South-southern Nigeria. It is one of

Nigeria's second generation universities. The University of Calabar was a campus of

the University of Nigeria until 1975. The architecture was designed by John Elliott. It

was established by decree to fulfill this traditional mandate, its motto "Knowledge for

Service" .

87

Figure 3: Google snap shot of the test bed

88

Destination

Hode4

Figure 4: Test-Bed (Network Design Diagram)

89

Six Nodes was considered in this study namely; Computer Science dept,

Former AfriHub building (Main Campus), VC Office, Unical Library, Malabar

(Female Hostel) and Staff Quarters. Each node was connected as shown in figure 2

above to implement full mesh connectivity.

Connection between any two nodes will have an IP subnet mask of

255.255.255.252 i.e. X.X.X.X/30 implying that there were only two valid hosts per

network. The modified Dijkstra's script was written and configured on each node as

shown in the pseudo code above. Each output was installed on the routing table of the

router (node).

3.3.3 Analyzing various requirements

The main experimental platform used by the researcher was a CPU with a

RB750: AR7240 400MHz RB750GL: AR7242 400MHz and 64MB onboard NANO

memory chip. The main memory allowed us to test graphs with millions of vertices.

For the purposes of this research, the following specification was used:

Memory

Boot loader

Data storage

Ethernet

LEDs

Power at the

device

Power over
Ethernet
Power
consumption
Dimensions

Temperature

Humidity

RouterOS

RB750: 32MB DDR SDRAM onboard RB750GL: 64MB SDRAM onboard

Router BOOT

64MB onboard NAND memory chip

RB750: Five 10/100 Mbit/s Ethernet ports with Auto-MDVX RB750GL:

Five 10/ 100/1000 Gigabit Ethernet ports with Auto-MDI/X

Power, NAND activity, 5 Ethernet and 1 wireless LEDs

DC power jack (5.5mm outside and 2mm inside diameter, female, pin

positive plug) accepts 8-30V DC

Ether 1 requires 8-30V DC (non 802.3at), to compensate for losses, it's
recommended to use 12V or more

Up to 6W
113x89x28mm. Weight without pa~kaging and cables: I 29g

Indoor device. Operational temperature: -20°C to +50°C

Operational: up to 70% relative humidity (non-condensing)

RouterOS v5, Level4 license

90

3.3.4 Collate all relevant data

The researcher collated relevant data from the output of ping and tracet test in

research work as well as interview with engineers/I CT staff of the University.

3.3.5 Modification and identification of variables

In this research work, two known quantities will be considered, Bandwidth

and Speed. Bandwidth can best be defined as the amount of data that passes a

medium per given time (Sec). While speed can be defined as the distance a packet

travels with time (sec).

The mathematical computation of both definitions can be expressed as

follows:

Bandwidth (Bw) =data (bytes) per sec

Bw = bps (3.3)

The unit of measurement can also be expressed in order of their magnitude such as:

Ki lo bytes per seconds = l kbps = I 024bps

Megabytes per seconds= lmbps = 1024kbps

I Gigabyte per seconds= l 024mbps

In measuring the bandwidth across a link/route, the lowest bandwidth on that

link is regarded as the bandwidth of the link. Take for example, figure 4 has three (3)

routers/hops between the source and destination. In between each device is recorded

the distance and relative bandwidth. The bandwidth of the link between the source

and destination is lkbps since it's the lowest bandwidth of the link.

91

3m

·I·
10km 10km 2m

·I

Bw•100mbpa

Figure 5: Speed and Bandwidth measurement

92

The speed can be represented mathematically as:

Speed, S = Total distance covered per sec

= mis (3.4)

From the illustration above (figure 4), it therefore implies that the speed attained for a

packet to transverse from source to destination is equal to 20,00Sm per sec.

The test tool employed is the ping test from source to destination. A ping test

uses an lCMP ECHO to the destination and back. This implies that, for every reply

recorded on the source, the packet has gone to and back. Therefore, the time recorded

for a ping response is for twice the distance covered. Hence, equation two (3.5) will

be modified to :

=2m/s (3.S)

The variable of interest in this work is time. Hence, making time(s) in equation i the

subject;

Time (s) =Bandwidth/data

Substituting equation (iv) into equation (iii)

2m

rBand um· . ' Speed, S = \ w lda.tal

2mx data
= B an.dw i.d..tJ&

3.3.6 Implementation of the algorithm

(3.6)

(3.7)

(3.8)

The basic design concept of modified Dijkstra is similar to Dijkstra: the

network will be abstract into a graph, and a set up of an adjacent list which makes

single-link lists for all non-isolated nodes in the graph. The i-list containing the nodes

will be directly connected to the non-isolated node vi. Each node will compose two

parts: neighboring nodes field (adjvex) and linking field (nextarc). The neighboring

I ..

93

nodes field will marks where the nodes connect to node vi in the graph and the linking

field will also marks the next node. Each single-link will have a head node which is

composed of data field (data) and linking field (firstarc). Data field will mark the

number of vi in the graph and the linking filed will marks the first node that is

connected to vi.

Initialization

Set up a two-dimensional array c initialized maximum to store the length of

the shortest path between each two nodes in the graph, then set up a one-dimensional

array be initialized 0 to store the betweenness centrality of each node.Vis the number

of non-isolated nodes in the graph.

Set up array a and b. a is used to restore the end node of the shortest path. b is

used to restore the number of nodes with the same starting node and the same length

and put the starting point into a and put la=O into b. At last, set the relative element 0

in array c.

3.3.7 Modified OSPF (protocol suit for the modified Dijkstra algorithm)

This problem is related to the spanning tree one. The graph representing all the

paths from one vertex to all the others must be a spanning tree - it must include all

vertices. There will also be no cycles as a cycle would define more than one path from

the selected vertex to at least one other vertex. For a graph,

G = (V,E) Where • V is a set of vertices and

• E is a set of edges.

The modified Dijkstra's algorithm keeps two sets of vertices:

S the set of vertices whose shortest paths from the source have

94

already been determined and

V-S The remaining vertices.

The other data structures needed are:

D array of best estimates of shortest path to each vertex

pi An array of predecessors for each vertex

The basic mode of operation is:

I. Initialised and pi,

2. Set S to empty,

3. While there are still vertices in V-S,

1. Sort the vertices in V-S according to the current best estimate of their

distance from the source,

ii. Add u, the closest vertex in V-S, to S,

iii. Relax all the vertices still in V-S connected to u

Pseudo code

dist[s] .._o
for all v E V-{s}

do distfv] .._oo

s- ·
Q-V
while Q *'"
do u - mindistance(Q,dist}

s-su{u}
for all v E neighbors[u]

(distance to source vertex is zero)

(set all other distances to infinity)
(S, the set of visited vertices is initially empty)
(Q, the queue initially contains all , -ertices)
(while the queue is not empty)
(select the element of Q with the min. distance)
(add u to list of visited vertices)

do if dist[v] > dist[u] + w(u, v)
then d[v) -d[u] + w(u, v}

(if new shortest path found)
(set new value of shortest path)

(if desired, add traceback code)

return dist

The basic design concept of modified Dijkstra is similar to Dijkstra: the

network will be abstract into a graph, and a set up of an adjacent list which makes

single-link lists for all non-isolated nodes in the graph. The i-list containing the nodes

will be directly connected to the non-isolated node vi. Each node will compose two

95

parts: neighboring nodes field (adjvex) and linking field (nextarc). The neighboring

nodes field will marks where the nodes connect to node vi in the graph and the linking

field will also marks the next node. Each single-link will have a head node which is

composed of data field (data) and linking field (firstarc). Data field will mark the

number of vi in the graph and the linking field will marks the first node that is

connected to vi.

Initialization

Set up a two-dimensional array c initialized maximum to store the length of

the shortest path between each two nodes in the graph, then set up a one-dimensional

array be initialized 0 to store the betweenness centrality of each node. V is the number

of non-isolated nodes in the graph.

Set up array a and b. a is used to restore the end node of the shortest path. b is

used to restore the number of nodes with the same starting node and the same length

and put the starting point into a and put la=O into b. At last, set the relative element 0

in array c.

Judge whether it is the end of array a. If it is, tum to; else tum to. Check out

the number of nodes with the length of shortest path la, and set it to be n. Travel the

next node in array a and the find out all child nodes which are connected to this node

(parent node) directly. If the value from starting node to this node in array c is bigger

than la, set the value from the starting node to this node and the value from this node

to starting node in array c to be la+ 1, then put the id of parent node and the id of child

node into a. The same nodes being put into an m times means that there are m shortest

paths from the starting node to this node. Add 1 to num which is the number of nodes

on layer la+ 1. Because the id of parent node can be found by the id of child node, the

shortest paths from the starting node to the other nodes in array a can be found, then

96

add l to the nodes on each shortest path. repeat n-1 time; put num into array b,

la=la+l, turn to. Repeat V-l times. It is the end.

According to the description above, the space complexity is T(V2) which is

equal to that of Dijkstra (Wei et al., 2010).

3.3.8 Application

According to Wei et al. (20 l 0), Dijkstra has a three-cycle and find out the

shortest path between each two nodes will be add 1 to between centrality of the nodes

being on the path. The application range is limited for its high time complexity and

the time consumption is unavailable when it is applied into large network of

thousands of nodes. As put by different researchers Fortz and Thorup (2002), Retvari

and Cinkler (2004), and Soltani et al. (2002), the length of shortest path between each

two nod_es would not exceed a constant. Based on this method, OSPF is proposed.

Open Shortest Path First (OSPF) is a well known real-world implementation

of DA used in network routing. In real networks, particularly in Ethernet networks,

the Spanning-Tree Protocol (STP) (Beaubrun and Pierre, 1997) runs on the network

before the OSPF. In a general way, a spanning tree of a graph is a sub-graph which is

also a tree that contains all the nodes. ln other words, in a network environment,

where redundant links are common, the STP causes these links to appear closed for

the operation of the network elements, as to eliminate the appearance of duplicate

messages, such as e.g. Neighbour discovery ages.

4.1 Introduction

97

CHAPTER FOUR

RESULTS AND ANALYSIS

This chapter is concern with interpretation, discussion and the results of the

design remote network and its application for this study. The connection of PC as

node in a diagrammatic form was done.

4.2 Description

A node in the network is referred to as a layer three (3) device on the OSI

reference model. Each node is tasked with translating a packet from a directly

connected network to another device in a remote network. A directly connected

network is a network that has one of its interfaces connected to a node while a remote

network is a network that the node has to learn of from another node. Hence in the

diagram below, PC-A is directly connected to Node-A while PC-B is remotely

connected to Node-A.

The node translates packet received from any of its interfaces by matching the

destination address of the received packet with network addresses on its routing table.

If the network address on the destination field matches any network address on its

routing table, the packet is sent to the specific interface attached to the route else the

packet is dropped. Each node can also be called a base station in long range wireless

communication. A single base station can cover an area with radius of up to Skm

(3miles) while providing 67Mbps throughput; using the most robust modulation and

coding scheme and the lowest frequency bandwidth this coverage area increases to

51 km (3 t.8miles) radius, but at a reduced throughput of 400kbps (Wei, et al., 2008).

98

From these findings, lagrange's interpolation formula was used to obtain estimated

bandwidths associated to different distance

y-ya x-xa -=-- (4.1)

Six (6) nodes were placed with the help of wireless radio devices at different

locations as shown in the diagram below (see figure 6). The objective was to find out

if the nodes could compute the cumulative shortest path to the destination from the

source.

99

NodcA NodeB

PC-A
PC-B

Figure 6: Diagram of a connected remote network

IOI

115
41

110 CJ
c ~ -
,£9 ~ dij (m)

1 I/) 105 0
100

95

90
R1 R2 R3

Route

Figure 7: Graph showing Route against Distance, diJ (m)

0.018

0.016

0.014

0.012

~ 0.01
Q)

E 0.008
j::

0.006

0.004

0.002

0
R1

102

R2

Route

R3

Figure 8: Graph showing Route against Time, lu (s)

a tij (s)

103

140

120

100
.§.

80 Cl> D dij (m)
CJ
c • tij(ms) J9 60
If)

i5
40

20

0
2 3

Time (ms)

Figure 9: Graph showing Time (ms) against Distance (m)

104

4.2.1 Modified Dijkstra's algorithm

•
1 Here it is assumed that the direct distance between any two node (dij') in the

network of n nodes is given, and all the distances are non-negative. The algorithm

proceeds by assigning to all nodes a label which is either temporary or permanent. A

temporary label represent an upper bound on the shortes.t distance from node 1 to that

node; while a permanent label is the actual shortest distance from node I to that node.

Initially, the source node 1 is given a permanent label of zero. All other nodes

(2, 3, ... , n) are assigned temporary label equal to the direct distance from node I to

the node in question. Any node which cannot be reached directly from node I is

assigned a temporary label of oo, while all the othe~ nodes receive temporary labels

equal to dij. The algorithm then makes these tentative node labels, one at a time,

permanent labels. As soon as the sink node receives a permanent label, the shortest

distance from the source node to the sink node is immediately known.

Iterative steeps of the algorithm

Pre-step: Initialize by assigning a permanent label of zero to the source node. All

other node labels are temporary and are equal to the direct distance

from the source node to that node. Select the minimum of these

temporary labels and declare it permanent. In case of ties, choo

105

as the new temporary label for that node (if the old temporary label is

..._.,
still minimal, then it will remain unchanged during this step).

Step 2: Select the minimum of all temporary labels, and declare it permanent.

In case of ties, select any one of them (but exactly one), and declare it

permanent. If this happen to be the sink node then terminate.

Otherwise return to step l .

To find the sequence of node in the shortest path from node 1 to node n, a

label indicating the node from which each permanently labeled node was labeled

should be available. Then by retracing the path backwards from the sink node to the

source node, the minimal path may be constructed. An alternative method is to

determine which nodes have permanent labels that differ by exactly the length of the

connecting arc. Again by retracing the path backwards from n to 1, the shortest path

may be found.

In this research, our network model in the University of Calabar environment

was as follows;

106

90m

Source

30m

Sink
(destination)

30m

Figure 10: A prototype model of an undirected wireless packet switch network system

in the University of Calabar.

107

Consider an undirected network shown in figure 10 where numbers along the

arcs (iJ) represent distances between node i and}. Assume that the distance from i to}

is the same as from j to ; (i.e., all arcs are two way streets). The problem is to

determine the shortest distance and the length of the shortest path from node I to node

6.

Solution

Initially node 1 is labeled permanently as zero, and all other nodes are given

temporary labels equal to their direct distance from noc:le 1. Thus, the node labels at

step 1, denoted by L(I), are:

L{l)=[0,30, 70,40, oo, oo] .
(An asterisk indicates a permanent label).

At step 2, the smallest of the temporary labels is made pennanent. Thus node 2

gets a permanent label equal to 30, and it is the shortest distance from node 1 to node

2. To understand the logic behind this step, consider any other path from node I to

node 2 through an intermediate node}= 3, 4, 5, 6. The shortest distance from node I

to node j will be atleast equal to 30 and dj2 is non-negative since all the distances are

assumed to be non-negative. Hence any other path from node I to node 2 cannot have

distance less than 30, and the shortest distance from node 1 to node 2 is 30. Thus at

step 2 the node labels are;

L(2) = (0, 30, 70, 40, oo, oo] . .
For each of the remaining nodes j(j = 3, 4, 5, 6), compute a number which is

the sum of the permanent label of node 2 and the direct distance from node 2 to node

j. Compare this number with the temporary label of node}, and the smaller of the two

108

values becomes the new tentative label for node}. For example, the new temporary

' label for node 3 is given by minimum of (30 + 20, 70) = 50

Similarly, for node 4, 5 and 6, the new temporary labels are 40, oo and 120

respective. Once again the minimum of the new temporary labels is made permanent.

Thus, at step 3, node 4 gets a permanent label as shown below:

L(3) = [0, 30, 50, 40, oo, 120] . . .
Now using the permanent label of node 4, the new temporary labels of nodes

3, 5 and 6 are computed as 50, 70 and 120, respectively. Node 3 gets a permanent

label and the node labels at step 4 are;

L(4) = [0, 30, 50, 40, 70, 120]
It should be emphasized here that at each step, only the node which has been

recently labeled permanent is used for further calculations. Thus, at step 5 the

permanent label of node 3 is used to update the temporary labels of nodes 5 and 6 (if

possible). Node 5 gets a permanent label and the node labels at step 5 are;

L(5) = [0, 30, 50, 40, 70, 110]
Using the permanent label of node 5, the temporary label of node 6 is changed

to 100 and is made permanent. The algorithm now converges and terminates, and the

shortest distance from node l to node 6 is 100. As a matter of fact, we have the

shortest distance from node l to every other node in the network as shown below:

L(6) = [0, 30, 50, 40, 70, 100]
To determine the sequence of nodes in the shortest path from node 1 to node 6,

we walk backwards from node 6. Node j (j = I, 2, 3, 4, 5) proceeds node 6 if the

difference between the permanent labels of node 6 and j equals the length of the arc

from} to 6. This gives node 5 as its immediate predecessor. Similarly node 4 precedes

109

node 5, and the immediate predecessor of node 4 is node 1. Thus the shortest path

from node 1 to node 6 is;

1-74-7 5-76

To compute the shortest path between every pair of nodes in the network, then

we have to repeat the modified Dijkstra's algorithm four times taking node 2, 3, 4 and

5 as the source node.

From the undirected network diagram of the model of a wireless packet switch

network system in the University of Calabar, the system was analyzed in six(6) stages

using the following keynotes;

Where o = permanent label of a node

0 = temporary label of a node

At Stage I:

L (I) = l9· 30, 70, 40, oo, ooJ

An asterisk's indicates a permanent label(*)

110

at Stage 2:

L (2) = { ?· 3.0, 70, 40, oo, oo}

At Stage 3:

L (3) = l9• 3p, 50, 4p, oo, 120J

route I 7 27 3 =min {O + 30 + 20} = 50

route 17 3 = min {O + 70} = 70

Thus new temporary label of node 3 = 50

0

0

111

at Stage 4:

L (4) = l9• 3p, 5p, 4p, 70, 120f

route 1 -7 3 -7 5 =min {O + 50 + 30} = 80

route 1 -7 4 -7 5 =min {O + 40 + 30} = 70

Thus, the temporary label for node 5 = 70

at Stage 5:

L (5) = \9, 3p, 5p, 4p, 7p, 110J

route 1 -7 2 -7 6 =min {O + 30 +90} = 120

route 1 -7 3 -7 6 =min {O + 50 + 60} = 110

Thus, the new temporary label for node 6 = 110

0

112

at Stage 6:

L c 6) = t 9, 3p, 5p, 4p, 1p, 1 qo J

route l-73-76 = min{O + 50+60}=110

route 1-7 4-7 5-76=min{0+40+30+30}=100

Thus, the new temporary label for node 6 = l 00

Hence node 6 takes a permanent label of 100 and the algorithm terminates here.

Important areas (domains) where the modified Dijkstra's algorithm can be

applied

Many more problems than you might at first think can be cast as shortest path

problems, making modified Dijkstra's algorithm a powerful and general tool. For

example;

i) The modified Dijkstra's algorithm js applied to automatically find directions

between physical locations, such as driving directions on websites like

Mapquest or Google Maps.

j) In a networking or telecommunication applications, modified Dijkstra' s

algorithm has been used for solving the min-delay path problem (which is the

_,

k)

113

shortest path problem). For example in data network routing, the goal is to

find the path for data packets to go through a switching network with minimal

delay.

It is also used for solving a variety of shortest path problems arising in plant

and facility layout, robotics, transportation, and Very Large Scale Integration

(VLSI) design.

I) It can also be used for solving the following;

a. Electricity flow

b. Fluid flow in pipes

c. Scheduling

4.3 Discussion of findings

This section of the research presents discussion of the findings emanating

from this study as well as their interpretations. However, it was found that Route 1

shows a distance of 120m with a speed of 7.06m/s and time range of 0.017s to the

destination and back through the Internet Control Message Protocol (JCMP Echo).

Route 2 shows a distance of 11 Om with a speed of 6.88m/s and time range of 0.0 l 6s

to the destination and back through the Internet Control Message Protocol (ICMP

Echo). Finally, route 3 shows a distance of lOOm with a speed of 7.69m/s and time

range of 0.013s to the destination and back through the Internet Control Message

Protocol (ICMP Echo). This indicates that, distance is directly proportional to time,

and inversely proportional to the speed taken for data to move to and fro in the packet

switch.

The following conclusion were drawn, based on the results.

-
1.

114

The shortest path from the simulation of the mo_dified Dijkstra' s algorithm in

the wireless packet switch network was Node 1 7 Node 4 7 Node 5 7 Node

6 and the packet uses ICMP ECHO to traversed back to the source node. In

computer networks the routing is based on the shortest path problem which

minimized the overall cost of setting up computer networks and increase

system efficiency.

2. The main drawback of the traditional Dijkstra's algorithm was the

consumption of huge memory which was as a result of large infinite values in

the network.

3. The open shortest path first (OSPF) mechanism protocol suit introduced for

routers provided effective congestion control in TCP/IP network through high

link utilization, regulate queues, bounded delay and delay variation, minimal

packet losses, adequate and effective differentiation among different drop

procedure's traffic, fast system response and robustness to varying system

dynamics.

4. The open shortest path first (OSPF) provide 9uality of services and high link

utilization, with minimal losses, and bounded queue fluctuations and delays.

115

CHAPTER FIVE

SUMMARY, CONCLUSION AND RECOMMENDATIONS

This chapter deals with the summary of the entire research work which is

presented under the following sub-headings.

5.1 Summary

5.2 Conclusion

5.3 Recommendations/ Suggestions for future work

5.1 Summary

The study was designed to analyse the shortest pathway and time

determination in a wireless packet switch network system in the University of Calabar

environment. Six nodes (nodesl ~node2 .. ., node6) were prepared to guide the study

and were tested with Open Shortest Path First (OSPF) using modified Dijkstra

algorithm. The combination of both Open Shortest Path First (OSPF) and modified

Dijsktra algorithm provides useful problem solving method in networking approach

by coding of the algorithm and the ability to manage and control the network which

was becoming more difficult because of the increase demand of the internet for

time/delay-sensitive applications with differing quality of service requirements (e.g

voice over IP, video streaming, peer-to-peer, interactive .games, etc.) . Some additional

OSPF technique was used to evaluate the routers to complement the endpoint

congestion control methods and the recently led concept of active queue management.

This was in line with Bast et al. (2007) postulation of the possible criteria of

minimized travel time, total path length or estimated travel cost are similar in GPS

devices; as these usually have a limited amount of memory and CPU power (Delling,

2008). Due to these backdrop, several devices was used differently to solve various

kinds of wireless connection in order to query a web .service, which computes the

116

desired path using more sophisticated algorithms than those available on the potable

device, because, endpoint demand and interest was fastest path to reach a destination.

The reemerging problems, which are; network· topology dynamics and

reconfigurability, user terminal and service mobility; large network size and user

populations; diversity of applications (QoS) requirements were put in place. modified

Dijkstra algorithm was use to determine the minimal length from the starting point of

vertex. Open Shortest Path First (OSPF) allowed the entry in one area and represented

in other areas of backbone which was associated with a summary address and a mask.

Mask was applied to the address to match the summary address with routing-entry

used.

5.2 Conclusion

The simulated results and analysis of this research study shows that, the

modified Dijkstra's algorithm have a better performance than the traditional Dijkstra's

algorithm that have huge consumption of memory ?ue to huge infinite values. The

choice of modified Dijkstra's algorithm (MDA) and open shortest path first (OSPF)

was to ensure total eradication of the routing problem in the wireless packet switch

network in the University of Calabar environment. MDA handles the SP cost while

OSPF handles (1) QoS (2) high link utilization with minimal losses (3) bounded

queue fluctuations and delay. The data structure handles the minimal memory core

utilization and runtime utilization of the algorithm. The modified Dijkstra's algorithm

uses the linked list priority queue and minimal weight cost on the system. This

development greatly increase the efficiency of the system. The shortest path was

found to be:

Node 1 -7 Node 4 -7 Node 5 -7 Node 6 and ~ack using the ICMP ECHO.

-~

117

Two experiments were conducted in the network: tracet and ping test. Three

alternate routes were chosen with the help of the tracet experiment. The ping test was

conducted on these three routes to determine the time taken by a packet to traverse

from source node to the destination node in the network. The results obtained from

the ping test was as follows:

Route 1: Node 1 -7 Node 2 -7 Node 6, dij = 120

Route 2: Node l -7 Node 4 -7 Node 3 -7 Node 6, dij = 110

Route 3: Node l -7 Node 4 -7 Node 5 -7 Node 6, dij = 100

From the network simulated results it was found that;

Route 1, having a di} of 120m took 0.017s for the packet to traverse from the source

node to the destination node and back.

Route 2, having a di} of 11 Om took 0.0 l 6s for the packet to traverse from the source

node to the destination node and back.

Route 3, having a di} of 1 OOm took 0.013s for the packet to traverse from the source

node to the destination node and back.

Thus, from the analysis of the results it was found that the shortest path in the

network took the shortest time for the packet of 30MB to traverse from the source

node to the destination node thus justify the research aim and objective.

5.3 Recommendations I Suggestions for future work

Even if the speed and versatility showed by the modified shortest paths

algorithm proposed in this research work should be sufficient for most practical

applications, there is still much room for research in the field. For some applications,

it would be desirable to have very fast query times and no additional overhead when

changing the cost functions. Examples of this are route planners which use different

118

cost functions depending on the vehicle type that is querying the path computing

service. Although this seems an impossible challenge, it is still an interesting subject

of research, maybe assuming some restrictions on the cost functions to simplify the

problem. If the cost functions are similar, the Open Shortest Path First (OSPF)

algorithm discussed in research has showed promising result. Another interesting

direction for future research is multicriteria optimization. Routing applications in

general networks (not necessarily road networks) often have to deal with several

objective functions that the user would like to minimize; e.g., traveling time and

number of connections for airport routing, or travelling time and motorway fees for

road networks. How to formalize this problem is unclear.

Some approaches rely on finding all the Pareto optima, and let the user choose

among them. However, computing all the Pareto optima is a difficult task, and could

greatly benefit from speedup techniques. The researcher believes that the techniques

presented in this research could be used as a building brick for efficient algorithms in

the multi-objective case. At the moment of finalizing this research, the researcher is

aware that an extension of the Open Shortest Path First (OSPF) algorithm shows very

good preliminary results. The greatest drawbacks of OSPF are its long preprocessing

time and the capability of dealing with static scenarios only. It would be interesting to

hybridize OSPF with the techniques proposed in this work, so as to be able to perform

efficient multicriteria optimization on dynamic networks.

There is of course room for improvement in the algorithm itself. It would be

desirable to be able to find a first feasible solution as soon as possible. The starting

point pwvided to the solver determines the chances of finding such a solution. The

researcher believe that employing constraint programming techniques to round to the

nearest integer as many fractional integer variables as possible, while still maintaining

119

constraint feasibility, could greatly help. The researcher also plan to test different

solvers to evaluate performance as a stand-alone heuristic, and to reduce the number

of parameters of the algorithm; preliminary tests show that a different combination of

solvers through the main phase of the algorithm yields significantly better solution

quality with minimal CPU time.

121

Cornu'ejols, G., Liberti, L. & Nannicini, G. Improved strategies for branching on
general disjunctions. Technical Report 2071, Optimization Online, 2008.
Available from World Wide Web: http://www.optimization-online.com.

Creswell, J. (2003). Research Design: Qualitative, Quantitative, and Mixed Methods
Approaches. Thousand Oaks, California: Sage Publications

David M. (2012). Mount "Design and Analysis of Computer Algorithms" Department
of Computer Science.

David, A., Bader, S., Kamesh, M. & Milena, M. (2007). Approximating Betweenness
Centrality. College of Computing, Georgia Institute of Technology.
Bader.kintali,kamesh,mihali@cc.gatecch.edu

Delling, D. & Nannicini, G. (2008). Bidirectional Core-Based Routing in Dynamic
Time-Dependent Road Networks. ln S.-H. Hong, H. Nagamochi, and T.
Fukunaga, editors, Proceedings of the 19th International Symposiumon
Algorithms and Computation (ISAAC 08), volume 5369 of Lecture Notes in
Computer Science, pp. 813-824.

Delling, D. & Nannicini, G. (2008). Core routing on dynamic time-dependent road
networks. Technical Report 2156, Optimization Online, 2008. Available From
WorldWideWeb: http://www.optimization-online.com.

Delling, D. (2008). Time-Dependent SH.A.RC-Routing. In Proceedings of the 16'"
Annual European Symposiumon Algorithms (ESA '08), volume 5193 of
Lecture Notes in Computer Science, pp. 332-343.

Delling, D. (2009) . Engineering and Augmenting Route Planning Algorithms. PhD
thesis, Fakulf'at f .. ur lnforrnatik, Universif'at Fridericiana zu Karlsruhe (TH),
Germany.

De Vaus, D. A. (2006). Research design in social research. London: SAGE, 2001;
Troochim, William, M. K. Research Methods Knowledge Base

Dijkstra, E. W. (2010). "A note on two problems in connexion with graphs".
Numerische Mathematik 1: 269-271.

Fortz, B. & Thorup, M. (2002). "Optimizing OSPF/IS-IS weights in a changing
world," IEEE Journal on Selected Areas in Communications, 20 (5), 756-767.

Frana, Phil (August 2010). "An interview with Edsger W. Dijkstra". Communications
of the ACM 53 (8): 41-47.

GeeksforGeeks "Dynamic Programming'' A computer science portal for geeks
http://www.geeksforgeeks.org/dynamicprogramming-set-23-bellman-ford­
algorithm/

Goldberg, A. & Harrelson, C. (2005). Computing the shortest path: A meets graph
theory. In Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2005), pp. 156-165, Philadelphia, SIAM.

-

122

Goldberg, A. V. Kaplan, H. & Wemeck, R. F. (2008). Shortest Path Algorithms with
Preprocessing. In C. Demetrescu, A. V. Goldberg, and D. S. Johnson, editors,
Shortest Paths: Ninth DIMACS Implementation Challenge, DIMACS Book.
American Mathematical Society.

Goldberg, A. V., Kaplan, H. & Wemeck, R. F. (2008). Shortest Path Algorithms with
Preprocessing. In C. Demetrescu, A. V. Goldberg, and D. S. Johnson, editors,
Shortest Paths: Ninth DIMACS Implementation Challenge, DIMACS Book.
American Mathematical Society.

Hansen, P., Mladenovi 'c, N. & Urovsevi'c. D. (2006). Variable neighbourhood
search and local branching. Computers and Operations Research,
33(10):3034-3045.

Hassan, M., & Sirisena, H. (2001). Optimal control of queues in computer networks.
IEEE International Conference on Communications.

Hopfield, J. J. (1982). Neutral networks and physical systems with emergent
collective computational abilities. Procedures for Natural Academic Science,
79, 2558-2558

Hopfield, J. J. & Tank, D. W. (1985). Neural computations of decision in optimization
problems, Biol. Cybern., 52, 141-152.

Hougardy, S. (2010). The Floyd-Warshall, -Algorithm on Graphs with Negative
Cycles!, University of Bonn.

https://en. wiki ped ia.org/wiki/Dijkstra%2 7s _ algorithm#Algorithm

https://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm

https://en. wikipedia.org/wiki/Network_ congestion#Congestion _control (20 15).

ICCRG, (2006). Internet Congestion Control Research Group.
http://oakham.cs.ucl.ac.uk/mailman/listinfo/iccrg

Ikeda, T ., Tsu, M., Imai, H., Nishimura, S., Shimoura, H., Hashimoto, T., Tenmoku,
K. & Mitoh, K. (2004). A fast algorithm for finding better routes by ai search
techniques. In Proceedings for the IEEE Vehicle Navigation and Information
Systems Conference, pp. 291-296.

lnternetworking Technology Handbook (2002). Internet Protocols (lP), Cisco Sytems,
Inc.

Irny, S.I. and Rose, A.A. (2005) "Designing a Strategic Information Systems Planning
Methodology for Malaysian Institutes of Higher Learning (isp- ipta). Issues in
Information System, 5, 1.

Jacobson, V. (1988). Congestion avoidance and control. Proceedings of ACM
SIGCOMM 1998, 314-329.

123

Kairanbay, M. & Hajar, M. J. (2013). A review and evaluations of shortest path
algorithms. International Journal of Scientific & Technology Research, 2, 6.

Katabi, D., Handley, M., & Rohrs, C. (2002). Congestion control for high bandwidth­
delay product networks. Proceedings of ACM SIGCOMM 2002.

Kenneth, H. R. (2003). Discrete Mathematics and its applications, 5th Edition.
Addison Wesley

Kerner, B. S. (2004). The Physics of Traffic. Springer, Berlin.

Keshav, S. (200 1). Congestion Control in Computer Networks. Ph.D. thesis, University
of California Berkeley

Ki ran, Y. & Ranj it B., (2010). An Approach to Find Kth Shortest Path using Fuzzy
Logic. International Journal of Computational Cognition, 8(l)

Lavor, C., Liberti, L. & Maculan. N. (2006). Computational experience with the
molecular distance geometry problem. In J. Pint' er, editor, Global
Optimization: Scientific and Engineering Case Studies.

Li, T., Qi, L. & Ruan, D. (2008). An Efficient Algorithm for the Single-Source
Shortest Path Problem in Graph Theory!, Proc. of 3rd International Conference
on Intelligent System and Knowledge Engineering, 1: 152-157.

Liberti, L., Nannicini, G. & Mladenovi'c. N. (2008). A good recipe for solving
MINLPs. In V. Maniezzo, T. Stuetze, and S. Voss, editors,
MATHEURJSTICS: Hybridizing metaheuristics and mathematical
programming, Operations Research/Computer Science Interface Series.

Martinez, J. C., Flich, J., Robles, A., Lopez, P. &Duato, J. (2004). "Supporting
adaptive routing in IBA switches'', Systems Architect 49 pp. 441-449.

Mehlhom, Kurt; Sanders, Peter (2008). Algorithms and Data Structures: The Basic
Toolbox. Springer.

Nannicini, G., Baptiste, P., Barbier, G., Krob, D. & Liberti, L. (2008). Fast paths in
large-scale dynamic road networks. Computational Optimization and
Applications.

Nannicini, G., Delling, D., Liberti, L. & Schultes, D. (2008). Bidirectional: A research
for time-dependent fast paths. InMcGeoch (104), pages 334-346.

Nannicini, G., Delling, D., Liberti, L. & Schultes. D . (2008). Bidirectio nal: A research
on time-dependent road networks. Technical Report 2154, Optimization
Online, 2008. Available from World Wide Web: http://www.optimization­
online.com.

Networks with Time-Dependent, Stochastic Arc Costs. IEEE International
Conference on Systems, Man, and Cybernetics. Humans, Information and
Technology 2, 1716-1721.

,

124

Newman, M. E. J. (20 10). Networks: An Introduction. Oxford, UK: Oxford University
Press.

Pi6ro, M. & Medhi, D. (2004). Routing, flow, and capacity design in communication
and computer networks, Mor-gan Kaufmann, CA, San Diego.

Pitsillides, A., & Sekercioglu, A. (2000). Congestion Control. In Pedrycz, W. &
Vasilakos, A. V. (Eds.), Computational Intelligence in Telecommunications
Networks (pp. 109-158). Boca Raton, FL: CRC Press, ISBN: 0-8493-1 075-X.

Puzis, R., Yagi!, D., Elovici, Y. & Braha, D. (2009). Collaborative attack on Internet
users ' anonymity, Internet Research 19(1)

Pyrga, E., Schulz, F., Wagner, D. & Zaroliagis, C . (2007). Efficient Models for
Timetable Information in Public Transportation Systems. ACM Journal of
Experimental Algorithmics, 12: 2-4.

Ramakrishnan, K., Floyd, S., & Black, D. (2001). The addition of explicit congestion
notification (ECN) to IP. Request for Comments RFC 3168, Internet Engineering
Task Force.

Retvari, G. & Cinkler, T. (2004). "Practical OSPF traffic engi-neering," IEEE
Communications Letters, 8(11), 689-691.

Rowe, S. & Schuh, M. (2005). Computer Networki ng, Pearson, Prentice Hall.

Sanders, P. & Schultes, D. (2005). Highway hierarchies hasten exact shortest path
queries. In G. Stolting Broda! and S. Leonardi, editors, 13th Annual European
Symposium on Algorithms (ESA 2005), volume 3669 of Lecture Notes in
Computer Science, pp. 568-579.

Sanders, P. & Schultes, D. (2006). Engineering highway hierarchies. In ESA 2006,
volume 4168 of Lecture Notes in Computer Science, pages 804-816.

Schultes, D. (2005). Fast and exact shortest path queries using highway hierarchies.
Master Thesis, Informatik, Universi('at des Saarlandes.

Silla, F. & Duato, J. (2000). "High-performance routing in networks of workstations
with irregular Topology," IEEE Transfer Parallel Distribution Systems, 11(7):
699-719.

Skiena, S. & Revilla, A. (2014). Programming Challenges, The Programming Contest
Training Manuall pp. 248 - 250.

Soltani , A. R., Tawfik, H. & Goulermas, J. Y (2002) . "Path planning in construction
sites: Performance evaluation of the dijkstra, a* and GA search algorithms,"
Advanced Engineering Informatics, 16, (4), 291-303, 2002.

Stevens, W. (1997). TCP slow start, congestion avoidance, fast retransmit, and fast
recovery algorithms. Request for Comments RFC 2001, Internet Engineering Task
Force.

125

Vaibhavi, P. & Chitra, B. (2014). A survey paper of Bellman-Ford algorithm and
Dijkstra algorithm for finding shortest path "in GIS application ME in
information Technology, Kalollnstitute of Technology & Research Center,
Gujarat, India. International Journal of P2P Network Trends and Technology,
5

Waller, S. T. & Ziliaskopoulos, A.K. (2002).0n the Online Shortest Path Problem
with Limited Arc Cost Dependencies. Networks, 40(4), 216-227.

Wang, Z. (2001). "Internet QoS: Architectures and mechanisms for quality of
service," Academic Press, CA, San Diego.

Wei, W., Hai, Z., Hui, L., Jun, Z., Peng, L., Zheng, L., Naiming, G., Jian, Z., Bo, L.,
Shuang, Y., Hong, L. & Kunzhan, Y. (2010). Research on LFS Algorithm in
Software Network. Information Science and Engineering Northeastern
University, Shenyang, China. Journal of Software Engineering &
Applications, 3: 185-189.

Xi, C., Qi, F. & Wei, L. (2006). A New Shortest Pa.th Algorithm based on Heuristic
Strategy,! Proc. of the 6th World Congress .on Intelligent Control and
Automation, I: 2531-2536.

Zhang, X., Zhao, H., Zhang, W. B. & Li, C. (2006). "Research on CFR algorithm for
Internet," Journal on Communications, 27(9)

126

APPENDIX 1

Ping test output result

After setting up the network, the default modified Dijkstra's algorithm

populated the routing tables shown in the different routes (Rl-R3)

Route one (Rl)

Packet path: Source-node I -node 3-node6-Destination

Load test with a load of30MB

"

127

Route two (R2)
'

Packet path: Source-node 1-node4- node3-node6-destination

"

I •

'·

128

Route three 3

~

Packet path: Source-node 1-node4-node5-node6-Destination

Load test with a load of 30MB

' ·

"

' •

129

APPENDIX II

II C++ class to represent a Graph
#include <iostream>
#include <iomanip>
using namespace std;

class Graph
{

int * Amatrix;

public:
int n;

int size(int m)
{

return (m*(m-1)/2);
}

int row(int m)
{

return ((m-1)*(2*n-m)/2);
}

int column(int vl, int v2)
{

return (vl - v2 - 1);
}

Graph(int n)
{

this->n = n;
Amatrix = new int[size(n)];

II fill matrix with infinities. in this case, infinity
is taken to be 1eeeeeee

}

int sz = size(n);
for(int i = 0; i<sz; i++)

Amatrix[i] = 10000000;

Graph() {
}

int index(int vl, int v2)
{

}

if(valid(v1,v2))
{

}

if(vl<v2)
return (row(vl) + column(v1,v2)};

else if(vl==v2) return 0;
return (row(v2) + column(v2,v1));

return -1;

bool valid(int vl, int v2)
{

if((v1>0 && vl<=n) && (v2>0 && v2<=n))

}

130

return true;
return false;

bool input(int vl, int v2, int weight)
{

if(valid{v1,v2))
{

if(vl<v2)
{

}
else
{

}
}

return false;
}

int edge(int vl, int v2)
{

if(valid{vl,v2))
{

Amatrix[index(vl,v2)]
return true;

Amatrix[index(v2,vl))

weight;

weight;

if(vl<v2) return Amatrix[index(vl,v2)];
return Amatrix[index(v2,vl)];

}
return -1;

vertices are not in range
II return a negative number if the

}

};

II Dijkstra

class Dijkstra
{

public:
Graph graph;
int n;
int *L; II Array containing Labaels
int E; 11 Evaluation Node
bool *visited; II Array containing flag values that

determines wheither a Node label is temporary or permanent
int source, destination; II source and destination nodes
int *path; II Array containing the paths from source

node to destinaton nodes

Dijkstra(Graph g)
{

graph = g;
}

void shortest_path(int *l, int *pat, int j, int i)
{

131

if(j<l 11 i<0)
{

}
else
{

cout<<pat[0]<<" -";
return;

bool end = false;
while(pat[j] == 0 && j>0)
{

i = --j -1;
}

while(j>-1 && lend)
{

if(({L[pat[j]-1] - L[pat[i] -1]) ==
graph.edge(pat[j], pat[i])))

}

}
}

{

}
--i;

shortest_path{L,pat,i,i-1);
cout<<pat[j]<<" - ";
end = true;

void initialize(int sourceNode)
{

L = new int[6];
visited = new bool[6];
path = new int(6] ;

L[sourceNode - l] = 0; II set the label of
source node to zero

temporary

source

}

visited[sourceNode - l] = true; II mark source nodes as

E =sourceNode; II set the next evaluation node E to

path[0]= sourceNode;

for(int i=l; i <=6; i++)
{

}

if(i I= sourceNode)
{

}

L[i-1] = graph . edge(sourceNode,i);
visited[i-1] = false;

int shortest_dist(int sourceNode, int destinationNode)
{

II step I --------- initialisation
initialize(sourceNode);
int min = 10000000;
int k =l;

132

II Step II --------------- Assign temp Loabel to all
unvisited Nodes and select the minimum

while(!visited[destinationNode - 1)) II this Loop
runs until destinationNode is marked as visited

{

distance to infinity

temporary Labels

}

}

II Step II --- begins here
min = 10000000; II reset minimum

for(int j = 1; j<=6; j++)
{

}

if(!visited[j - 1]
{

}

int sum = L[E -1] + graph.edge(E,j);
if(L[j-1] > sum) L[j - 1) = sum;

II Step III ---- select minimum of all the

for(int i = 1; i<=6; i++)
{

}

if(!visited[i-1])
{

}

if(L[i-1] <=min)
{

}

min = L[i 1];
E = i;

visited[E-1] = true;
path[k++] = E;

return min;

void route(int r)
{

double R;
double speed;
speed = R = 0;
double time =0;
string rout ="";
string bandwidth = "". ,

cout<<"ROUTE"<<setw(20)<<"BANDWIDTH(mbps)"<<setw(15)<<"5PEED(m/s)" <<s
etw(15)<< "DISTANCE"<<setw(15)<<"TIME(m/s)"<<endl;

graph.edge(2,6);

while(r>0)
{

switch(S-r)
{

case l:
R = graph.edge(l,2) +

bandwidth = "0.512";

133

time = 0.065*R;
speed = 0.512*R/time;
rout= "Rl";
break;

case 2:

graph.edge(4,5) + graph.edge(S,6);
R = graph.edge(l,4) +

bandwidth = "0.256";
time = 0.065*R;
speed = 0.256*R/time;
rout = "R2";
break;

case 3:
R = graph.edge(l,2) +

graph.edge(2,3) + graph.edge(3,S) + graph.edge(S,6);
bandwidth = "2";
time = 0.065*R;
speed = 2*R/time;
rout= "R3";
break;

case 4:

graph.edge(4,3) + graph.edge(3,6);
R = graph.edge(l,4) +

bandwidth = "0.064";
time = 0.065*R;
speed = 0.064*R/ time;
rout = "R4";
break;

default:
R = 0;

}
cout<<rout< <setw(20- .

rout.capacity()) << bandwidth<<setw(22 -
bandwidth.capacity())<<speed<<setw(15)<<(int)R<<setw(14)<<time<<endl;

r--;
}

}
};

II main function
int main()
{

Graph graph(6);
Dijkstra dijkstra(graph);
int n, s, d;
cout<<" Enter source Node ";
cin»s;
cout<<" Enter Destination Node ";
cin» d;

graph.input(l,2,30);
graph.input(l,3,70);
graph.input(l,4,40);
graph.input(2,3,20);
graph .input(2,6,90);
graph.input(3,4,10);
graph.input(3,5,30);

graph.input{3,6,60);
graph.input(4,5,30);
graph.input{S,6,30);

134

cout<<"edge 2,6 = "<<graph .edge(2,6)<<endl;

cout<<dijkstra.shortest_dist(s,d);

cout<<"\n"<<"\n"<<"NODE"<<setw(10)<<"SHORTEST
DISTANCE"<<setw(10)<<"SHORTEST PATH"<<endl;

}

cout<<"Enter route"<<endl;
int i;
cin»i;
dijkstra.route(i);

135

OUTPUT

' •

136

APPENDIX ill

IP Plan of the different nodes with their source and destination interface

Network Interface-
Routes Interfaces-Src IP-Src IP-Dest

Address Dest

Nodel-2 10.10.10.0 etherl 10.10.10.1/30 ether! 10.10.10.2/30

Nodel-3 10.10.10.4 ether2 10.10.10.5/30 ether I 10.10.10.6/30

Nodel-4 10.10.10.8 ether3 10.10.10.9/30 ether! 10.10.10.10/30

Node2-3 10.10.10.12 ether2 10.10.10.13/30 ether2 10.10.10.14/30

Node2-6 10.10.10.16 ether3 10.10.10.17/30 etherl 10.10.10.18/30

Node3-4 10.10.10.20 ether3 l 0.10.10.21/30 ether2 I 0.10.10.22/30

Node3-5 10.10.10.24 ether4 10.10.10.25/30 ether! I 0.10.10.26/30

Node3-6 l 0.10.10.28 ethers l 0.10.10.29/30 ether2 l 0.10.10.30/30

~ Node4-5 10.10.10.32 ether3 l 0.10.10.33/30 ether2 l 0.10.10.34/30
'

Nod-e5-6 10.10.10.36 ether3 10.10.10.37/30 ether3 10.10.10.38/30

Src-Ntw 192.168.1.0 Node5-ether4 192.168.1.0/24

Dest-Ntw 192.168.0.0 Node6-ether4 192.168.0.1/24

137

4.3 Network Configuration

Node A

[admin@Nodel] > / ip add

[admin@Nodel] / ip address> add address= J0 .10.10.1/30 interface=etherl

[admin@Nodel] / ip address> add address=l0.10.10.5/30 interface=ether2

[admin@Nodel] / ip address> add address= I 0.10.10.9/30 interface=ether3

[admin@Nodel] / ip address> add address=l92.168. l. l/24 interface=ether5

[admin@Nodel] / ip address> print

Flags: X - disabled, I - invalid, D - dynamic

ADDRESS NETWORK INTERFACE

0 10.10.10.1130 10.10.10.0 ether!

10.10.10.5/30 10.10.10.4 ether2

2 l 0 . 10.10.9/30 10.10.10.8 ether3

3 192.168.1.1 /24 192.168.1.0 ethers

[admin@Nodel] /ip address> /int ether

[admin@Nodel] / interface ethernet> set etherl bandwidth=4M/4M

[admin@Nodel] / interface ethernet> set ether2 bandwidth=256k/256k

[admin@Node 1] / interface ethernet> set ether3 bandwidth=2M/2M

[admin@Node 1] / interface ethernet>

[admin@Node 1] / interface ethernet> print

Flags: X - disabled, R - running, S - slave

NAME MTU MAC-ADDRESS

SWITCH

ARP

0 R etherl

I R ether2

1500 04:CA:60:03 :8F:EF enabled none

1500 D4:CA:6D:03 :8F:FO enabled none

MASTER-PORT

switch I

switch I

138

2 R ether3 lSOO D4:CA:60:03:8F:Fl enabled none switch l

3 ether4 lSOO D4:CA:60:03:8F:F2 enabled none switch 1

4 R ethers l SOO D4:CA:60:03:8F:F3 enabled none switchl

[adm in@Node 1] /interface ethemet> /rout ospf

[admin@Nodel] /routing ospf> area

[admin@Nodel] /routing ospf area> add name=Src-LAN area-id=l. l. l.l

[admin@Nodet] /routing ospf area> ..

[admin@Nodel] /routing ospf> net

[admi.n@Nodel] /routing ospf network> /ip add print.

Flags: X - disabled, I - invalid, D - dynamic

ADDRESS NETWORK INTERFACE

0 10.10.10.1/30 10.10.10.0 ether!

10.10.10.S/30 10.10.10.4 ether2

2 10.10.10.9/30 10.10.10.8 ether3

3 192.168.1.1/24 192.168.1.0 ethers

[admin@Node 1] /routing ospf network> add network= 10.10. 10.0/30 area= backbone

[admin@Nodel] /routing ospfnetwork> add network=l0.10.10.4/30 area=backbone

[admin@Nodel] /routing ospfnetwork> add network=l0.10.10.8/30 area=backbone

[admin@Node l] /routing ospf network> add network= 192. 168.1.0/24 area=Src-LAN

[admin@Nodel] /routing ospf network>

[admin@Nodel] /routing ospf network> print

Flags: X - disabled, I - invalid

NETWORK AREA

0 10.10.10.0/30 backbone

10.10.10.4/30 backbone

•

139

2 10.10.10.8/30 backbone

3 192.168.1.0/24 Src-LAN

[admin@Nodel] /routing ospf network> ..

[admin@Nodel] /routing ospf.> ls

[admin@Node 1] /routing ospf Isa> print

AREA TYPE lD ORIGINATOR

backbone router 10.10.10.l 10.10.10.l

backbone router 10.10.10. 17 10.10.10.17

backbone router 10.10.10.29 10.10.10.29

backbone router 10.10.10.33 10.10.10.33

backbone router I 0.10.10.37 10.10.10.37

backbone router 192.168.0.1 192.168.0.1

backbone network 10.10.10.2 10.10.10.17

backbone network 10.10.10.6 10.10.10.29

backbone network 10.10.10.10 10.10.10.33

backbone network 10.10.10.14 10. l 0.10.29

backbone network 10.10.10.22 10.10.10.33

backbone network 10.10.10.26 192.168.0.1

backbone network 10.10.10.30 10.10.10.37

backbone network 10.10.10.34 10.10.10.37

backbone network IO. I 0.10.38 192.168.0.l

backbone summary-n ... 192.168.1.0 10.10.10. 1

Src-LAN router 10.10.10.1 10.10.10.l

Src-LAN summary-n ... 10.10.10.0 10.10.10.l

Src-LAN summary-n ... 10.10.10.4 10.10.10.I

Src-LAN summary-n ... 10.10.10.8 10.10.10.I

SEQUENCE-NUMBER AGE

Ox80000007 19

Ox80000012 74

Ox80000011 52

Ox80000012 44

Ox8000000A 1490

Ox80000009 1489

Ox80000001 74

Ox80000001 52

Ox80000001 44

Ox80000006 1392

Ox80000006 1392

Ox80000005 1628

Ox80000006 1394

Ox80000006 1388

Ox80000005 1489

Ox80000001 18

Ox80000001 19

Ox80000001 19

Ox80000001 19

Ox80000001 19

Src-LAN summary-n ... 10.10.10.12

Src-LAN summary-n ... I 0.10.10.16

Src-LAN sumrnary-n ... 10.10.10.20

Src-LAN summary-n ... 10.10.10.24

Src-LAN summary-n ... 10.10.10.28

Src-LAN summary-n ... I 0.10.10.32

[admin@Node 1] /routing ospf Isa>

[admin@Node I] /routing ospf Isa>

[admin@Node I] /routing ospf Isa> ..

[admin@Nodel] /routing ospf.> rout

140

10.10.10.l

10.10.10.1

10.10.10.l

10.10.10.l

10.10.10.I

10.10.10.1

[admin@Node 1] /routing ospf route> print

#DST-ADDRESS STATE COST

0 10.10.10.0/30 intra-area 10

1 10.10.10.4/30 intra-area 10

2 10.10.10.8/30 intra-area 10

3 10.10.10.12/30 intra-area 20

4 10.10.10.16/30 intra-area 30

5 10.10.10.20/30 intra-area 20

6 10.10.10.24/30 intra-area 20

7 10.10.10.28/30 intra-area 20

8 10.10.10.32/30 intra-area 20

9 10.10.10.36/30 intra-area 30

10 192.168.1.0/24 intra-area 10

[admin@Nodel] /routing ospfroute>

Ox80000001 19

Ox80000001 19

Ox80000001 19

Ox80000001 19

Ox80000001 19

Ox80000001 19

GATEWAY INTERFACE

0.0.0.0 etherl

0.0.0.0 ether2

0.0.0 .0 ether3

10.10.10.2 ether!

10.10.10.6 ether2

10.10.10.6 ether2

10.10.10.6 ether2

10.10.10.10 ether3

10.10.10.6 ether2

10.10.1 0.6 ether2

10.10.10.10 ether3

10.10.10.6 ether2

10.10.10.10 ether3

0.0.0.0 ethers

--.

Node2

[admin@MikroTik] >/system

[admin@MikroTik] /system> id

141

(admin@MikroTik] /system identity> set name=Node2

[admin@Node2] /system identity> l ip add

[admin@Node2] l ip address> add address= I 0. 10.10.2/30 interface=etherl

[admin@Node2] l ip address> add address= I 0. I 0.10. I 3/30 interface=ether2

[admin@Node2] l ip address> add address=lO. I0.10.17/30 interface=ether3

[admin@Node2] l ip address>

(admin@Node2] l ip address> /int ether

(admin@Node2] /interface ethemet> set ether I bandwidth=4M/4M

(admin@Node2] /interface ethemet> set ether2 bandwidth=8M/8M

[admin@Node2] /interface ethemet> set ether3 bandwidth=64k/64k

[admin@Node2] /interface ethemet>

[admin@Node2] /interface ethemet> /rout ospf

[admin@Node2] /routing ospf.>

[admin@Node2] /routing ospf.> l ip add pri

Flags: X - disabled, I - invalid, D - dynamic

ADDRESS NETWORK INTERFACE

0 10.10.10.2/30 I0.10.10.0 ether!

10.10.10.13/30

2 10.10.10.17/30

10.10.10.12

10.10.10.16

[admin@Node2] /routing ospf.> net

[admin@Node2] /routing ospfnetwork>

ether2

ether3

add comment disable edit enable export find print remove set

[admin@Node2] /routing ospf network> add network= I 0.10. I 0.0/30 area=backbone

[admin@Node2] /routing ospf network> /rout ospf Isa print

142

AREA TYPE ID ORlGINATOR SEQUENCE-NUMBER AGE

backbone router 10.10.10.l 10.10.10.l Ox8000000F 655

backbone router 10.10.10.2 10.10.10.2 Ox80000002 6

backbone router 10.10.10.17 10.10.10.17 Ox80000015 947

backbone router 10.10.10.29 10.10.10.29 Ox80000017 153

backbone router 10.10.10.33 10.10.10.33 Ox80000013 707

backbone router 10.10.10.37 10.10.10.37 Ox8000000C 351

backbone router 192.168.0. I 192.168.0. l Ox80000012 126

backbone network 10.10.10.l 10.10.10.l Ox80000001 9

backbone network 10.10.10.6 10.10.10.29 Ox80000002 715

backbone network 10.10.10.10 10.10.10.33 Ox80000002 707

backbone network I 0.10.10.22 10.10.10.33 Ox80000008 252

backbone network 10.10.10.26 192.168.0.1 Ox80000007 490

- backbone network 10.10.10.30 10.10.10.37 Ox80000008 255

backbone network 10.10.10.34 10.10.10.37 Ox80000008 249

backbone network I 0.10.10.38 192.168.0.1 Ox80000007 351

[admin@Node2) /routing ospf network> add network= 10.10.10.12/30 area=back

[admin@Node2] /routing ospf network> /rout ospf Isa print

AREA TYPE ID ORlGINATOR SEQUENCE-NUMBER AGE

backbone router 10.10.10.I 10.10.10.1 Ox80000010 87

backbone router 10.10.10.2 10.10.10.2 Ox80000003 3

backbone router 10.10.10.17 10.10.10.17 Ox80000015 1025

backbone router 10.10.10.29 10.10.10.29 Ox80000017 231

backbone router 10.10.10.33 10.10.10.33 Ox80000013 785

backbone router 10.10.10.37 10.10.10.37 Ox8000000C 429

backbone router 192.168.0.1 192.168.0.l Ox80000012 204

backbone network 10.10.10.1 10.10.10.1 Ox80000001 87

... ~

143

backbone network 10.10.10.6 10.10.10.29

backbone network 10.10.10.10 10.10.10.33

backbone network 10.10.10.22 10.10.10.33

backbone network 10.10.10.26 192.168.0. l

backbone network 10.10.10.30 I 0.10.10.37

backbone network 10.10.10.34 10.10.10.37

backbone network 10.10.10.38 192.168.0.I

[admin@Node2] /routing ospf network> /ip add print

Flags: X - disabled, I - invalid, D - dynamic

ADDRESS NETWORK

0 10.10.10.2/30 10.10.10.0

10.10.10.13/30 I0.10.10.12

2 10.10.10.17/30 10.10.10.16

INTERFACE

ether I

ether2

ether3

Ox80000002 793

Ox80000002 785

Ox80000008 330

Ox80000007 568

Ox80000008 333

Ox80000008 327

Ox80000007 429

[admin@Node2] /routing ospf network> add network= l 0.10.10.16/30 area=backbone

[admin@Node2] /routing ospf network> /rout ospf Isa print

AREA TYPE ID ORIGINATOR SEQUENCE-NUMBER AGE

backbone router 10.10.10. I 10.10.IO.I Ox80000010 139

backbone router 10.10.10.2 10.10.10.2 Ox80000005 7

backbone router 10.10.10.17 10. 10.10.17 Ox80000015 1077

backbone router 10.10.10.29 10.10.10.29 Ox80000018 45

backbone router 10.10.10.33 10.10.10.33 Ox80000013 837

backbone router 10.10.10.37 10.10.10.37 Ox8000000C 481

backbone router 192.168.0. l 192.168.0.1 Ox80000012 256

backbone network 10.10.10.l 10.10.l0.1 Ox80000001 139

backbone network 10.10.10.6 10.10. l0.29 Ox80000002 845

backbone network 10.10.10.10 10.10.10.33 Ox80000002 837

.. -

144

backbone network 10.10.10.14 10.10.10.29

backbone network 10.10.10.22 10.10.10.33

backbone network 10.10.10.26 192.168.0. l

backbone network 10.10.10.30 10.10.10.37

backbone network 10.10.10.34 10.10.10.37

backbone network 10.10. 10.38 192.168.0.1

[admin@Node2] /routing ospf network> ..

[admin@Node2] /routing ospf.> Isa

[admin@Node2] /routing ospf Isa>

find print

[admin@Node2] /routing ospflsa> ..

[admin@Node2] /routing ospf.>

area instance nbma-neighbor route

Ox80000001

Ox80000008

Ox80000007

Ox80000008

Ox80000008

Ox80000007

export

area-border-router interface neighbor sham-link

as-border-router Isa network virtual-link

[admin@Node2] /routing ospf.> instance print

Flags: X - disabled, * -default

0 * name="default" router-id=0.0.0.0 distribute-default=never

redistribute-connected=no redistribute-static=no redistribute-rip=no

redistribute-bgp=no redistribute-other-ospf=no metric-default= 1

metric-connected=20 metric-static=20 metric-rip=20 metric-bgp=auto

metric-other-ospf=auto in-filter=ospf-in out-filter=ospf-out

[admin@Node2] /routing ospf.> neighbor print

45

382

620

385

379

481

0 instance=default router-id= l 92.168.0.1 address= 10.10.10.18 interface=ether3

priority=! dr-address= l 0.10. l 0.18 backup-dr-address= l0.10.10. 17 state="Full"

state-changes=5 ls-retransmits=O ls-requests=O db-summaries=O adjacency=59s

I instance=default router-id= l 0.10.10.29 address= l 0.10.10.14 interface=ether2

priority=! dr-address= l0.10.10.14 backup-dr-address=l0.10.10.13 state=" Full"

-

.. -

145

state-changes=5 ls-retransmits=O ls-requests=O db-summaries=O

adjacency= 1 m46s

2 instance=default router-id= I 0.10.10.1 address= I 0.10.10.1 interface=ether 1

priority= l dr-address= l0.10.10.1 backup-dr-address=IO. I 0.10.2 state="Full"

state-changes=5 ls-retransmits=O ls-requests=O db-summaries=O

adjacency=3m l 9s

[admin@Node2] /routing ospt> route

[admin@Node2] /routing ospf route> print

DST-ADDRESS STATE COST GATEWAY INTERFACE

0 10.10.10.0/30 intra-area 10 0.0.0.0 ether I

I 10.10.10.4/30 intra-area 20 10.10.10.1 ether!

10.10.10.14 ether2

2 10.10.10.8/30 intra-area 20 10.10.10.1 ether!

3 10.10.10.12/30 intra-area 10 0.0.0.0 ether2

4 10.10.10.16/30 intra-area 10 0.0.0.0 ether3

5 10.10.10.20/30 intra-area 20 10.10.10.14 ether2

6 10.10.10.24/30 intra-area 20 10.10.10.14 ether2

10.10.10.18 ether3

7 10.10:10.28/30 intra-area 20 10.10.10.14 ether2

8 10.10.10.32/30 intra-area 30 10.10.10.1 etherl

10.10.I0.14 ether2

10.10.10.18 ether3

9 10.10.10.36/30 intra-area 20 10.10.10.18 ether3

[admin@Node2] /routing ospf route>

146

Node4

[admin@MikroTik] /system identity> set name=Node4

[admin@Node4] /system identity> /ip add

[admin@Node4] /ip address>

[admin@Node4] /ip address> add address=I0.10.10.10/30 interface=etherl

[admin@Node4] /ip address> add address= 10.10.10.22/30 interface=ether2

[admin@Node4] /ip address> add address=I0.10.10.33/30 interface=ether3

[admin@Node4] /ip address>

[admin@Node4] /ip address> print

Flags: X - disabled, I - invalid, D - dynamic

ADDRESS NETWORK INTERFACE

0 10.10.10.10/30 10.10.10.8 etherl

I 0.10.10.22/30 10.10.10.20 ether2

2 I 0.10.10.33/30 10.10.10.32 ether3

[admin@Node4] /ip address> /int ether

[admin@Node4] /interface ethemet> set etherl bandwidth=2M/2M

[admin@Node4] /interface ethemet> set ether2 bandwidth=lOM/lOM

[admin@Node4] /interface ethemet> set ether3 bandwidth=4M/4M

[admin@Node4] /interface ethemet> print

Flags: X - disabled, R - running, S - slave

NAME MTV MAC-ADDRESS ARP MASTER-PORT

0 ether I 1500 4C:5E:OC:D4:98:79 enabled none

ether2 1500 4C:5E:OC:D4:98:7 A enabled none

2 ether3 1500 4C:5E:OC:D4:98:7B enabled none

3 ether4 1500 4C:5E:OC:D4:98:7C enabled none

4 R ethers 1500 4C:5E:OC:D4:98:7D enabled none

SWITCH

switch I

switchl

switch I

switch I

switch I

147

[admin@Node4] /interface ethemet>

[admin@Node4] /interface ethernet>

[admin@Node4) /interface ethemet> /rout ospf

[admin@Node4] /routing ospf>

[admin@Node4] /routing ospf>

[admin@Node4) /routing ospf>

[admin@Node4] /routing ospf> lip add print

Flags: X - disabled, I - invalid, D - dynamic

ADDRESS NETWORK INTERFACE

0 10.l 0.10.10130 l 0.10.10.8 etherl

l 0.10.10.22/30 l 0.10.10.20 ether2

2 I 0.10.10.33/30 I 0.10. 10.32 ether3

[admin@Node4] /routing ospf>

[admin@Node4] /routing ospf> net

[admin@Node4] /routing ospf network> add

comment copy-from disabled network area

[admin@Node4] /routing ospf network> add network= I 0.10.10.8/30 area=backbone

[admin@Node4] /routing ospfnetwork> add network=I0.10.10.20/30 area=backbone

[admin@Node4] /routing ospf network> add network=! 0.10.10.32/30 area=backbone

[admin@Node4] /routing ospf network>

--

I

148

Nodes

[admin@MikroTik] > /system id

[admin@MikroTik] /system identity>

[admin@MikroTik] /system identity> set name=NodeS

[admin@NodeS] /system identity>

[admin@NodeS] /system identity> lip add

[admin@NodeS] lip address>

[admin@NodeS] lip address> add address= 10. l 0.10.30/30 interface=ether l

[admin~NodeS) lip address> add address= l 0.10.10.34/30 interface=ether2

[admin@NodeS) lip address> add address=I0.10.10.37/30 interface=ether3

[admin@NodeS) / ip address>

[admin@NodeS] lip address>

[admin@NodeS] /ip address> /int ether

[admin@NodeS] /interface ethemet>

[admin@NodeS] /interface ethemet> set etherl bandwidth=4M/4M

[admin@NodeS) /interface ethemet> set ether2 bandwidth=4M/4M

[admin@NodeS) /interface ethemet> set ether3 bandwidth=4M/4M

[admin@NodeS] /interface ethemet>

[admin@NodeS) /interface ethemet>

[admin@NodeS] /interface ethemet> print

Flags: X - disabled, R - running, S - slave

NAME MTU MAC-ADDRESS ARP MASTER-PORT

0 ether! JSOO D4:CA:6D:03:21:A3 enabled none

ether2 ISOO D4:CA:6D:03:2l :A4 enabled none

2 ether3 J SOO D4:CA:6D:03:2 l :AS enabled none

3 ether4 l SOO D4:CA:6D:03:2 l :A6 enabled none

4 R ethers ISOO D4:CA:6D:03:21 :A7 enabled none

1

SWITCH

switch I

switch I

switch I

switch I

switch I

151

Sa. Print out the IP addresses configured on the router

[admin@Node6] /routing ospf network> l ip add print

Flags: X - disabled, I - invalid, D - dynamic

ADDRESS

0 10.10.10.18/30

10.10. I 0.26/30

2 I 0.10. I 0.38/30

3 192.168.0.1124

NETWORK INTERFACE

10.10.10.16 ether!

10.10.10.24 ether2

10.10.10.36 ether3

192.168.0.0 ether4

Sb. Use the network addresses on the printscreen to add networks to the OSPF network tab

[admin@Node6] /routing ospf network> add network=! 0.10.10. I 6/30 area=backbone

[admin@Node6] /routing ospf network> add network= I 0.10. I 0.24/30 area=backbone

[admin@Node6] /routing ospf network> add network= I 0.10.10.36/30 area=backbone

Sc. Include the Destination LAN network to the OSPF network but first, the network must be

in a separate area

[admin@Node6] /routing ospfnetwork> ..

[adrnin@Node6] /routing ospt>

[admin@Node6] /routing ospt> area

[admin@Node6] /routing ospf area> add name=Dst-LAN area-id=2.2.2.2

[admin@Node6] /routing ospf area> ..

Sd. Destination LAN is now added to the OSPF network

[admin@Node6] /routing ospt> network

[admin@Node6] /routing ospf network> add network= 192.168.0.0/24 area=Dst-LAN

[admin@Node6] /routing ospf network> print

Flags: X - disabled, I - invalid

NETWORK AREA

0 10.10.10.16/30 backbone

I 0.10.10.24/30 backbone

2 I 0.10.10.36130 backbone

3 192.168.0.0/24 Dst-LAN

[admin@Node6] /routing ospf network>

4.4 Presentation of Result

152

[admin@Node5] /routing ospf route> print

DST-ADDRESS STATE COST GATEWAY

0 10.10.10.0/30 intra-area 30 10.10.10.33 ether2

10.10.10.38 ether3

1 10.10.10.4/30 intra-area 30 10.10.10.33 ether2

2 10.10.10.8/30 intra-area 20 10.10.10.33 ether2

3 10.10.10.12/30 intra-area 30 10.10.10.33 ether2

10.10.10.38 ether3

4 10.10.10.16/30 intra-area 20 10.10.10.38 ether3

5 10.10.10.20/30 intra-area 20 10.10.10.33 ether2

6 10.10.10.24/30 intra-area 10 0.0.0.0 etherl

7 10.10.10.28/30 intra-area 30 10.10. 10.33 ether2

8 10.10.10.32/30 intra-area 10 0.0.0.0 ether2

9 10.10.10.36/30 intra-area 10 0.0.0.0 ether3

[admin@Node5] /routing ospf route> ..

[admin@Node5] /routing ospf.> Isa

[admin@Node5] /routing ospf Isa> print

INTERFACE

153

AREA TYPE ID ORIGINATOR SEQUENCE-NUMBER

Aa~ I

J0.10.10.17 Ox8000000E

W.W.10.17

oacK~~n~ router
~x~~~~~~JE 10 .10 . 10.2~

router 1O.l0.10.29
i..~ckbone

\0.\0.\033 ()~~ooooooB
backbone router \0.\0.\0.33

backbone router 10.10.10.37 10.10.\0.37 OxSOOOOOOE

backbone router 192.168.0.1 192.168.0.1 Ox80000012

backbone router 192.168.1.l 192.168.1.l Ox8000000A

backbone network 10.10.10.l 192.168.1.1 Ox80000005

backbone network 10.10.10.5 192.168.1.l Ox80000004

backbone network 10.10.10.9 192.168.1.1 Ox80000004

backbone network 10.10.10.14 10.10.10.29 Ox80000004

backbone network 10.10.10.18 192.168.0.1 Ox80000005

backbone network 10.10.10.22 10.10.10.33 Ox80000004

backbone network 10.10.10.33 10.10.10.33 Ox80000001

backbone network 10.10.10.38 192.168.0.1 Ox80000001

4.5 Test for all routes connectivity

[admin@Node5] > ping 10.10.10.l

HOST

10.10. 10.I

10.10.10.I

SIZE TIL TIME STATUS

56 63 !Oms

56 63 Oms

sent=2 received=2 packet-loss=O% min-rtt=Oms avg-rtt=5ms max-rtt= I Oms

JIB

1100

81

58

59

49

162

630

1714

567

119

518

81

59

155

[admin@Node5] > ping 10.10.10.10

HOST SIZE TTL TIME ST A TUS

10.10.10.10 56 64 Oms

10.10.10.10 56 64 Oms

10.1 0.10.10 56 64 Oms

10.10.10.10 56 64 Oms

10.10.10.10 56 64 Oms

sent=5 received=5 packet-loss=O% min-rtr-Oms avg-rtt=Oms max-rtt=Oms

[admin@Node5] > ping 10.10.10.13

HOST

10.10.10.13

10.10.l0.13

SIZE TTL TIME ST A TUS

56 62 5ms

56 62 Oms

sent=2 received=2 packet-loss=O% min-rtt=Oms avg-rtt=2ms max-rtt=5ms

[admin@Node5] > ping 10.10.10.14

HOST

10.10.10.14

10.10.10.14

SIZE TTL TIME ST A TUS

56 62 lms

56 62 Oms

sent=2 received=2 packet-loss=0% min-rtt=Oms avg-rtt=Oms max-rtt= I ms

[admin@Node5] > ping l 0.1 O.l O.l 7

HOST

10.10.10.17

10.10.10.17

10.10.10.17

10.10.10.17

SIZE TTL TIME ST A TUS

56 63 Oms

56 63 Oms

56 63 Oms

56 63 Oms

sent=4 received=4 packet-loss=0% min-rtt=Oms avg-rtt=Oms !11ax-rtt=Oms

156

[admin@Node5] > ping 10.10.10.18

HOST SlZE TTL TIME STATUS

10.10.10.18

10.10.10.18

10.10.10.18

10.10.10.18

56 64 Oms

56 64 Oms

56 64 Oms

56 64 Oms

sent=4 received=4 packet-loss=0% min-rtr-Oms avg-rtt=Oms max-rtt=Oms

[admin@Node5] > ping 10.10.10.21

HOST SIZE TTL TIME ST A TUS

10.10.10.21

10.10.10.21

10.10.10.21

10.10.10.21

56 63 Oms

56 63 Oms

56 63 Oms

56 63 Oms

sent=4 received=4 packet-loss=O% min-rtt=Oms avg-rtt=Oms max-rtt=Oms

[admin@Node5] > ping 10.10.10.22

HOST SIZE TTL TIME .STATUS

10.10.10.22

10.10.10.22

10.10.10.22

56 64 Oms

56 64 Oms

56 64 Oms

sent=3 received=3 packet-loss=O% min-rtt=Oms avg-rtt=Oms max-rtt=Oms

[admin@Node5] > ping 10.10.10.25

HOST SlZE TTL TrME STATUS

10.10.10.25

10.10.10.25

10.10.10.25

56 64 5ms

56 64 5ms

56 64 6ms

sent=3 received=3 packet-loss=O% min-rtt=5ms avg-rtt=5ms max-rtt=6ms

157

[admin@Node5] > ping 10.10.10.26

HOST SIZE TTL TIME ST A TUS

10.10.10.26

10.10.10.26

56 64 6ms

56 64 7ms

sent=2 received=2 packet-loss=0% min-rtt=6ms avg-rtt=6ms max-rtt=7ms

[admin@Node5] > ping 10.10.10.29

HOST

10.10.10.29

10.10.10.29

SlZE TTL TIME STATUS

56 64 Oms

56 64 Oms

sent=2 received=2 packet-loss=O% min-rtl-Oms avg-rtt=Oms max-rtt=Oms

[admin@Node5] > ping 10.10.10.30

HOST SIZE TTL TIME ST A TUS

10.10.10.30 56 64 Oms

10.10.10.30 56 64 Oms

sent=2 received=2 packet-loss=0% min-rtl-Oms avg-rtt=Oms max-rtl-Oms

[admin@Node5] > ping 10.10.10.33

HOST SIZE TTL TIME STATUS

10.10.10.33

10.10.10.33

56 64 Oms

56 64 Oms

sent=2 received=2 packet-loss=0% min-rtt=Oms avg-rtl-Oms max-rtl-Oms

[admin@Node5] > ping 10.10.10.34

HOST SIZE TTL TIME STATUS

10.10.10.34

10.10.10.34

56 64 5ms

56 64 5ms

sent=2 received=2 packet-loss=0% min-rtt=Sms avg-rtt=5ms max-rtt=5ms

[admin@Node5] > ping 10.10.10.37

HOST SIZE TTL TIME STATUS

10.10.10.37

10.10.10.37

56 64 5ms

56 64 5ms

sent=2 received=2 packet-loss=0% min-rtt=Sms avg-rtt=5ms max-rtt=5ms

158

[admin@Node5] > ping 10.10.10.38

HOST SIZE ITL TIME ST A TUS

10.10.10.38

10.10.10.38

10.10.10.38

56 64 Oms

56 64 Oms

56 64 Oms

sent=3 received=3 packet-loss=O% min-rtt=Oms avg-rtt=Oms max-rtt=Oms

