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ABSTRACT 

This dissertation presents the development of a non-binary error control decoder for solid state 

drives that require high throughput when reading data for error correction. The miniaturization of 

chip fabrication has made flash memory cells of Solid State Drives (SSDs) susceptible to 

distortion and error. This is as a result of the continuous storage of bits unto a single cell, which 

eventually leads to an increase in the number of errors to be corrected by the decoder. Also, the 

representation of the messages passed between the variable node and the check node involve the 

use of large Galois fields, which eventually results in very high decoding complexity without 

leading to an increase in the decoding throughput. Bose-Chaudhuri-Hocquenghem (BCH) code 

previously utilized to correct multi-bit errors, causes the SSD controller to experience latency 

during decoding. In this work, a non-binary Low Density Parity Check (LDPC) code is used in 

conjunction with a small Galois Field (GF) of eight, a parallel architecture and a reduced 

iteration limit to develop an error control decoder for SSDs. The error control decoder was 

synthesized on a ZYNQ 7000 Series Field Programmable Gate Array (FPGA). The developed 

error control decoder achieved a throughput of 2.34Gbps at 125-MHz clock frequency and a 

maximum iteration limit of six (6). A total power of 0.223W was consumed by the decoder. The 

result shows an improvement in the throughput by 7.3%, and an increase in the power by 5.2% 

when compared with the decoder implemented by Toriyama et al 2018. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background to the study 

Systems that perform on-line transaction processing such as cloud computing and virtualization, 

which implement Solid State Drives (SSDs) require very fast random access to data (Smith, 

2020). The probability of the corruption of data occurring in the memory of semiconductor 

devices keeps increasing with the scaling of the technology unit (Zhao et al., 2013). Storage  

semiconductor facilities being used include Random Access Memory (RAM), Read Only 

Memory (ROM) and flash memory (Eshghi & Micheloni, 2018). The disadvantages in error 

detection techniques make them unsuitable for use in semiconductor memories  (Micheloni et 

al., 2018). They include; cell deterioration, large area overhead, low throughput and very 

complex architectures (Zhao et al., 2013). The drawbacks in the error detection techniques 

necessitate the development of a more reliable solution is sought that would provide better error 

resiliency. Such technique often involves the use of better correction codes that reduce memory 

cell deterioration and give high throughput. This technique is the Low Density Parity Check 

(LDPC) soft decoding scheme, which is also being used in communication systems. The errors 

that are prevalent in data memory can be single bit errors or multi-bit errors. Errors with single 

bit in data memory are rectified by using single bit error correction like Hamming code. Multi-bit 

errors are corrected using multi-bit error correction, like Bose-Chaudhuri-Hocquenghem (BCH) 

code (Reviriego et al., 2012).  

The advent of SSDs has revolutionized the memory industry. NAND Flash memories which 

make up SSDs have changed the way data memory is implemented. They are now used in many 

digital systems which include smartphones, tablets and cameras. SSDs have now become the 
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preferred application for Cloud computing, enterprise servers and ultra-modern laptops (Chang et 

al., 2016a). Even in NAND memory, error correction is of utmost importance. This is because, 

the tendency for error to occur increases as more bits are stored in smaller cells. This necessitates 

the use of Error Correction Codes (ECCs). All ECCs, including LDPC codes, have a probability 

of failing at a given bit error rate. BCH codes can correct single bit errors effectively, but are not 

reliable when correcting multi-bit errors. As a result, BCH codes are still used when throughput 

and bandwidth are not critical requirements. Various literatures have not only established the 

excellent capabilities of LDPC codes, but also its drawbacks. (Nicola et al., 2018). LDPC codes 

results in complex decoding algorithms and require large logic resource for implementation.  

Nonetheless, LDPC codes have become the  preferred choice in the enterprise domain (Lee et al., 

2012). This is as a result of the excellent error correction capabilities and the ability of being able 

to handle both hard decoding (i.e. zero and one) and soft decoding (i.e. involving probability).  
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1.2 Significance of Research 

NAND flash memory is a non-volatile, solid state storage medium that affords numerous 

powerful advantages over rotating magnetic storage such as hard disks: increased performance; 

higher density; higher reliability; and higher throughput. These advantages make flash memory 

ideal for use in portable devices, as well as in high-performance SSDs and server-side caching 

systems (Smith, 2020). NAND flash memory also have an undesirable feature-the memory cells 

deteriorate slightly with each program/erase (P/E) cycle. As each individual cell deteriorates, its 

ability to correctly hold a given bit state reduces, causing its read error rate to increase. At some 

point, the errors can no longer be corrected, damaging the cell  (Smith, 2020). To date, error 

control codes like BCH code have worked well in solid state drives. But that is now changing as 

chip fabrication geometries shrink, and as densities increase from single- and multi- to three-

level cells storing one, two or three bits, respectively (Lee et al., 2012). Storing more bits in 

smaller cells makes it possible to fit more storage into smaller form factors, but the 

smaller/denser cells hold smaller charge and cause a spike in the raw bit error rate of data stored 

in the cells. NAND flash memory provides a fixed amount of storage for ECC.  Given the fixed 

storage, BCH codes are only able to meet output bit error rate requirements with up to a certain 

value at considerable speed, and when the cells deteriorate beyond that point, they fail to work 

(Smith, 2020). LDPC error-correction technology, particularly through judicious use of soft-

decision LDPC decoding, is able to meet output error rate requirements, and as a result can 

greatly extend the usable P/E cycles of NAND flash memory (Eshghi & Micheloni, 2018). 
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1.3 Statement of The Problem 

Reduction in the shrinking of the chip technology unit makes cells of memory blocks subject to 

growing severe distortion, thereby causing bit errors that mainly weaken the storage performance 

and the reliability of the flash memory (Zhao et al., 2013).  Conventional BCH codes, which are 

currently implemented in all the commercial SSDs today, have become insufficient to correct 

these bit errors (Micheloni et al., 2018). The speed of the SSD is limited by how fast the error 

correction code can decode the information and present it to the user (Smith, 2020). Therefore, 

there is need for an error control decoder that will improve the speed of the SSDs by increasing 

the write/read throughput through high parallelization capability and ease of decoding.  LDPC 

codes employ full parallelization and Galois field representation over multiple read operations to 

determine the likelihood of each cell containing a bit value 1 or  0 at high speeds, thereby 

providing stronger protection, but at the cost of greater decoding latency and storage overhead 

(Micheloni et al., 2018) 

1.4 Aim and Objectives 

The aim of this research work is to develop a non-binary error control decoder for solid state 

drives. 

In order to achieve this aim, the following objectives are employed:  

1. To develop a non-binary low density parity check code. 

2. To emulate the NB-LDPC error control code decoder architecture. 

3. To synthesize and compare the performance of the developed system with the work of 

(Toriyama & Markovic, 2018) using throughput and power consumption as performance 

metrics.  
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

The literature review consists of the review of fundamental concepts that are related to this work 

and the review of similar works. 

2.2  Review of Fundamental Concepts 

Fundamental concepts important to the research work are discussed as follows. 

2.2.1 Solid State Drive (SSD) Architecture  

Flash-memory-based SSDs are able to offer very much faster random access to data and high 

transfer speeds. SSDs are logic architectures where every part is soldered on a printed circuit 

board and is uniquely packaged. The SSD comprises of a bank of flash memories (or chips) and 

a controller, as illustrated in Figure. 2.1  

 

 

Figure 2.1: Block Diagram of SSD (Eshghi & Micheloni, 2018). 

 

 



7 
 

2.2.2 Flash Memory Organization 

The flash memory is distributed across many flash chips, where they each possess from one to 

multiple dies. Dies are distinct sets of silicon wafer that are joined to the chip pins. It is 

illustrated in Figure 2.1. SSDs usually possess 5–18 chips per die, and can contain up to a 

maximum of 16 dies on each chip. Each one is joined to a single or multiple channels of the 

physical memory, and these channels are not duplicated within the chips (Chang et al., 2016b). 

2.2.3 Galois Field 

A Galois field GF(q) is also called a finite field. This is a field that contains a finite number of 

elements. As with any field, a finite field is a set on which the operations of multiplication, 

addition, subtraction and division are defined and satisfy certain basic rules. The symbol 𝑞 stands 

for q-ary and it represents the orders of the Galois field. In the construction of binary and non-

binary QC LDPC codes, a nonzero element in GF(q) is represented by a non-binary Circular 

Permutation Matrix (CPM), while the zero element is represented by a zero matrix (ZM). 

CPM/ZM is a square matrix over GF(q)/zero where if every row of the matrix is the cyclic-shift 

of the row above it one place to the right, and the top row is the cyclic-shift of the last row one 

place to the right. 

The number of edges that are incident with a variable node (or check node) in the Tanner graph 

of an LDPC code is called the variable node degree (or check node degree). The girth of an 

LDPC code is the length of the shortest cycle in its Tanner graph. Cycles, especially short cycles, 

leave a bad effect on the performance of LDPC decoders. 

2.2.4 Error-Correcting Codes Used in SSDs 

Conventional SSDs usually make use of one error correction code, which is the Bose–

Chaudhuri–Hocquenghem (BCH) code. This is because, the BCH code permit multiple bit error 
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correction (Lee et al., 2012), and single read of flash memory that generate error (Lee et al., 

2012). Low-density parity-check (LDPC) codes on the other hand use  accumulated information 

over many read operations to ascertain the probability of each cell having a bit value one (1) or a 

zero (0) (Kumar, 2004), thus enabling a better and reliable protection, though at the expense of 

increased decoding latency and excessive area (Wang et al., 2014). 

2.2.4.1 Bose–Chaudhuri–Hocquenghem (BCH) Codes 

Bose–Chaudhuri–Hocquenghem (BCH) codes (Lee et al., 2012) have been adopted in SSDs 

during the past few years, as a result of their ability to detect and correct multi-bit errors, and at 

the same time ensuring that latency and hardware cost is reduced (Lee et al., 2012). They are 

designed to ensure correction to a certain degree, of bit errors within each codeword. A stronger 

error correction strength demands more check bits or an increased codeword length.   

2.2.4.2 Low-Density Parity-Check (LDPC) codes 

Low-Density Parity-Check (LDPC) code (Kumar, 2004) is the correction code that is currently 

being used in state of the art SSDs. This is because they guarantee a better capability for error 

correction than BCH codes, but at an increased cost of storage (Wang et al., 2014). An excellent 

LDPC code ensures that the rate of failure (that is, the percentage of reads where the code fail to 

correct the data) is lower compared to the expected rate for a given number of errors. Also, when 

SSDs are manufactured with error correction, the LDPC code used is made to be systematic, i.e., 

to contain the message (data) in correlation to the code-word. 

An LDPC code is represented by the parity check matrix (H) using the tanner graph, where a part 

of the graph contains nodes that depict the bit in the code-word, and the other part of the graph 

has nodes that depict the equations of the parity check, that produce every parity bit (Kumar, 

2004). When there are errors in a code-word gotten from memory, an LDPC decoder applies 
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belief propagation  to decode iteratively the bits in the code-word with the highest probability to 

have a bit error (Cai et al., 2017).  

        C0   C1   C2   C3 C4 C5   C6 

H = [
1 0 1 0 1 0 0
0 1 1 0 0 1 0
1 0 0 1 0 0 1

]f1            (2.1) 

 

 

Figure 2.2: Tanner Graph of H Matrix (Chang et al., 2016a) 

 

An LDPC code is depicted using a matrix called parity check matrix (H) as shown in equation 

(2.1), where H is very sparse (i.e., the amount of (1) present in the matrix are few). Figure 2.2 

illustrates such a matrix for a code-word 𝑐, with  seven-bit. For an n-bit code-word that encodes 

a k-bit data message, H is sized to be an (n - k) × n matrix. In the matrix, every row depicts an 

equation of parity check, while every column depicts one of bits in the code-word. This matrix 

has three rows, as a result the correction of error implements three equations of parity check 

(represented as 𝑓). A non-zero value in Hij shows that equation of parity check 𝑓𝑖 has bit 𝑏𝑗. 

Every equation of parity check XORs all the code-word bits in the equation to determine if the 

output is zero. For illustration, equation of parity check f1 from the matrix in Figure 2.2 is given 

in equation (2.2) as:  
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𝑓1 = 𝑐1 ⊕ 𝑐2 ⊕ 𝑐3 ⊕ 𝑐4 = 0             (2.2) 

Therefore, 𝑐 is a valid code-word only if  

𝐻. 𝑐𝑇 = 0                 (2.3) 

where 𝑐𝑇 is the transpose of the code-word 𝑐.  

For the purpose of belief propagation, H can be depicted using a tanner graph (Zhang et al., 

2011). A Tanner graph comprises check units, which depict the equations of parity check, and bit 

units, which depict the bits in the code-word. An edge joins a check unit Fi to a bit unit Cj only if 

equation of parity check fi has bit cj. Figure 2.2 depicts the graph that coincides with the H matrix 

in equation (2.1).  

One of the function of the controller of the SSD is to read requests. As it does this, it extracts the 

k-bit message data from the code-word r that is kept in the flash memory. The LDPC decoder in 

an SSD has a primary function of decoding (Dolecek, 2014), by which it can correct the code-

word r gotten, so as to get the original code-word c and extract the message data.  

The decoding process involves five workflows. Two information set pieces are parameters to 

ascertain the likelihood of bit error: the likelihood that each bit in the code-word is a one (1) or 

zero (0), and (2) the equations of parity check. The decoder calculates an initial log likelihood 

ratio (LLR) for every bit of the kept code-word. A message LLR comprises of values of LLR for 

every bit, which are changed and transferred among the check units and bit units during each 

step. The iterative belief propagation updates the message LLR, to locate those bits that are most 

likely to have error. 

A number of decoding algorithms exist that perform belief propagation (BP) for LDPC codes. 

The most prevalent is the min-sum (MS) algorithm (Chen & Wang, 2012), a simpler 

implementation of the original BP algorithm for low density parity check (Chang et al., 2016a) 
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with high error correction capability. When the iterations of MS algorithm are performed, the 

decoder tracks a set of code-word bits with high likelihood of error and will then flip such bit. 

The complexity of non-binary LDPC decoders is measured by the degree of multiplication of the 

Galois field used, the size of bits representing the messages passed between the variable and the 

check nodes, and the degree of parallelism (J. Lacruz et al., 2016) 

2.2.5 Throughput 

Throughput is defined as the average number of input bits processed per second. The circuit 

usually processed is a sequential circuit. The fastest SSD today, (Samsung 860 EVO) has a 

sequential read of 550 (Mega Bytes per second) MBps (4.4Gbps) and a sequential write of 

520MBps (4.16Gbps).  

The throughput of a decoder is usually calculated using equation (2.4) (O. Lacruz et al., 2015) 

𝑇 =  
𝑓𝑐𝑙𝑘×𝑁×𝑝

𝐼𝑚𝑎𝑥×(𝑀+𝑑𝑣×𝐷)+(𝑞−1)
𝑀𝑏𝑝𝑠                            (2.4) 

where 

𝑇 = 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 

𝑓𝑐𝑙𝑘 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑐𝑙𝑜𝑐𝑘 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 

𝐼𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 

𝑁 =  𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑛𝑜𝑑𝑒 𝑢𝑛𝑖𝑡𝑠 

𝑀 = 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑒𝑐𝑘 𝑛𝑜𝑑𝑒 𝑢𝑛𝑖𝑡𝑠 

𝑝 =  𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑖𝑠𝑚 𝑓𝑎𝑐𝑡𝑜𝑟 

𝑑𝑣 = 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑛𝑜𝑑𝑒 𝑑𝑒𝑔𝑟𝑒𝑒 

𝐷 = 𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 𝑠𝑡𝑎𝑔𝑒𝑠 𝑢𝑠𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑒𝑠𝑖𝑔𝑛 

𝑞 = 𝐺𝑎𝑙𝑜𝑖𝑠 𝑓𝑖𝑒𝑙𝑑 
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2.2.6 Power Consumption 

The power consumed by the decoder architecture is divided into dynamic power and static 

power. Static power is power consumed when circuit activity is not taking place. For example, 

the power expended by a D flip-flop when neither the D input nor the clock have active inputs 

(i.e., all inputs are "static" because they are at fixed dc levels). Dynamic power is the power 

consumed when the inputs are active 

Dynamic Power,  

𝑃𝐷 =  𝛽 ∗  𝐶 ∗  𝑉𝐷𝐷
2 ∗  𝑓𝑐𝑙𝑘            (2.5) 

Where, 𝑓𝑐𝑙𝑘 is the system frequency (125MHz),  β is the activity factor (β = 1, because all nodes 

are switching at the same rate as the frequency), 𝑉𝐷𝐷 is the source voltage (1.2V) and C is the 

capacitance (1.18 ∗ 10−9F). 

 

2.2.7 ZYNQ 7000 FPGA 

The Zynq 7000 family is based on the Xilinx SoC architecture. These products incorporate a 

feature-rich or single-core or dual-core ARM Cortex based processing system and 28 nm Xilinx 

programmable logic (PL) in a single device. The ARM Cortex CPUs are the main building 

blocks of the processing system and also include on-chip memory, external memory interfaces, 

and peripheral connectivity interfaces. 

The ZC702 evaluation board for the XC7Z020 SoC provides a hardware environment for 

developing and evaluating designs targeting the Zynq® XC7Z020-1CLG484C device. The 

ZC702 board provides features common to many embedded processing systems, including 

DDR3 component memory, a tri-mode Ethernet PHY, general purpose I/O, and two UART 

interfaces. Figure 2.3 shows the ZC702 board with all its labelled parts. 
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Figure 2.3:  Block Diagram of Zynq 7000 Development Board (Xilinx & Inc, 2019) 

 

 

Figure 2.4: Architectural overview of Zynq 7000 Development Board (Xilinx & Inc, 2019) 
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SRAM-based FPGAs, Flash-based FPGAs, and Fuse and Anti-fuse-based FPGAs (one-time 

programmable) are examples of different types of FPGA. The complete decoder architecture is 

synthesized into the following unit blocks: 

2.2.7.1 Processing System 

All Zynq devices have the same basic architecture, and all of them contain, as the basis of 

the processing system, a dual-core ARM Cortex-A9 processor and a second principal part of the 

called the programmable logic (PL).  

2.2.7.2 Logic Fabric 

The PL part of the Zynq device is depicted in Figure 2.4, with various features highlighted. The 

PL is predominantly composed of general purpose FPGA logic fabric, which is composed of 

slices and Configurable Logic Blocks (CLBs), and there are also Input/ Output Blocks (IOBs) for 

interfacing. 

 

Figure 2.5: Logic Fabric and Its Constituent Elements (Crockett et al., 2014) 
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2.2.7.3 Slice 

A sub-unit within the CLB, which contains resources for implementing combinatorial and 

sequential logic circuits. As indicated in Figure 2.4, Zynq slices are used to compute 4 Lookup 

tables and 8 JK Flip-Flops. 

2.2.7.4 Configurable Logic Block (CLB) 

CLBs are small, regular blocks of logic elements that are laid out in a two-dimensional array on 

the PL, and connected to other similar resources via programmable interconnects. Each CLB 

programmed to be positioned next to a switch matrix and contains two logic slices, as shown in 

Figure 2.4. 

2.2.7.5 Lookup Table (LUT) 

A LUT, which stands for LookUp Table is basically a table that defines what the output is for 

any given input(s). In the context of combinational logic, it is the truth table. This truth table 

effectively defines how the combinatorial logic behaves. This flexible logic resource was used to 

implement  

(i) A logic function of up to six inputs; 

(ii) A small ROM;  

(iii) A small RAM; 
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Figure 2.6: Composition of a Configurable Logic Block (Crockett et al., 2014) 

2.2.7.6 Flip-flop (FF) 

This sequential circuit element implemented a 1-bit register, with reset functionality. One of the 

FFs is used to implement a latch. 

2.2.7.7 Switch Matrix 

The switch matrix sits beside each CLB. It is used to implement and provide a flexible routing 

facility for making connections between elements within a CLB; and from a CLB to other logic 

resources on the PL. 

2.2.7.8 Carry Logic 

Arithmetic circuits need intermediate signals to be transmitted between adjacent slices This was 

realized via the carry logic. The carry logic was used to constitute a chain of routes and 

multiplexers to connect slices in a vertical column. 
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2.2.7.9 Input / Output Blocks (IOBs) 

IOBs are logic resources that provide interfacing between the PL logic blocks, and the physical 

device block used to connect to the external circuitry. Each IOB is used to handle a 1-bit input or 

output signal. The IOBs are situated around the perimeter of the device. 

The Xilinx tools automatically inferred the required logic fabrics LUTs, FFs, IOBs, CLBs, 

switch matrix, RAM, etc., from the decoder design, and mapped them accordingly. 

2.2.8 Zynq and Altera SoC Architecture Comparison 

Altera® SoC FPGA and Xilinx Zynq All Programmable SoC integrate a dual-core ARM® 

Cortex®-A9 MP-Core™ processor and FPGA logic into a single programmable device. Since 

their introduction, both devices generated significant design activity within the embedded and 

FPGA development groups. 
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Figure 2.7. High-Level Comparison of Zynq and Altera SoC Architectures (Koelling et al., 

2015) 

 

From a high level, the similarities between the Xilinx Zynq family and the Altera SoC family are 

readily apparent, as shown in Figure 2.6. Both device families integrate a high-performance, 32 

bit dual-core ARM Cortex-A9 MP-Core processor along with their coupled peripherals, all 

linked to a modern FPGA architecture with integrated hard intellectual property (IP) blocks 

(digital signal processing (DSP) blocks, RAM blocks, PCI Express® (PCIe®) blocks, high-speed 

serial transceivers, and so on). In both device families, a hardened DDR memory controller 

primarily serves the ARM processors and optionally serves functions in the programmable logic 

(PL) or FPGA. Altera SoC also provide additional DDR hard memory controllers dedicated to 

FPGA-based functions. In Zynq, these DDR memory interfaces use PL resources. 
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The similarities between these two devices indicates that equivalent logic architectures can be 

implemented on both negligible disparities in results.  

2.2.9 Performance validation 

The main performance metric used for the validation of the error control decoder is the 

throughput power consumption. The throughput is calculated in bits per second (bps). The 

implementation of algorithms using HDL in synthesis tools, requires that the throughput is not 

obtained directly. It has to be found out manually. It is calculated using equation (2.4) 
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2.3 Review of Similar Works 

The following literatures were reviewed and they give a proper perspective of the field domain. 

Yang et al., (2008) presented the implementation of the Min-Max (MM) algorithm, in the log 

likelihood ratio (LLR), as compared to the Min-Sum decoding algorithm. This was done through 

iterative decoding of non-binary LDPC codes over a Galois characteristic field of sixteen (16). 

All the symbols of the Galois field were used in the implementation. A Monte Carlo simulation 

was performed on both algorithms and the result revealed that the Min-Sum Algorithm required 

more number of iterations to converge as compared to the Min-Max Algorithm. This result 

showed that the complexity of the check unit architecture increased dramatically as the Galois 

field. This work experienced a very high decoding complexity in the non-binary decoder scheme 

which makes the Min-Max (MM) decoding scheme offer a large memory making it difficult for 

practical demonstration.  

Lin et al., (2010) proposed an efficient selective architecture of the Min–Max (MM) decoding 

algorithm. This algorithm had the property that it completely avoids the sorting process. Also, 

the paper presented an efficient very large scale integrated (VLSI) architecture for a non-binary 

Min–Max decoder. The non-binary decoder was synthesized and the results showed that the 

technique that was presented was efficient to a certain degree. In addition, the architecture of a 

check-node unit (CNU) implemented in the Min–Max decoder still remained the same without 

any modification. The check node unit of the Min–Max decoding algorithm had a very high 

decoding complexity and as a result could not be implemented practically with high parallelism. 

Chen & Wang., (2012) proposed a simple implementation of the min-sum (MS) algorithm with 

minimal loss. This was done by introducing a set of hard messages exchanged between bit nodes 

and check nodes into the architecture scheme. These messages are different from the already 
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present variable and check node messages in the decoder architecture called soft messages. The 

hard messages introduced were used as the indication in selecting the most reliable messages. 

These messages were arranged such that their absolute values can be determined quickly without 

complex processing in the check unit. The architecture of the decoder proposed was 

implemented with a (620,310) non-binary code with a Galois field characteristic of 32, 𝐺𝐹 (25) 

in a TSMC CMOS technology. The result of the implementation showed a throughput of 64 

Megabits per second (Mbps) with fifteen (15) iterations. The proposed decoder achieved a very 

low throughput. The use of the Min-Sum Algorithm resulted in the increase in the already high 

decoding complexity.  

Codes et al., (2013) proposed a novel relaxed processing of the check node architecture for the 

min-max (MM) non-binary decoding algorithm. This was done by making each of the element of 

the Galois finite field of 𝐺𝐹(2𝑝) to uniquely represent a combination of 𝑝 individual field 

elements. During implementation, the technique developed, first found a set of the 𝑝 messages 

that are most reliable which are sent from the variable (bit) unit to the check node with individual 

elements, called the Minimum-Basis (MB). These messages are then derived from the Minimum-

Basis and sent. This technique aimed at lowering the very high complexity of the check unit 

architecture. The proposed system experienced some loss in performance, but the complexity of 

the check unit architecture was lowered to an extent. In addition, efficient VLSI architectures 

were proposed for the check unit and the non-binary LDPC decoder. A non-binary LDPC code 

of (837,726) code over Galois field characteristic 32, 𝐺𝐹(25) was used. The proposed design 

achieved a throughput of 66𝑀𝑏𝑝𝑠. But the achieved throughput was very low for SSD 

applications and there was a persistence of a very high decoding complexity.  
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Lacruz et al., (2015) proposed a simplified implementation of the Min-Max algorithm. This 

algorithm was termed simplified Trellis Min-Max (TMM) algorithm. This was done by 

removing the subtraction block from the architecture and limiting the use of the minimum finder. 

This resulted in lowering the still very high complexity of the non-binary LDPC decoding 

architecture, by lowering the processing of the check node unit architecture. The messages of the 

check unit were calculated in a parallel way by making use of only the messages whose 

reliability is highest. The presented check unit architecture was achieved using a layered 

scheduling scheme that is horizontally computed. The decoder was implemented using a 

(837,726) non-binary LDPC code with a Galois field characteristic of 32, 𝐺𝐹(25). A throughput 

of 660 Mbps was achieved when the overall architecture of the decoder was implemented in a 90 

nm CMOS technology at nine (9) iterations. But in this proposed decoder, a high throughput 

could not be attained. This made it unsuitable for applications that require high speed transfers. 

The hardware complexity of the decoder was still also very high, even with the modifications. 

Lacruz et al., (2016) proposed an innovative technique based on the trellis min–max algorithm 

for decoding NB-LDPC codes. This was done by lowering the amount of messages transferred 

between variable node units and check node units and also reducing the size of the memory used 

to store the intermediate messages.  This resulted in a reduction in the decoding complexity and 

increased the throughput of the proposed decoder. The loss in performance of the proposed 

algorithm was small. In addition, the decoder was implemented using a layered decoding scheme 

and three non-binary LDPC codes, each having its own Galois field characteristic: (2304, 2048) 

over GF(24), (837, 726) in GF(25), and (1536, 1344) in GF(26). The decoder was implemented 

on a 90nm CMOS technology and attained a throughput of 1.08Gbps. Even with the reduction in 

the decoding complexity and the intermediate messages, the decoder still experienced high 
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hardware complexity as seen in the wiring congestion. The throughput was also below the 

desired speed for modern SSDs. 

Thi & Lee., (2017a) proposed a basic-set trellis min–max algorithm. This was done by 

processing the check units in the decoder in a parallel manner. After this was done, the minimum 

of the messages sent from the check units to the variable units was computed using a minimum 

finder. This technique lowered the high complexity of the check unit. and also lowered the 

amount of variable unit messages and check unit messages that is to be stored in the memory. 

The decoder was implemented using a layered decoding scheme with two non-binary LDPC 

codes: (837, 726) NB-LDPC code and (1512, 1323) code, each having a Galois field 

characteristic of 32 𝐺𝐹(25) and 64 𝐺𝐹(26) respectively. The technology used is a 90nm CMOS. 

This decoder achieved a throughput of 1.67 Gbps and 1.4 Gbps respectively. The decoder still 

experienced high decoding complexity in the check node architecture with low throughput, 

which is not suitable for modern applications.  

Thi & Lee, (2017b) proposed a new extra-two-column trellis min–max (MM), with  forward-

backward scheme and an architecture of a decoder based on only the computation of the first 

lowest values for non-binary LDPC codes. This was done by using an architecture called the one-

minimum finder. This is a scheme that removed all the other values that are higher than the 

minimum value in the processing of the check units of the decoder architecture. This lowered the 

hardware complexity and the latency of the check unit scheme.  The throughput of the decoder 

was also improved by the use of overlapping the unit architectures. The decoder was 

implemented using a layered decoding scheme and a (837, 726) non-binary LDPC code with a 

Galois characteristic field of 32, 𝐺𝐹(25). The technology used is a 90-nm CMOS and a 

throughput of 1.27 Gbps was achieved. As a result of the high Galois field used, the decoder still 
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has high complexity in the check node unit which resulted in complex interconnection network 

and large memory usage.  

 Choi et al., (2017) proposed a  non-binary LDPC decoder that is fully overlapped. This was 

implemented by using three different techniques. First, an early bubble check unit architecture 

was implemented by overlapping check node units and initiating quick parity checks. Second, 

the variable unit and the check unit were overlapped and thereafter stored in the same memory.  

Lastly, a redundant memory that can be used multiple times was used to store all the node unit 

architectures. The cumulative effect of all these techniques resulted in reduction of the initial 

latency of the check unit architecture and reduction in the latency of the decoder in hiding the 

latency of the check unit within the variable unit. This further decreased the latency and 

improved the throughput of the overall decoder. The whole decoder was implemented with a 

NB-LDPC code of (160,80) with 160 node units and 80 check units over Galois characteristic of 

sixty four (64), 𝐺𝐹(26). The achievable throughput was 2.22Gbps in a 65nm process technology. 

The whole decoder scheme suffered from high complexity in the interconnection network as a 

result of the high Galois field used.  

Toriyama et al., (2018)  presented a NB-LDPC decoder that is suited to storage applications. 

with a throughput of 2.267Gbps. The non-binary code employed was a high rate code with a 

Galois field characteristic of eight (8). The work was achieved by the use of two decoding 

algorithms: the min-max decoding algorithm and the iterative hard decoding algorithm.  The 

iterative hard decoding algorithm was implemented to reduce the complexity of the decoder that 

was incurred a result of the min-max algorithm. A logarithm quantization scheme was also used 

alongside the decoding algorithms to further reduce the complexity of the node unit of the 

decoder. A moderate throughput of 2.267Gbps was achieved. This was because of the high 
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number of the node units and the increase in the parallelism of the units. This is a moderately fast 

decoding throughput for a non-binary LDPC decoder. But this throughput was still will not meet 

the requirement of mission critical applications that require excellent error correction at very 

high throughput.  

This review establishes the very high complexity of LDPC decoder schemes, and the 

need for a higher throughput with low power consumption during decoding. This laid the 

platform for the design of an error control decoder that decodes errors with high throughput.   
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CHAPTER THREE 

MATERIALS AND METHODS  

3.1 Introduction 

In this chapter, the materials, the methods and reported procedure used for the implementation 

and synthesis of the non-binary error control decoder for solid state drives are described. The 

error control decoder architecture was written in Verilog with synthesis and implementation 

carried out in VIVADO Suite 2018. 

3.2 Materials 

The materials to be used for this research include the following: 

1. A core i7 laptop with 2.6GHz speed and 16G RAM 

2. Xilinx Field Programmable Gate Array (FPGA) 

3.2.1 Computer System 

Synthesis and implementation performed in this research work were carried out using the 

following materials: 

i. Lenovo laptop computer with the following features 

ii. Processor: Intel (R) Core (TM) i5-3470 CPU @ 2.60GHz 

iii. Installed memory (RAM): 16.00GB (15.8 GB usable) 

iv. System type: 64-bit Operating System, x64-based processor 

3.2.2 Vivado 

The Vivado design suite is the software package used to implement all the models developed in 

Verilog. For the purpose of this research, Vivado Suite 2018 version was used. Figure 3.1 

illustrates the start page that comes up when the software is initialized. This page provides 

options to implement quick start, tasks and learning centre.  
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Figure 3.1: Vivado Design Suite 2018.2 Start Page 

3.3 Methods 

The methods followed to achieve the objectives are as follows: 

1. Design of the NB-LDPC code: 

a. Generate the Parity-Check Matrix (H).   

b. Generate the NB-LDPC Code in Verilog. 

2. Emulation of the error control code decoder architecture 

a. Build the module library based on the target LDPC code and declare the 

parameters and quantization bits 

b. Insertion of interconnect network and routing between the processing nodes 

c. Declaration of the decoding iteration limit 

3. Synthesizing the architecture on the Zynq FPGA. 

a. The complete decoder is synthesized on the Zynq FPGA. 
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b. The performance of the developed system in terms of throughput and power 

consumption is compared with the work of (Toriyama & Markovic, 2018). 

3.3.1 Design of the NB-LDPC Code 

The design of the NB-LDPC code begins with the generation of the Parity-Check Matrix. The 

procedure is explained below: 

3.3.1.1 Generation of the Parity Check Matrix (H) 

The generation of the parity-check matrix begins with the creation of a non-binary base matrix 

(𝐵𝑞). This base matrix is created from two arbitrary sets 𝑆0 and 𝑆1of a non-binary field. The 

process is as follows;  

Let 𝛼 to be a primitive element of Galois Field, GF(q) and q be the order of the field 

where each non-zero element of GF(q) is written as 𝛼𝑖 for integer i. Then,  

Let 𝑠 =  {𝛼0, 𝛼1, 𝛼2, ……𝛼𝑞−2} be a set of nonzero elements of GF(q) 

Let 𝐵𝑞 = [𝑏𝑖,𝑗] , 0 ≤ 𝑖 < 𝑚, 0 ≤ 𝑗 < 𝑛 be an m × n matrix over GF(q),  

where 𝑏𝑖,𝑗 is the non-zero elements of the base matrix and q denotes ‘q-ary’ 

Let 𝑆0 and 𝑆1 be two additive subgroups of GF(q) with orders m and n, respectively, such that 

m + n ≤ q      and      𝑆0 ∩ 𝑆1 = {0} 

Let η be any nonzero element in GF(q). 

Then, the two sets 𝑆0 and 𝑆1 are represented as 

𝑆0 = {𝛼𝑖0 , 𝛼𝑖1 , … . , 𝛼𝑖𝑚−1}          (3.1) 

𝑆1 = {𝛼𝑗0 , 𝛼𝑗1 , … . , 𝛼𝑗𝑛−1}          (3.2) 
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Now, the value of m and n are selected so as to represent the minimum size of Galois field 

needed to create the base matrix.  

Therefore, m = 29, and n = 9 

𝑚 + 𝑛 ≤ 𝑞          (3.3) 

29 + 9 ≤ 64         (3.4) 

Therefore, Galois field 𝐺𝐹 = 64 =  26 

Also a coefficient constant 𝜂 = 1 is selected arbitrarily. 

So, for field 𝐺𝐹(64), 𝜂 = 1 

𝑆0 = {𝛼𝑖0 , 𝛼𝑖1 , 𝛼𝑖2 , 𝛼𝑖3 , 𝛼𝑖4 , 𝛼𝑖5 , 𝛼𝑖6 , 𝛼𝑖7 , 𝛼𝑖8}     (3.5) 

𝑆1 = {𝛼𝑗0 , 𝛼𝑗1 , 𝛼𝑗2 , 𝛼𝑗3 , 𝛼𝑗4 , 𝛼𝑗5 , 𝛼𝑗6 , …… . . , … . 𝛼𝑗𝑛}    (3.6) 

Therefore, 

𝑆0 = {𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5, 𝛼6, 𝛼7, 𝛼8, 𝛼9}      (3.7) 

𝑆1 = {
𝛼3, 𝛼4, 𝛼5, 𝛼6, 𝛼7, 𝛼8, 𝛼9, 𝛼10, 𝛼11, 𝛼12, 𝛼13, 𝛼14, 𝛼15, 𝛼16, 𝛼17, 𝛼18,

𝛼19, 𝛼20, 𝛼21, 𝛼22, 𝛼23, 𝛼24, 𝛼25, 𝛼26, 𝛼27, 𝛼28, 𝛼29, 𝛼30, 𝛼31 } (3.8) 

The base matrix is created using 

𝑩𝑞 = 

[
 
 
 
 
 
 
𝜂𝛼𝑖0 + 𝛼𝑗𝑜 𝜂𝛼𝑖0 + 𝛼𝑗1 𝜂𝛼𝑖0 + 𝛼𝑗2 𝜂𝛼𝑖0 + 𝛼𝑗3 𝜂𝛼𝑖𝑜 + 𝛼𝑗4 𝜂𝛼𝑖0 + 𝛼𝑗5 . 𝜂𝛼𝑖0 + 𝛼𝑗7

.

.

.

.

.
𝜂𝛼𝑖7 + 𝛼𝑗0 𝜂𝛼𝑖7 + 𝛼𝑗1 . 𝜂𝛼𝑖7 + 𝛼𝑗7]

 
 
 
 
 
 

 (3.9) 
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Therefore, substituting for the values into the base matrix gives  

 

𝑩𝑞 = 

[
 
 
 
 
 
 
 
 
𝛼4 𝛼5 𝛼6 𝛼7 𝛼8 𝛼9 𝛼10 𝛼11 𝛼12 𝛼13 𝛼14 𝛼15 𝛼16 𝛼17 𝛼18 𝛼19

𝛼5 𝛼7 𝛼10 𝛼11 𝛼12 𝛼16 𝛼17 𝛼19 𝛼22 𝛼25 𝛼31 𝛼33 𝛼35 𝛼36 𝛼39 𝛼42

𝛼6 𝛼8 𝛼11 𝛼12 𝛼13 𝛼17 𝛼18 𝛼20 𝛼23 𝛼26 𝛼32 𝛼34 𝛼36 𝛼37 𝛼40 𝛼43

𝛼7 𝛼9 𝛼12 𝛼13 𝛼14 𝛼18 𝛼19 𝛼21 𝛼24 𝛼27 𝛼33 𝛼35 𝛼37 𝛼38 𝛼41 𝛼44

𝛼8 𝛼10 𝛼13 𝛼14 𝛼15 𝛼19 𝛼20 𝛼22 𝛼25 𝛼28 𝛼34 𝛼36 𝛼38 𝛼39 𝛼42 𝛼45

𝛼9 𝛼11 𝛼14 𝛼15 𝛼16 𝛼20 𝛼21 𝛼23 𝛼26 𝛼29 𝛼35 𝛼37 𝛼39 𝛼40 𝛼43 𝛼46

𝛼10 𝛼12 𝛼15 𝛼16 𝛼17 𝛼21 𝛼22 𝛼24 𝛼27 𝛼30 𝛼36 𝛼38 𝛼40 𝛼41 𝛼44 𝛼47

𝛼11 𝛼13 𝛼16 𝛼17 𝛼18 𝛼22 𝛼23 𝛼25 𝛼28 𝛼31 𝛼37 𝛼39 𝛼41 𝛼42 𝛼45 𝛼48

𝛼12 𝛼14 𝛼17 𝛼18 𝛼19 𝛼23 𝛼24 𝛼26 𝛼29 𝛼32 𝛼38 𝛼40 𝛼42 𝛼43 𝛼46 𝛼49

 

……

𝛼20 𝛼21 𝛼22 𝛼23 𝛼51 𝛼53 𝛼55 𝛼56 𝛼58 𝛼59 𝛼60 𝛼61 𝛼62

𝛼43 𝛼45 𝛼47 𝛼49 𝛼52 𝛼54 𝛼56 𝛼57 𝛼59 𝛼60 𝛼61 𝛼62 𝛼63

𝛼44 𝛼46 𝛼48 𝛼50 𝛼53 𝛼55 𝛼57 𝛼58 𝛼60 𝛼61 𝛼62 𝛼63 𝛼64

𝛼45 𝛼47 𝛼49 𝛼51 𝛼54 𝛼56 𝛼58 𝛼59 𝛼61 𝛼62 𝛼63 𝛼64 𝛼65

𝛼46 𝛼48 𝛼50 𝛼52 𝛼55 𝛼57 𝛼59 𝛼60 𝛼62 𝛼63 𝛼64 𝛼65 𝛼66

𝛼47 𝛼49 𝛼51 𝛼53 𝛼56 𝛼58 𝛼60 𝛼61 𝛼63 𝛼64 𝛼65 𝛼66 𝛼67

𝛼48 𝛼50 𝛼52 𝛼54 𝛼57 𝛼59 𝛼61 𝛼62 𝛼64 𝛼65 𝛼66 𝛼67 𝛼68

𝛼49 𝛼51 𝛼53 𝛼55 𝛼58 𝛼60 𝛼62 𝛼63 𝛼65 𝛼66 𝛼67 𝛼68 𝛼69

𝛼50 𝛼52 𝛼54 𝛼56 𝛼59 𝛼61 𝛼63 𝛼64 𝛼66 𝛼67 𝛼68 𝛼69 𝛼70]
 
 
 
 
 
 
 
 

 (3.10) 

This results in a (9,29) Base matrix in primitive element form.  Then a masking matrix (Z) is 

created for mapping unto the base matrix. This is to obtain a non-binary code with a minimum 

girth of eight (8). First a (9 × 29) matrix is created, with each element having weight one (1). 

Then a replacement of 1 to 0 is performed on the diagonal element starting from any position of 

the first row to the right at 45 degrees. After reaching the end of a column, the process starts 

again from the top of the next column, until the end of a row is reached. Then the process is 

repeated from the leftmost element of the next row. This continues until any 3 × 3 submatrix of 

masking matrix contains at least one 0-entry, and the masking matrix has the desired row and 

column weight factors.   

Therefore,  
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𝒁 =  

[
 
 
 
 
 
 
 
 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . 1 1 1 1]

 
 
 
 
 
 
 
 

 (3.11) 

After permutations,  

𝒁̃ =  

[
 
 
 
 
 
 
 
 
0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0
0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0
0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0
1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0
0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1
1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0
0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1
1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0
0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1]

 
 
 
 
 
 
 
 

  (3.12) 

Therefore, this results in a masking matrix with column weight of 3 (𝑑𝑣 = 3), and row weight of 

9 (𝑑𝑐 = 9) 

Now, mapping the masking matrix, Z unto the base matrix 𝐵𝑞 gives 

𝑩𝒒,𝒎𝒂𝒔𝒌 =  

[
 
 
 
 
 
 
 
 
0 0 6 0 8 0 10 0 0 0 0 15 0 17 0 19 0 0 0 0 51 0 55 0 58 0 0 0 0
0 0 0 11 0 16 0 19 0 0 0 0 35 0 39 0 43 0 0 0 0 54 0 57 0 60 0 0 0
0 0 0 0 13 0 18 0 23 0 0 0 0 37 0 43 0 46 0 0 0 0 57 0 60 0 62 0 0
7 0 0 0 0 18 0 21 0 27 0 0 0 0 41 0 45 0 49 0 0 0 0 59 0 62 0 64 0
0 10 0 0 0 0 20 0 25 0 34 0 0 0 0 45 0 48 0 52 0 0 0 0 62 0 64 0 66
9 0 14 0 0 0 0 23 0 29 0 37 0 0 0 0 47 0 51 0 56 0 0 0 0 64 0 66 0
0 12 0 16 0 0 0 0 27 0 36 0 40 0 0 0 0 50 0 54 0 59 0 0 0 0 66 0 68
11 0 16 0 18 0 0 0 0 31 0 39 0 42 0 0 0 0 53 0 58 0 62 0 0 0 0 68 0
0 14 0 18 0 30 0 0 0 0 38 0 42 0 46 0 0 0 0 56 0 61 0 64 0 0 0 0 70]

 
 
 
 
 
 
 
 

 (3.13) 

This is the masked base matrix with column weight of 3 (𝑑𝑣 = 3), and row weight of 9 (𝑑𝑐 = 9) 

Now, to construct the non-binary LDPC code, each non-zero element is replaced by a (𝑝 × 𝑝) 

CPM of 𝐺𝐹(8) and each zero element by a (𝑝 × 𝑝) ZM of zeros, where 𝑝 represent the degree of 

parallelism. Toriyama et al (2018) made use of a 58 degree of parallelism. In this work, 𝑝 is 

chosen to be  58. This is because, increasing the degree of parallelism, increases the throughput 
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of the error control decoder. Multiplying 𝑝 by 10 gives 580. But when designing the decoder, the 

value 580 gives an error when synthesizing on the FPGA.  

3.3.1.2 Generation of the NB-LDPC Code in Verilog 

The dispersion of the CPM and the ZM into the matrix yields a sparse array of elements that 

result into the LPDC code. This matrix is then programmed in Verilog so as to be able to build 

the architecture of the error control decoder. Figure 3.2 illustrates the declaration of the nodes 

that make up the non-binary LDPC code. Each non-zero element in the matrix represent a 

connection between the variable node and the check node. Values within 𝐺𝐹(8) i.e. 

{0,1,2,3,4,5,6,7}  are used in the model, as seen in the initial value‘3’ used in Figure 3.2 below.  

 

Figure 3.2: The NB-LDPC Code in Verilog 
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3.3.2 Emulation of the error control code decoder architecture 

The emulation of the decoder begins with declaration of the module, ports and the signals. The 

parameters necessary for the full implementation of the LDPC module are declared.  

3.3.2.1 Module Library Declaration with Parameters 

Figure 3.3. Shows the LDPC module declaration. The LDPC module has its register, output and 

input ports declared, with their respective bit sizes. After the declaration, the wires that connect 

the nodes are labeled alongside their respective bits.  

 

Figure 3.3: Verilog Description of the LDPC Module 
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The Q-wire signify the message transferred from the variable node to the check node, while the 

R-wire represent the message passed from the check node to the variable node. 

 

3.3.2.2 Insertion of Interconnect Network and Routing 

The messages passed between the nodes are done through routing networks. Bits and routing 

connections are assigned to every variable/check node connected to its respective check/variable 

node. Messages are passed only when there is a connection between nodes. Figure 3.4 shows the 

wires of the nodes and their respective bit assignments. 

 

 

Figure 3.4: Routing and Interconnection in the LDPC Decoder 
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3.3.2.3 Declaration of Check Equation & Iteration Limit 

The check equations that are used to determine the performance of the error control decoder are 

declared. The check nodes corresponding to the non-zero elements of the LDPC code form a 

series of equations that make up the combinatorial logic for the correction of errors in the 

system.  

 

 

Figure 3.5: Check Equations and Iteration Limit Declaration 
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The procedural statement alongside the sensitivity list that begin the sequential circuit, determine 

the number of iterations that occurred for complete error correction as well as the iteration limit 

of the decoder.  Figure 3.5 illustrates the output check equations and the iteration limit of the 

decoder circuit. 

3.3.3 Synthesis of the Architecture on the Zynq FPGA 

The decoder architecture is categorized by modules, and is briefly described by the logic 

resources used during synthesis and optimization. XST performs during FPGA synthesis, both 

mapping and optimization on the complete design. The complete decoder architecture as shown 

in Figure 3.6, is synthesized on the ZYNQ FPGA Board. 
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Figure 3.6: Architecture of the Non-binary LDPC Decoder 
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The variable node and check node units are arranged in parallel to achieve a very high 

throughput. This results in the utilization of more logic resources which will translate to a higher 

segmentation of the memory block. Data is passed between the variable and check node units 

through the multiplexer/demultiplexers. 

The decoder calculates an initial log likelihood ratio (LLR) for every bit of the code. Message 

LLR comprising of values of LLR for every bit, are transferred among the check units and bit 

units during each iteration. The decoder allows each check unit use its information of parity 

check to know the degree that the value LLR of each bit is changed, using the current message 

LLRs from the variable units. Each variable unit collate the updated LLRs from each bit to 

produce a new LLR value, using the most current message LLRs from the check units. The 

equations of parity check are used to know if the values estimated by the new message LLRs for 

each unit have no error. The process stops when the estimated bit values have no error after the 

last iteration or when the maximum iteration limit is attained. 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1 Introduction 

In this chapter, the results for the research work are presented and discussed. The synthesis of the 

error control decoder is evaluated and analysed. 

4.2 Synthesis 

Vivado IDE 2018.2 performs the logic specification of the behaviour of the error control decoder 

at the RTL level. It is changed into an implementation of the architecture in logic gates. Figure 

4.1 illustrates the window showing the complete synthesis of the error control decoder 

architecture 

Figure 4.1: Project Manager Depicting Completed Synthesis of the Design 
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The Vivado project manager monitors the synthesis run from the Log window. The project 

manager gives a summarized detail of the synthesized design.  

4.2.1 Register Transfer Level Analysis 

Vivado 2018.2 transforms the RTL code into a gate-level description that goes through logic 

optimization and simplification. A gate-level netlist that is optimized is derived from the 

mapping of the logic gates.  Reports that contain details about the usage of the cell and utilization 

is generated and documented in Appendix B. The output is a netlist of the synthesized modules 

and is illustrated in the top level schematic in Appendix A. 

The Schematic window permits the display selective logic expansion. At the RTL level in 

Elaborated Design, the interpretation of the code is shown. The logic representation of the parity 

check matrix is built. The nodes in a layer are connected to the next layer where processing 

results are transferred. The Synthesis tool generates the gates. The gates, connectivity and 

hierarchy, are displayed at the upper level of the design, as shown in the schematic view of the 

LDPC logic in Appendix A 
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Figure 4.2: Elaborated View of the LDPC Logic 

The elaborated view shown in Figure 4.2 depicts the adder-input and output circuitry of the 

nodes and the check equation logic. The elaborated window illustrates the RTL synthesized 

logic. For every iteration, the variable node is processed and the result is fed to the check node 

for further processing. Afterwards the check equation logic performs at each node the correction 

of errors. The final output result is gotten when the maximum iteration limit is reached or when 

the output value is zero.  

4.2.2 RTL Synthesized Design 

The Device window gives a graphical view of the synthesized design as well as the connections 

and, logic objects placement. The Synthesized Design window shown in Figure 4.3 illustrates a 

graphical implementation of the connection of the RTL logic of the error control decoder. Each 

tile is located sized in relative proportion to the others.  
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Figure 4.3: Synthesized Design Window of the LDPC Decoder 

Figure 4.3 gives the synthesized design of the overall decoder. The complete rectangular block 

illustrates the ZYNQ architecture of the decoder. It is further divided into smaller rectangular 

regions that show the programmable system and the programmable logic. The top left section of 

the architecture is the programmable system which contains the ARM cortex processor. This 

processor is not utilized in this synthesized design. The remaining section of the architecture is 

the programmable logic, which contains the CLBs, IOBs, switch matrix, slices and RAMs. The 

small blue tiles represent the CLBs. The black rows and columns in-between the CLBs represent 

the switch matrix while the yellow, red, green and blue coloured tiles that are at the edges of the 

blocks represent the IOBs. The utilization and properties of each of the logic elements in the 

synthesized design in Figure 4.3 is provided in appendix B and C.  
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4.3 Synthesis Utilization 

The Vivado IDE performs important functions of arranging, compiling and synthesizing all the 

Verilog source files and designs of the ECC decoder. This result is the synthesis utilization of 

every component of the ECC decoder 

4.3.1 Utilization Report 

After the completion of the synthesis, the design is analysed and report generated. The 

Utilization Report breaks down the design utilization with respect to resource type.  

Table 4.1: Summary of Utilization Report of Resource Usage 

 

Resource Utilization Available 
Utilization 

(%) 

LUT 49763 53200 96.00 

FF 14598 106400 13.72 

 

Table 4.1 gives the available resource, the number of logic resource utilized and the utilization 

ratio of the logic elements contained in the FPGA. The percentage usage of the LUT and FF are 

96.00 and 13.72 percent respectively.  

From both Table 4.1, it can be seen that more LUT than available were utilized by the decoder 

architecture. But the utilization of FF was within the resource provided by the FPGA. Appendix 

B and C give the detailed report of the utilization of the logic elements. 

4.3.2 Power Usage 

The power utilized by the decoder is calculated using equation (2.5) as follows: 

 𝑃𝐷 = (1 ∗ 1.18 ∗ 10−9 ∗  1.22 ∗  125 ∗ 106)          (4.1) 

𝑃𝐷 = 0.212𝑊              (4.2) 
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Static power, 𝑃𝑆 = 0.011𝑊 

Total power, 

 𝑃 = 𝑃𝐷 + 𝑃𝑆 = 0.212𝑊 + 0.011𝑊           (4.3) 

𝑃 = 0.223𝑊 

Where 𝑓𝑐𝑙𝑘 is the system frequency (125MHz),  β is the activity factor (β = 1, because all nodes 

are switching at the same rate as the frequency), 𝑉𝐷𝐷 is the source voltage (1.2V) and C is the 

capacitance (1.18 ∗ 10−9F). 

The degree of parallelism utilized is this work is 58. The dynamic power measured and the static 

power during implementation of the decoder at the chosen degree of parallelism are 0.02W/bit 

node and 0.083W/bit node respectively. Total measured power,  

𝑃𝑇 = (0.02 + 0.083)𝑊/𝑏𝑖𝑡 𝑛𝑜𝑑𝑒           (4.4) 

𝑃𝑇 = 0.103𝑊/𝑏𝑖𝑡 𝑛𝑜𝑑𝑒 

Therefore, total power measured, 

𝑃𝑇 = 0.103 ∗ 58 = 5.97𝑊 

The power consumed by the decoder is summarized as shown in Table 4.2. 
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Table 4.2: Relationship Between Throughput and Power Consumption 

Degree of 

parallelism 

Throughput 

(Gbps) 

Calculated 

Power (W) 

Measured 

Power (W) 

58 2.34 0.223 5.97 

116 4.68 0.223 11.95 

174 7.03 0.223 17.92 

232 9.37 0.223 23.90 

290 11.71 0.223 29.87 

348 14.05 0.223 35.84 

406 16.39 0.223 41.82 

464 18.74 0.223 47.79 

522 21.08 0.223 53.77 

580 23.42 0.223 68.18 

 

Table 4.2 shows the relationship between throughput and power consumption. As the degree of 

parallelism increases, so also does the throughput and the power measured. The calculated power 

(i.e dynamic power) remains constant. This is because the parameters that determine the 

calculated power do not change. This is seen in equation (2.5). 
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Table 4.3: Summary of Power Consumption of Logic Resource 

Degree of 

parallelism 

Throughput 

(Gbps) 

Calculated 

Power (W) 

0 0 0 

25 0.47 0.053 

50 0.94 0.096 

75 1.41 0.138 

100 1.87 0.181 

125 2.34 0.223 

150 2.81 0.266 

175 3.28 0.308 

200 3.75 0.351 

580 23.42 0.223 

 

Table 4.3, shows the relationship between the throughput and the calculated power (i.e dynamic 

power) as the frequency changes. From Table 4.3, it can be seen that as the frequency increases 

so also does the throughput and the power. This relationship is also captured in equation (2.5). 

The degree of parallelism is kept constant at 58.  

 

4.3.3 Performance Comparison and Analysis 

In order to evaluate the performance of the error control decoder, the throughput and power 

consumption are used as metric. 
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The throughput of the design is analysed as written in equation (2.4). From the synthesis of the 

decoder architecture, the following parameters were measured: 

𝑓𝑐𝑙𝑘 = 125MHz 

𝐼𝑚𝑎𝑥 = 6 

𝑁 = 576 

𝑀 =288 

𝑝 = 58 

𝑑𝑣 = 4 

𝐷 = 2 

𝑞 = 8 

Therefore, calculating the throughput: 

𝑇 =  
125×576 ×58

6 ×(288+4 𝑋 2)+(8−1)
𝑀𝑏𝑝𝑠           (4.5) 

Therefore, 

𝑇 = 2.34𝐺𝑏𝑝𝑠 

This design outperforms that of Toriyama et al in terms of throughput. This is as result of certain 

factors, which are: i) increased parallel processing of the nodes, ii) improved frequency and iii) 

reduced number of iterations. In terms of amount of logic units, Toriyama et al (2018) used 

142,822 LUTs as compared to 49763 LUTs and 14598 FFs used in this designed architecture. 

In terms of power consumption, this decoder architecture consumed a total power of 0.223W, 

while that of Toriyama et al 2018 consumed 0.212W. This is as a result of the high utilization of 

logic elements by the decoder architecture on the FPGA.  
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATION  

5.1 Summary 

In this dissertation, the development of an error control decoder for solid state drives has been 

presented. The synthesis of the hardware description language on an FPGA provides insight into 

the decoding capability of LDPC error control codes. The decoder architecture in terms of 

throughput and power consumption achieves 2.34Gbps at 0.223W as compared to 2.267Gbps at 

0.212W of Toriyama et al 2018. 

5.2 Conclusion 

The research presents the development of an error control decoder for solid state drives. The 

non-binary error control decoder was developed in Verilog and synthesized on the ZYNQ 7000 

FPGA. A parallel decoder architecture that utilizes all the nodes in the scheme utilizes a large 

amount of logic blocks of the ZYNQ development board. This decoder design synthesized on the 

FPGA achieves a throughput of 2.34Gbps, and consumed a total power of 0.223W. This 

throughput is critical for applications that need very fast storage drives. But the decoder 

consumed more power.  

5.3 Limitations 

In the process of implementation of the decoder architecture, it was discovered that, the number 

of input/output ports of the synthesized design exceeded that provided by the FPGA. A bank of 

FPGAs will be needed to accommodate the synthesized design. Due to the cost of purchasing the 

bank of FPGAs, a full implementation of the decoder architecture could not be accomplished.  
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5.4 Significant Contributions 

The significant contributions by this research are as follows: 

1. A non-binary LDPC error control decoder for SSDs was developed.  

2. The developed algorithm exploited a parallel architecture that achieved a very high 

throughput. This is required in today’s state of the art SSDs used in servers. 

3. The developed decoder architecture achieved a 7.3% improvement in its throughput when 

compared with that of Toriyama et al 2018. 

5.5 Recommendations for further work 

The following considerations are recommended for further research: 

1. Several fully parallel decoder cores can be instantiated for even higher throughput. 

2. Banks of more powerful FPGAs can be utilized for the synthesis of the decoder and its 

architectural implementation. 

3. Further improvements and optimization can be made by implementing the LDPC parallel 

decoder on an ASIC chip. 

4. The complexity of the routing interconnect of the SSD decoder can be reduced by 

implementing lower bits for the check and bit nodes. 
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APPENDIX 

APPENDIX A 

Vivado Synthesized Designs 

 

 Top Level Schematic of the Synthesized Design. 

 

Schematic View of the LDPC Logic 
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APPENDIX B 

Synthesis and Implementation Report 

*** Vivado Running 

 

Vivado soft v2018.2 (64/bit) 

  Build 2258646 on Thu Jun 14 21:03:12 MDT 2018 

  **** IP Build 2256618 on Thu Jun 14 22:10:49 MDT 2018 

    ** Copyright 1986-2018 Xilinx, Inc. All Rights Reserved. 

INFO: [Synth 8-2490] definition of module QAdd [C:/Users/LENOVO/OMOWUYI/ECC-

SSD/ECC-SSD.srcs/sources_1/imports/New Origin/QAdd.v:1] 

INFO: [Synth 8-2490] definition of module QSub [C:/Users/LENOVO/OMOWUYI/ECC-

SSD/ECC-SSD.srcs/sources_1/imports/New Origin/QSub.v:1] 

--------------------------------------------------------------------------------- 

Commencing Synthesize: Time: Memory (MB): gain. = 109.793peak = 428.414 cpu = 00:00:04; 

elapse. = 00:00:02;  

--------------------------------------------------------------------------------- 

INFO: [Synth. 8-6157] synthesize module 'LDPC' [C:/Users./LENOVO/OMOWUYI/ECC-

SSD/ECC-SSD.srcs/sources_1/imports/New Origin/LDPC.v:870] 

INFO: [Synth 8-6157] synthesizing module 'CheckNode' 

[C:/Users/LENOVO/OMOWUYI/ECC-SSD/ECC-SSD.srcs/sources_1/imports/New 

Origin/CheckNode.v:2] 

 Parameter num_connections bound. to: 6 – type.: integer  

 Parameter. prec bound. to: 4 - type: integer  

INFO: [Synth 8-6157] synthesize module 'Comparator' [C:/Users/LENOVO/OMOWUYI/ECC-

SSD/ECC-SSD.srcs./sources.1/imports/New. Origin/Comparator.v:1] 

 Parameter prec bound. to: 4 – type. integer  

INFO: [Synth. 8-6155] done synthesizing module 'Comparator' (1#1) 

[C:/Users/LENOVO/OMOWUYI/ECC-SSD/ECC-SSD.srcs/sources_1/imports/New 

Origin/Comparator.v:1] 
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INFO: [Synth. 8-6155] done synthesize module 'CheckNode' (2#1) 

[C:/Users/LENOVO/OMOWUYI/ECC-SSD/ECC-SSD.srcs/sources_1/imports/New 

Origin/CheckNode.v:2] 

INFO: [Synth. 8-6157] synthesize module 'CheckNode__parameterized0' 

[C:/Users/LENOVO/OMOWUYI/ECC-SSD/ECC-SSD.srcs/sources_1/imports/New 

Origin/CheckNode.v:2] 

INFO: [Synth 8-6155] done synthesizing module 'VarNode__parameterized0' (5#1) 

[C:/Users/LENOVO/OMOWUYI/ECC-SSD/ECC-SSD.srcs/sources_1/imports/New 

Origin/VarNode.v:4] 

INFO: [Synth 8-6157] synthesizing module 'VarNode__parameterized1' 

[C:/Users/LENOVO/OMOWUYI/ECC-SSD/ECC-SSD.srcs/sources_1/imports/New 

Origin/VarNode.v:4] 

 Parameter. num-connections bound-to: 2. – type-integer  

 Parameter. prec. bound. to: 4type: integer  

INFO: [Synth. 8-6155] done synthesize module 'VarNode__parameterized1' (5#1) 

[C:/Users/LENOVO/OMOWUYI/ECC-SSD/ECC-SSD.srcs/sources_1/imports/New 

Origin/VarNode.v:4] 

INFO: [Synth. 8-6155] done synthesize module 'LDPC' (6#1) 

[C:/Users/LENOVO/OMOWUYI/ECC-SSD/ECC-SSD.srcs/sources_1/imports/New 

Origin/LDPC.v:870] 

--------------------------------------------------------------------------------- 

Complete Synthesize: Time: gain. = 198.594; elapsed. = 00:00:09. Memory. (MB): peak. = 

517.215; cpu. = 00:00:09 

--------------------------------------------------------------------------------- 

--------------------------------------------------------------------------------- 

Complete Constraint Validation: Time (s): gain. = 198.594; elapsed = 00:00:10. Memory. (MB): 

peak. = 517.215; cpu. = 00:00:09 

--------------------------------------------------------------------------------- 

--------------------------------------------------------------------------------- 

Begin Timing Information & Loading Part 
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--------------------------------------------------------------------------------- 

Loading. part: xc7z020clg484-1 

--------------------------------------------------------------------------------- 

Complete Timing Information & Loading Part: Time: elapsed. = 00:00:10. Memory. (MB): peak. 

= 517.215; gain. = 198.594; cpu. = 00:00:09; 

--------------------------------------------------------------------------------- 

INFO: [Device 21-403] Loading part xc7z020clg484-1 

--------------------------------------------------------------------------------- 

Complete RTL Optimization-Phase 2 : Time: cpu. = 00:00:24;.peak. = 626.969; gain. = 308.348; 

elapsed = 00:00:19; Memory (MB) 

--------------------------------------------------------------------------------- 
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APPENDIX C 

Tile Properties 

 

Name:    CLBLM_L_X54Y24 

Type:    CLBLM_L 

Row:    131 

Column:   133 

Clock Region:   X1Y0 

Number of Cell Pins:  0 

No. of Cell:  0 

No. of Ports:  0 

No. of BELs:  120 

No. of sites:  2 

No. of nodes:  313 

Number of Switchboxes: 0 

Number of clock regions: 1 

 

CLBLM_L_X54Y24 

Site Type Available Required 

% 

Util 

PHY_CONTROL 1 0 0.00 

PHASER_REF 1 0 0.00 

IDELAYCTRL 1 0 0.00 

MCME2_ADV 1 0 0.00 

PLE2_ADV 1 0 0.00 

BUFMCE 2 0 0.00 
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FIFO (OUT) 4 0 0.00 

FIFO (IN) 4 0 0.00 

PHASER_OUT/PHASER_OUT_PHY 4 0 0.00 

PHASER_IN/PHASER_IN_PHY 4 0 0.00 

BUFIO 4 0 0.00 

BUFR 4 0 0.00 

Block RAM Tile 30 0 0.00 

RAMB36/FIFO 30 0 0.00 

IBUFDS 48 0 0.00 

Bonded IOB 50 0 0.00 

IDELAYE2/IDELAYE2_FINEDELAY 50 0 0.00 

ILOGIC 50 0 0.00 

OLOGIC 50 0 0.00 

RAMB18 60 0 0.00 

DSPs 60 0 0.00 

F8 Muxes 2500 0 0.00 

LUT as Memory 4000 0 0.00 

F7 Muxes 5000 0 0.00 

Slice LUTs 10000 0 0.00 

Logic LUT 10000 0 0.00 

Slice 20000 0 0.00 

Flip Flop (Register) 20000 0 0.00 

Latch (Register) 20000 0 0.00 

 

 

 

 


