

DEVELOPMENT OF A NON-BINARY ERROR CONTROL DECODER FOR SOLID

STATE DRIVES

BY

OMOWUYI OMONIYI OLAJIDE

DEPARTMENT OF COMPUTER ENGINEERING

FACULTY OF ENGINEERING

AHMADU BELLO UNIVERSITY, ZARIA

NIGERIA.

MARCH, 2021

i

DEVELOPMENT OF A NON-BINARY ERROR CONTROL DECODER FOR SOLID

STATE DRIVES

BY

Omowuyi Omoniyi OLAJIDE B.Eng. (ABU Zaria, 2014)

P17EGCP8074

omowuyi@gmail.com

A DISSERTATAION SUBMITTED TO THE SCHOOL OF POSTGRADUATE

STUDIES, AHMADU BELLO UNIVERSITY ZARIA

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF

MASTERS DEGREE IN COMPUTER ENGINEERING.

DEPARTMENT OF COMPUTER ENGINEERING

FACULTY OF ENGINEERING

AHMADU BELLO UNIVERSITY, ZARIA

NIGERIA

MARCH, 2021

ii

DECLARATION

I declare that this dissertation entitled “Development of A Non-Binary Error Control Decoder

for Solid State Drives” has been carried out by me in the Department of Computer Engineering,

Ahmadu Bello University, Zaria as part of the requirements for the award of the degree of

Master of Science in Computer Engineering. The information derived from the literature has

been duly acknowledged in the text and a list of references provided. No part of this dissertation

was previously presented for another degree or diploma at this or any other institution.

Omowuyi Olajide

 (Student) Signature Date

iii

CERTIFICATION

This dissertation entitled DEVELOPMENT OF A NON-BINARY ERROR CONTROL

DECODER FOR SOLID STATE DRIVES by Omowuyi OLAJIDE meets the regulations

governing the award of the degree of Master of Science (M.Sc.) in Computer Engineering of the

Ahmadu Bello University and is approved for its contribution to knowledge and literary

presentation.

Dr M. B. Abdulrazaq

(Chairman, Supervisory Committee) Signature Date

Dr E. A. Adedokun

(Member, Supervisory Committee) Signature Date

Prof. M. B. Mu’azu

(Head of Department) Signature Date

Prof. Sani. A. Abdullahi

(Dean, School of Postgraduate Studies) Signature Date

iv

ACKNOWLEGDEMENT

My immediate heartfelt gratitude goes to the Almighty God for the successful completion of this

work. I could only imagine what life would have been for me without Him. Lord, I am

forever grateful.

Foremost, I would like to express my sincere gratitude to my supervisors, Dr. M. B. Abdulrazaq

and Dr. E. A. Adedokun for their patience, motivation, enthusiasm, constant drive, and vast

knowledge. My sincere appreciation also goes to Dr. I. J. Umoh for his excellent contribution

and counselling. Their immeasurable guidance helped me shape the research problem and

constantly provided me with the insight towards the research and writing the dissertation report. I

feel so privileged and honoured to have such a wonderful combination of supervisory committee.

God bless you Sirs.

My sincere appreciation goes to the Head of the Department, Prof. M. B. Mu’azu for his

contributions. Thank you so much sir for the constant reminder of the need to

complete this research work on time.

My appreciation also goes to Dr. Emmanuel Okafor, Dr. A. T. Salawudeen, Dr. B. O. Sadiq, Dr.

Y. Basira, Dr Y. Ibrahim and Engr. S.Y. Muhammed for all their contributions, motivation and

assistance.

I am thankful to all the lecturers of Computer Engineering Department, Ahmadu Bello

University, namely; Dr. T. H. Sikiru, Dr. Y. A. Sha’aban, Dr. H. Bello Salau, Dr. I. A. Bello,

Mrs Z. M Abubakar, Mr. H. Zaharadeen, Mr. A. Umar, Mr. O. Ajayi and Mr. S. Y. Ibrahim for

their kind advice and motivation. Also to Prof. F.O Anafi for your wonderful contribution.

v

Last but not the least, special thanks and deepest appreciation go to my parent and siblings for

their endless love, unconditional support, advice, understanding and prayers. I am really grateful

to everyone, for the support and love, May the Lord God bless you all.

Omowuyi Olajide

March, 2021.

vi

DEDICATION

This dissertation is dedicated to the Almighty God, the Holy Spirit my inspiration, and my

beloved family.

vii

TABLE OF CONTENTS

DECLARATION ii

CERTIFICATION iii

ACKNOWLEGDEMENT iv

DEDICATION vi

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF APPENDICES xii

LIST OF ABBREVIATIONS xiii

ABSTRACT 1

 CHAPTER ONE

 INTRODUCTION

1.1 Background to the study 2

1.2 Significance of Research 4

1.3 Statement of The Problem 5

1.4 Aim and Objectives 5

 CHAPTER TWO

 LITERATURE REVIEW

2.1 Introduction 6

2.2 Review of Fundamental Concepts 6

2.2.1 Solid State Drive (SSD) Architecture 6

2.2.2 Flash Memory Organization 7

2.2.3 Galois Field 7

2.2.4 Error-Correcting Codes Used in SSDs 7

2.2.5 Throughput 11

2.2.6 Power Consumption 12

2.2.7 ZYNQ 7000 FPGA 12

2.2.7.1 Processing System 14

2.2.7.2 Logic Fabric 14

2.2.7.3 Slice 15

2.2.7.4 Configurable Logic Block (CLB) 15

viii

2.2.7.5 Lookup Table (LUT) 15

2.2.7.6 Flip-flop (FF) 16

2.2.7.7 Switch Matrix 16

2.2.7.8 Carry Logic 16

2.2.7.9 Input / Output Blocks (IOBs) 17

2.2.8 Zynq and Altera SoC Architecture Comparison 17

2.2.9 Performance validation 19

2.3 Review of Similar Works 20

 CHAPTER THREE

 MATERIALS AND METHODS

3.1 Introduction 26

3.2 Materials 26

3.2.1 Computer System 26

3.2.2 Vivado 26

3.3 Methods 27

3.3.1 Design of the NB-LDPC Code 28

3.3.1.1 Generation of the Parity Check Matrix (H) 28

3.3.1.2 Generation of the NB-LDPC Code in Verilog 32

3.3.2 Emulation of the error control code decoder architecture 33

3.3.2.1 Module Library Declaration with Parameters 33

3.3.2.2 Insertion of Interconnect Network and Routing 34

3.3.2.3 Declaration of Check Equation & Iteration Limit 35

3.3.3 Synthesis of the Architecture on the Zynq FPGA 36

 CHAPTER FOUR

 RESULTS AND DISCUSSION

4.1 Introduction 38

4.2 Synthesis 38

4.2.1 Register Transfer Level Analysis 39

4.2.2 RTL Synthesized Design 40

4.3 Synthesis Utilization 42

4.3.1 Utilization Report 42

ix

4.3.2 Power Usage 42

4.3.3 Performance Comparison and Analysis 45

 CHAPTER FIVE

 CONCLUSION AND RECOMMENDATION

5.1 Summary 47

5.2 Conclusion 47

5.3 Limitations 47

5.4 Significant Contributions 48

5.5 Recommendations for further work 48

REFERENCES 49

APPENDIX 52

x

LIST OF TABLES

Table 4.1: Summary of Utilization Report of Resource Usage

Table 4.2: Relationship Between Throughput and Power Consumption

Table 4.3: Summary of Power Consumption of Logic Resource

xi

LIST OF FIGURES

Figure 2.1 Block Diagram of SSD (Eshghi & Micheloni, 2018)

Figure 2.2: Tanner Graph of H Matrix (Chang et al., 2016a)

Figure 2.3: Block Diagram of Zynq 7000 Development Board (Xilinx & Inc, 2019)

Figure 2.4: Architectural overview of Zynq 7000 Development Board (Xilinx & Inc, 2019)

Figure 2.5: Logic Fabric and Its Constituent Elements (Crockett et al., 2014)

Figure 2.6: Composition of a Configurable Logic Block (Crockett et al., 2014)

Figure 2.7. High-Level Comparison of Zynq and Altera SoC Architectures (Koelling et al., 2015)

Figure 3.1: Vivado Design Suite 2018.2 Start Page

Figure 3.2: The NB-LDPC Code in Verilog

Figure 3.3: Verilog Description of the LDPC Module

Figure 3.4: Routing and Interconnection in the LDPC Decoder

Figure 3.5: Check Equations and Iteration Limit Declaration

Figure 3.6: Architecture of the Non-binary LDPC Decoder

Figure 4.1: Project Manager Depicting Completed Synthesis of the Design

Figure 4.2: Elaborated View of the LDPC Logic

Figure 4.3: Synthesized Design Window of the LDPC Decoder

xii

LIST OF APPENDICES

Appendix A Vivado Synthesized Designs

Appendix B Synthesis and Implementation Report

Appendix C Tile Properties

xiii

LIST OF ABBREVIATIONS

Acronym Definition

ARM Advanced Reduced Instruction Set Computing Machine

ATPG Automated Test Pattern Generation

BCH Bose Chaudhuri, Hocquenghem

BEL Basic Element of Logic

BSR Boundary Scan Register

BUF General-Purpose Buffer

BUFGMUX Global Clock MUX Buffer with Output State 0

CAD Computer Aided Design

CN Check Node

CPLD Complex Programmable Logic Device

CSP Chip Scale Package

CPM Circular Permutation Matrix

CPU Central Processing Unit

COB Chip on Board

DDR-SDRAM Double Data Rate Synchronous Dynamic Random Access Memory

DIL Dual in-Line

DLL Dynamic Link Library

xiv

DRAM Dynamic Random Access Memory

DUT Device Under Test

EDA Electronic Design Automation

ECC Error Correction Code

FDCE D Flip-Flop with Clock Enable and Asynchronous Clear

FDPE D Flip-Flop with Clock Enable and Asynchronous Preset

FDRE D Flip-Flop with Clock Enable and Synchronous Reset

FF Flip-flop

FIFO First In First Out

FPGA Field Programmable Gate Array

HDL Hardware Description Language

IBUFG Dedicated Input Buffer with Selectable I/O Interface

IC Integrated Circuit

ICT In-Circuit Test

IDE Integrated Development Environment

I/O Input/Output

IP Intellectual Property

ISP In-System Programming

xv

JTAG Joint Test Action Group

LDPC Low Density Parity Check

LLR Log Likelihood Ratio

LUT Look Up Table

MCM Multi Chip Module

MCU Microcontroller Unit

MUX Multiplexer

MUXCY Carry Logic Multiplexer

NB-LDPC Non Binary Low Density Parity Check

NVM Non-Volatile Memory

ODM Original Design Manufacturer

OEM Original Equipment Manufacturer

OE Output Enable

PCB Printed Circuit Board

PCI Express Peripheral Connect Interface Express

PGA Pin Grid Array

PIO Programmable Input/Output

PL Programmable Logic

xvi

PLD Programmable Logic Device

PLL Phase Locked Loop

PS Processing System

RAM Random Access Memory

RISC Reduced Instruction Set Computing

RTL Register Transfer Level

SoC System on Chip

SRAM Static Random Access Memory

SRL Serial Shift Register

SSD Solid State Drive

SSRAM Synchronous Static Random Access Memory

UART Universal Asynchronous Receiver/Transceiver

USB Universal Serial Bus

UUT Unit Under Test

VHSIC Very High Speed Integrated Circuit

VLSI Very Large Scale Integration

VN Variable Node

XORCY carry-XORs

xvii

XST Xilinx Synthesis technology

ZM Zero Matrix

1

ABSTRACT

This dissertation presents the development of a non-binary error control decoder for solid state

drives that require high throughput when reading data for error correction. The miniaturization of

chip fabrication has made flash memory cells of Solid State Drives (SSDs) susceptible to

distortion and error. This is as a result of the continuous storage of bits unto a single cell, which

eventually leads to an increase in the number of errors to be corrected by the decoder. Also, the

representation of the messages passed between the variable node and the check node involve the

use of large Galois fields, which eventually results in very high decoding complexity without

leading to an increase in the decoding throughput. Bose-Chaudhuri-Hocquenghem (BCH) code

previously utilized to correct multi-bit errors, causes the SSD controller to experience latency

during decoding. In this work, a non-binary Low Density Parity Check (LDPC) code is used in

conjunction with a small Galois Field (GF) of eight, a parallel architecture and a reduced

iteration limit to develop an error control decoder for SSDs. The error control decoder was

synthesized on a ZYNQ 7000 Series Field Programmable Gate Array (FPGA). The developed

error control decoder achieved a throughput of 2.34Gbps at 125-MHz clock frequency and a

maximum iteration limit of six (6). A total power of 0.223W was consumed by the decoder. The

result shows an improvement in the throughput by 7.3%, and an increase in the power by 5.2%

when compared with the decoder implemented by Toriyama et al 2018.

2

CHAPTER ONE

INTRODUCTION

1.1 Background to the study

Systems that perform on-line transaction processing such as cloud computing and virtualization,

which implement Solid State Drives (SSDs) require very fast random access to data (Smith,

2020). The probability of the corruption of data occurring in the memory of semiconductor

devices keeps increasing with the scaling of the technology unit (Zhao et al., 2013). Storage

semiconductor facilities being used include Random Access Memory (RAM), Read Only

Memory (ROM) and flash memory (Eshghi & Micheloni, 2018). The disadvantages in error

detection techniques make them unsuitable for use in semiconductor memories (Micheloni et

al., 2018). They include; cell deterioration, large area overhead, low throughput and very

complex architectures (Zhao et al., 2013). The drawbacks in the error detection techniques

necessitate the development of a more reliable solution is sought that would provide better error

resiliency. Such technique often involves the use of better correction codes that reduce memory

cell deterioration and give high throughput. This technique is the Low Density Parity Check

(LDPC) soft decoding scheme, which is also being used in communication systems. The errors

that are prevalent in data memory can be single bit errors or multi-bit errors. Errors with single

bit in data memory are rectified by using single bit error correction like Hamming code. Multi-bit

errors are corrected using multi-bit error correction, like Bose-Chaudhuri-Hocquenghem (BCH)

code (Reviriego et al., 2012).

The advent of SSDs has revolutionized the memory industry. NAND Flash memories which

make up SSDs have changed the way data memory is implemented. They are now used in many

digital systems which include smartphones, tablets and cameras. SSDs have now become the

3

preferred application for Cloud computing, enterprise servers and ultra-modern laptops (Chang et

al., 2016a). Even in NAND memory, error correction is of utmost importance. This is because,

the tendency for error to occur increases as more bits are stored in smaller cells. This necessitates

the use of Error Correction Codes (ECCs). All ECCs, including LDPC codes, have a probability

of failing at a given bit error rate. BCH codes can correct single bit errors effectively, but are not

reliable when correcting multi-bit errors. As a result, BCH codes are still used when throughput

and bandwidth are not critical requirements. Various literatures have not only established the

excellent capabilities of LDPC codes, but also its drawbacks. (Nicola et al., 2018). LDPC codes

results in complex decoding algorithms and require large logic resource for implementation.

Nonetheless, LDPC codes have become the preferred choice in the enterprise domain (Lee et al.,

2012). This is as a result of the excellent error correction capabilities and the ability of being able

to handle both hard decoding (i.e. zero and one) and soft decoding (i.e. involving probability).

4

1.2 Significance of Research

NAND flash memory is a non-volatile, solid state storage medium that affords numerous

powerful advantages over rotating magnetic storage such as hard disks: increased performance;

higher density; higher reliability; and higher throughput. These advantages make flash memory

ideal for use in portable devices, as well as in high-performance SSDs and server-side caching

systems (Smith, 2020). NAND flash memory also have an undesirable feature-the memory cells

deteriorate slightly with each program/erase (P/E) cycle. As each individual cell deteriorates, its

ability to correctly hold a given bit state reduces, causing its read error rate to increase. At some

point, the errors can no longer be corrected, damaging the cell (Smith, 2020). To date, error

control codes like BCH code have worked well in solid state drives. But that is now changing as

chip fabrication geometries shrink, and as densities increase from single- and multi- to three-

level cells storing one, two or three bits, respectively (Lee et al., 2012). Storing more bits in

smaller cells makes it possible to fit more storage into smaller form factors, but the

smaller/denser cells hold smaller charge and cause a spike in the raw bit error rate of data stored

in the cells. NAND flash memory provides a fixed amount of storage for ECC. Given the fixed

storage, BCH codes are only able to meet output bit error rate requirements with up to a certain

value at considerable speed, and when the cells deteriorate beyond that point, they fail to work

(Smith, 2020). LDPC error-correction technology, particularly through judicious use of soft-

decision LDPC decoding, is able to meet output error rate requirements, and as a result can

greatly extend the usable P/E cycles of NAND flash memory (Eshghi & Micheloni, 2018).

5

1.3 Statement of The Problem

Reduction in the shrinking of the chip technology unit makes cells of memory blocks subject to

growing severe distortion, thereby causing bit errors that mainly weaken the storage performance

and the reliability of the flash memory (Zhao et al., 2013). Conventional BCH codes, which are

currently implemented in all the commercial SSDs today, have become insufficient to correct

these bit errors (Micheloni et al., 2018). The speed of the SSD is limited by how fast the error

correction code can decode the information and present it to the user (Smith, 2020). Therefore,

there is need for an error control decoder that will improve the speed of the SSDs by increasing

the write/read throughput through high parallelization capability and ease of decoding. LDPC

codes employ full parallelization and Galois field representation over multiple read operations to

determine the likelihood of each cell containing a bit value 1 or 0 at high speeds, thereby

providing stronger protection, but at the cost of greater decoding latency and storage overhead

(Micheloni et al., 2018)

1.4 Aim and Objectives

The aim of this research work is to develop a non-binary error control decoder for solid state

drives.

In order to achieve this aim, the following objectives are employed:

1. To develop a non-binary low density parity check code.

2. To emulate the NB-LDPC error control code decoder architecture.

3. To synthesize and compare the performance of the developed system with the work of

(Toriyama & Markovic, 2018) using throughput and power consumption as performance

metrics.

6

CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

The literature review consists of the review of fundamental concepts that are related to this work

and the review of similar works.

2.2 Review of Fundamental Concepts

Fundamental concepts important to the research work are discussed as follows.

2.2.1 Solid State Drive (SSD) Architecture

Flash-memory-based SSDs are able to offer very much faster random access to data and high

transfer speeds. SSDs are logic architectures where every part is soldered on a printed circuit

board and is uniquely packaged. The SSD comprises of a bank of flash memories (or chips) and

a controller, as illustrated in Figure. 2.1

Figure 2.1: Block Diagram of SSD (Eshghi & Micheloni, 2018).

7

2.2.2 Flash Memory Organization

The flash memory is distributed across many flash chips, where they each possess from one to

multiple dies. Dies are distinct sets of silicon wafer that are joined to the chip pins. It is

illustrated in Figure 2.1. SSDs usually possess 5–18 chips per die, and can contain up to a

maximum of 16 dies on each chip. Each one is joined to a single or multiple channels of the

physical memory, and these channels are not duplicated within the chips (Chang et al., 2016b).

2.2.3 Galois Field

A Galois field GF(q) is also called a finite field. This is a field that contains a finite number of

elements. As with any field, a finite field is a set on which the operations of multiplication,

addition, subtraction and division are defined and satisfy certain basic rules. The symbol 𝑞 stands

for q-ary and it represents the orders of the Galois field. In the construction of binary and non-

binary QC LDPC codes, a nonzero element in GF(q) is represented by a non-binary Circular

Permutation Matrix (CPM), while the zero element is represented by a zero matrix (ZM).

CPM/ZM is a square matrix over GF(q)/zero where if every row of the matrix is the cyclic-shift

of the row above it one place to the right, and the top row is the cyclic-shift of the last row one

place to the right.

The number of edges that are incident with a variable node (or check node) in the Tanner graph

of an LDPC code is called the variable node degree (or check node degree). The girth of an

LDPC code is the length of the shortest cycle in its Tanner graph. Cycles, especially short cycles,

leave a bad effect on the performance of LDPC decoders.

2.2.4 Error-Correcting Codes Used in SSDs

Conventional SSDs usually make use of one error correction code, which is the Bose–

Chaudhuri–Hocquenghem (BCH) code. This is because, the BCH code permit multiple bit error

8

correction (Lee et al., 2012), and single read of flash memory that generate error (Lee et al.,

2012). Low-density parity-check (LDPC) codes on the other hand use accumulated information

over many read operations to ascertain the probability of each cell having a bit value one (1) or a

zero (0) (Kumar, 2004), thus enabling a better and reliable protection, though at the expense of

increased decoding latency and excessive area (Wang et al., 2014).

2.2.4.1 Bose–Chaudhuri–Hocquenghem (BCH) Codes

Bose–Chaudhuri–Hocquenghem (BCH) codes (Lee et al., 2012) have been adopted in SSDs

during the past few years, as a result of their ability to detect and correct multi-bit errors, and at

the same time ensuring that latency and hardware cost is reduced (Lee et al., 2012). They are

designed to ensure correction to a certain degree, of bit errors within each codeword. A stronger

error correction strength demands more check bits or an increased codeword length.

2.2.4.2 Low-Density Parity-Check (LDPC) codes

Low-Density Parity-Check (LDPC) code (Kumar, 2004) is the correction code that is currently

being used in state of the art SSDs. This is because they guarantee a better capability for error

correction than BCH codes, but at an increased cost of storage (Wang et al., 2014). An excellent

LDPC code ensures that the rate of failure (that is, the percentage of reads where the code fail to

correct the data) is lower compared to the expected rate for a given number of errors. Also, when

SSDs are manufactured with error correction, the LDPC code used is made to be systematic, i.e.,

to contain the message (data) in correlation to the code-word.

An LDPC code is represented by the parity check matrix (H) using the tanner graph, where a part

of the graph contains nodes that depict the bit in the code-word, and the other part of the graph

has nodes that depict the equations of the parity check, that produce every parity bit (Kumar,

2004). When there are errors in a code-word gotten from memory, an LDPC decoder applies

9

belief propagation to decode iteratively the bits in the code-word with the highest probability to

have a bit error (Cai et al., 2017).

 C0 C1 C2 C3 C4 C5 C6

H = [
1 0 1 0 1 0 0
0 1 1 0 0 1 0
1 0 0 1 0 0 1

]f1 (2.1)

Figure 2.2: Tanner Graph of H Matrix (Chang et al., 2016a)

An LDPC code is depicted using a matrix called parity check matrix (H) as shown in equation

(2.1), where H is very sparse (i.e., the amount of (1) present in the matrix are few). Figure 2.2

illustrates such a matrix for a code-word 𝑐, with seven-bit. For an n-bit code-word that encodes

a k-bit data message, H is sized to be an (n - k) × n matrix. In the matrix, every row depicts an

equation of parity check, while every column depicts one of bits in the code-word. This matrix

has three rows, as a result the correction of error implements three equations of parity check

(represented as 𝑓). A non-zero value in Hij shows that equation of parity check 𝑓𝑖 has bit 𝑏𝑗.

Every equation of parity check XORs all the code-word bits in the equation to determine if the

output is zero. For illustration, equation of parity check f1 from the matrix in Figure 2.2 is given

in equation (2.2) as:

10

𝑓1 = 𝑐1 ⊕ 𝑐2 ⊕ 𝑐3 ⊕ 𝑐4 = 0 (2.2)

Therefore, 𝑐 is a valid code-word only if

𝐻. 𝑐𝑇 = 0 (2.3)

where 𝑐𝑇 is the transpose of the code-word 𝑐.

For the purpose of belief propagation, H can be depicted using a tanner graph (Zhang et al.,

2011). A Tanner graph comprises check units, which depict the equations of parity check, and bit

units, which depict the bits in the code-word. An edge joins a check unit Fi to a bit unit Cj only if

equation of parity check fi has bit cj. Figure 2.2 depicts the graph that coincides with the H matrix

in equation (2.1).

One of the function of the controller of the SSD is to read requests. As it does this, it extracts the

k-bit message data from the code-word r that is kept in the flash memory. The LDPC decoder in

an SSD has a primary function of decoding (Dolecek, 2014), by which it can correct the code-

word r gotten, so as to get the original code-word c and extract the message data.

The decoding process involves five workflows. Two information set pieces are parameters to

ascertain the likelihood of bit error: the likelihood that each bit in the code-word is a one (1) or

zero (0), and (2) the equations of parity check. The decoder calculates an initial log likelihood

ratio (LLR) for every bit of the kept code-word. A message LLR comprises of values of LLR for

every bit, which are changed and transferred among the check units and bit units during each

step. The iterative belief propagation updates the message LLR, to locate those bits that are most

likely to have error.

A number of decoding algorithms exist that perform belief propagation (BP) for LDPC codes.

The most prevalent is the min-sum (MS) algorithm (Chen & Wang, 2012), a simpler

implementation of the original BP algorithm for low density parity check (Chang et al., 2016a)

11

with high error correction capability. When the iterations of MS algorithm are performed, the

decoder tracks a set of code-word bits with high likelihood of error and will then flip such bit.

The complexity of non-binary LDPC decoders is measured by the degree of multiplication of the

Galois field used, the size of bits representing the messages passed between the variable and the

check nodes, and the degree of parallelism (J. Lacruz et al., 2016)

2.2.5 Throughput

Throughput is defined as the average number of input bits processed per second. The circuit

usually processed is a sequential circuit. The fastest SSD today, (Samsung 860 EVO) has a

sequential read of 550 (Mega Bytes per second) MBps (4.4Gbps) and a sequential write of

520MBps (4.16Gbps).

The throughput of a decoder is usually calculated using equation (2.4) (O. Lacruz et al., 2015)

𝑇 =
𝑓𝑐𝑙𝑘×𝑁×𝑝

𝐼𝑚𝑎𝑥×(𝑀+𝑑𝑣×𝐷)+(𝑞−1)
𝑀𝑏𝑝𝑠 (2.4)

where

𝑇 = 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

𝑓𝑐𝑙𝑘 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑐𝑙𝑜𝑐𝑘 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝐼𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝑁 = 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑛𝑜𝑑𝑒 𝑢𝑛𝑖𝑡𝑠

𝑀 = 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑒𝑐𝑘 𝑛𝑜𝑑𝑒 𝑢𝑛𝑖𝑡𝑠

𝑝 = 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑖𝑠𝑚 𝑓𝑎𝑐𝑡𝑜𝑟

𝑑𝑣 = 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑛𝑜𝑑𝑒 𝑑𝑒𝑔𝑟𝑒𝑒

𝐷 = 𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 𝑠𝑡𝑎𝑔𝑒𝑠 𝑢𝑠𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑒𝑠𝑖𝑔𝑛

𝑞 = 𝐺𝑎𝑙𝑜𝑖𝑠 𝑓𝑖𝑒𝑙𝑑

12

2.2.6 Power Consumption

The power consumed by the decoder architecture is divided into dynamic power and static

power. Static power is power consumed when circuit activity is not taking place. For example,

the power expended by a D flip-flop when neither the D input nor the clock have active inputs

(i.e., all inputs are "static" because they are at fixed dc levels). Dynamic power is the power

consumed when the inputs are active

Dynamic Power,

𝑃𝐷 = 𝛽 ∗ 𝐶 ∗ 𝑉𝐷𝐷
2 ∗ 𝑓𝑐𝑙𝑘 (2.5)

Where, 𝑓𝑐𝑙𝑘 is the system frequency (125MHz), β is the activity factor (β = 1, because all nodes

are switching at the same rate as the frequency), 𝑉𝐷𝐷 is the source voltage (1.2V) and C is the

capacitance (1.18 ∗ 10−9F).

2.2.7 ZYNQ 7000 FPGA

The Zynq 7000 family is based on the Xilinx SoC architecture. These products incorporate a

feature-rich or single-core or dual-core ARM Cortex based processing system and 28 nm Xilinx

programmable logic (PL) in a single device. The ARM Cortex CPUs are the main building

blocks of the processing system and also include on-chip memory, external memory interfaces,

and peripheral connectivity interfaces.

The ZC702 evaluation board for the XC7Z020 SoC provides a hardware environment for

developing and evaluating designs targeting the Zynq® XC7Z020-1CLG484C device. The

ZC702 board provides features common to many embedded processing systems, including

DDR3 component memory, a tri-mode Ethernet PHY, general purpose I/O, and two UART

interfaces. Figure 2.3 shows the ZC702 board with all its labelled parts.

13

Figure 2.3: Block Diagram of Zynq 7000 Development Board (Xilinx & Inc, 2019)

Figure 2.4: Architectural overview of Zynq 7000 Development Board (Xilinx & Inc, 2019)

14

SRAM-based FPGAs, Flash-based FPGAs, and Fuse and Anti-fuse-based FPGAs (one-time

programmable) are examples of different types of FPGA. The complete decoder architecture is

synthesized into the following unit blocks:

2.2.7.1 Processing System

All Zynq devices have the same basic architecture, and all of them contain, as the basis of

the processing system, a dual-core ARM Cortex-A9 processor and a second principal part of the

called the programmable logic (PL).

2.2.7.2 Logic Fabric

The PL part of the Zynq device is depicted in Figure 2.4, with various features highlighted. The

PL is predominantly composed of general purpose FPGA logic fabric, which is composed of

slices and Configurable Logic Blocks (CLBs), and there are also Input/ Output Blocks (IOBs) for

interfacing.

Figure 2.5: Logic Fabric and Its Constituent Elements (Crockett et al., 2014)

15

2.2.7.3 Slice

A sub-unit within the CLB, which contains resources for implementing combinatorial and

sequential logic circuits. As indicated in Figure 2.4, Zynq slices are used to compute 4 Lookup

tables and 8 JK Flip-Flops.

2.2.7.4 Configurable Logic Block (CLB)

CLBs are small, regular blocks of logic elements that are laid out in a two-dimensional array on

the PL, and connected to other similar resources via programmable interconnects. Each CLB

programmed to be positioned next to a switch matrix and contains two logic slices, as shown in

Figure 2.4.

2.2.7.5 Lookup Table (LUT)

A LUT, which stands for LookUp Table is basically a table that defines what the output is for

any given input(s). In the context of combinational logic, it is the truth table. This truth table

effectively defines how the combinatorial logic behaves. This flexible logic resource was used to

implement

(i) A logic function of up to six inputs;

(ii) A small ROM;

(iii) A small RAM;

16

Figure 2.6: Composition of a Configurable Logic Block (Crockett et al., 2014)

2.2.7.6 Flip-flop (FF)

This sequential circuit element implemented a 1-bit register, with reset functionality. One of the

FFs is used to implement a latch.

2.2.7.7 Switch Matrix

The switch matrix sits beside each CLB. It is used to implement and provide a flexible routing

facility for making connections between elements within a CLB; and from a CLB to other logic

resources on the PL.

2.2.7.8 Carry Logic

Arithmetic circuits need intermediate signals to be transmitted between adjacent slices This was

realized via the carry logic. The carry logic was used to constitute a chain of routes and

multiplexers to connect slices in a vertical column.

17

2.2.7.9 Input / Output Blocks (IOBs)

IOBs are logic resources that provide interfacing between the PL logic blocks, and the physical

device block used to connect to the external circuitry. Each IOB is used to handle a 1-bit input or

output signal. The IOBs are situated around the perimeter of the device.

The Xilinx tools automatically inferred the required logic fabrics LUTs, FFs, IOBs, CLBs,

switch matrix, RAM, etc., from the decoder design, and mapped them accordingly.

2.2.8 Zynq and Altera SoC Architecture Comparison

Altera® SoC FPGA and Xilinx Zynq All Programmable SoC integrate a dual-core ARM®

Cortex®-A9 MP-Core™ processor and FPGA logic into a single programmable device. Since

their introduction, both devices generated significant design activity within the embedded and

FPGA development groups.

18

Figure 2.7. High-Level Comparison of Zynq and Altera SoC Architectures (Koelling et al.,

2015)

From a high level, the similarities between the Xilinx Zynq family and the Altera SoC family are

readily apparent, as shown in Figure 2.6. Both device families integrate a high-performance, 32

bit dual-core ARM Cortex-A9 MP-Core processor along with their coupled peripherals, all

linked to a modern FPGA architecture with integrated hard intellectual property (IP) blocks

(digital signal processing (DSP) blocks, RAM blocks, PCI Express® (PCIe®) blocks, high-speed

serial transceivers, and so on). In both device families, a hardened DDR memory controller

primarily serves the ARM processors and optionally serves functions in the programmable logic

(PL) or FPGA. Altera SoC also provide additional DDR hard memory controllers dedicated to

FPGA-based functions. In Zynq, these DDR memory interfaces use PL resources.

19

The similarities between these two devices indicates that equivalent logic architectures can be

implemented on both negligible disparities in results.

2.2.9 Performance validation

The main performance metric used for the validation of the error control decoder is the

throughput power consumption. The throughput is calculated in bits per second (bps). The

implementation of algorithms using HDL in synthesis tools, requires that the throughput is not

obtained directly. It has to be found out manually. It is calculated using equation (2.4)

20

2.3 Review of Similar Works

The following literatures were reviewed and they give a proper perspective of the field domain.

Yang et al., (2008) presented the implementation of the Min-Max (MM) algorithm, in the log

likelihood ratio (LLR), as compared to the Min-Sum decoding algorithm. This was done through

iterative decoding of non-binary LDPC codes over a Galois characteristic field of sixteen (16).

All the symbols of the Galois field were used in the implementation. A Monte Carlo simulation

was performed on both algorithms and the result revealed that the Min-Sum Algorithm required

more number of iterations to converge as compared to the Min-Max Algorithm. This result

showed that the complexity of the check unit architecture increased dramatically as the Galois

field. This work experienced a very high decoding complexity in the non-binary decoder scheme

which makes the Min-Max (MM) decoding scheme offer a large memory making it difficult for

practical demonstration.

Lin et al., (2010) proposed an efficient selective architecture of the Min–Max (MM) decoding

algorithm. This algorithm had the property that it completely avoids the sorting process. Also,

the paper presented an efficient very large scale integrated (VLSI) architecture for a non-binary

Min–Max decoder. The non-binary decoder was synthesized and the results showed that the

technique that was presented was efficient to a certain degree. In addition, the architecture of a

check-node unit (CNU) implemented in the Min–Max decoder still remained the same without

any modification. The check node unit of the Min–Max decoding algorithm had a very high

decoding complexity and as a result could not be implemented practically with high parallelism.

Chen & Wang., (2012) proposed a simple implementation of the min-sum (MS) algorithm with

minimal loss. This was done by introducing a set of hard messages exchanged between bit nodes

and check nodes into the architecture scheme. These messages are different from the already

21

present variable and check node messages in the decoder architecture called soft messages. The

hard messages introduced were used as the indication in selecting the most reliable messages.

These messages were arranged such that their absolute values can be determined quickly without

complex processing in the check unit. The architecture of the decoder proposed was

implemented with a (620,310) non-binary code with a Galois field characteristic of 32, 𝐺𝐹 (25)

in a TSMC CMOS technology. The result of the implementation showed a throughput of 64

Megabits per second (Mbps) with fifteen (15) iterations. The proposed decoder achieved a very

low throughput. The use of the Min-Sum Algorithm resulted in the increase in the already high

decoding complexity.

Codes et al., (2013) proposed a novel relaxed processing of the check node architecture for the

min-max (MM) non-binary decoding algorithm. This was done by making each of the element of

the Galois finite field of 𝐺𝐹(2𝑝) to uniquely represent a combination of 𝑝 individual field

elements. During implementation, the technique developed, first found a set of the 𝑝 messages

that are most reliable which are sent from the variable (bit) unit to the check node with individual

elements, called the Minimum-Basis (MB). These messages are then derived from the Minimum-

Basis and sent. This technique aimed at lowering the very high complexity of the check unit

architecture. The proposed system experienced some loss in performance, but the complexity of

the check unit architecture was lowered to an extent. In addition, efficient VLSI architectures

were proposed for the check unit and the non-binary LDPC decoder. A non-binary LDPC code

of (837,726) code over Galois field characteristic 32, 𝐺𝐹(25) was used. The proposed design

achieved a throughput of 66𝑀𝑏𝑝𝑠. But the achieved throughput was very low for SSD

applications and there was a persistence of a very high decoding complexity.

22

Lacruz et al., (2015) proposed a simplified implementation of the Min-Max algorithm. This

algorithm was termed simplified Trellis Min-Max (TMM) algorithm. This was done by

removing the subtraction block from the architecture and limiting the use of the minimum finder.

This resulted in lowering the still very high complexity of the non-binary LDPC decoding

architecture, by lowering the processing of the check node unit architecture. The messages of the

check unit were calculated in a parallel way by making use of only the messages whose

reliability is highest. The presented check unit architecture was achieved using a layered

scheduling scheme that is horizontally computed. The decoder was implemented using a

(837,726) non-binary LDPC code with a Galois field characteristic of 32, 𝐺𝐹(25). A throughput

of 660 Mbps was achieved when the overall architecture of the decoder was implemented in a 90

nm CMOS technology at nine (9) iterations. But in this proposed decoder, a high throughput

could not be attained. This made it unsuitable for applications that require high speed transfers.

The hardware complexity of the decoder was still also very high, even with the modifications.

Lacruz et al., (2016) proposed an innovative technique based on the trellis min–max algorithm

for decoding NB-LDPC codes. This was done by lowering the amount of messages transferred

between variable node units and check node units and also reducing the size of the memory used

to store the intermediate messages. This resulted in a reduction in the decoding complexity and

increased the throughput of the proposed decoder. The loss in performance of the proposed

algorithm was small. In addition, the decoder was implemented using a layered decoding scheme

and three non-binary LDPC codes, each having its own Galois field characteristic: (2304, 2048)

over GF(24), (837, 726) in GF(25), and (1536, 1344) in GF(26). The decoder was implemented

on a 90nm CMOS technology and attained a throughput of 1.08Gbps. Even with the reduction in

the decoding complexity and the intermediate messages, the decoder still experienced high

23

hardware complexity as seen in the wiring congestion. The throughput was also below the

desired speed for modern SSDs.

Thi & Lee., (2017a) proposed a basic-set trellis min–max algorithm. This was done by

processing the check units in the decoder in a parallel manner. After this was done, the minimum

of the messages sent from the check units to the variable units was computed using a minimum

finder. This technique lowered the high complexity of the check unit. and also lowered the

amount of variable unit messages and check unit messages that is to be stored in the memory.

The decoder was implemented using a layered decoding scheme with two non-binary LDPC

codes: (837, 726) NB-LDPC code and (1512, 1323) code, each having a Galois field

characteristic of 32 𝐺𝐹(25) and 64 𝐺𝐹(26) respectively. The technology used is a 90nm CMOS.

This decoder achieved a throughput of 1.67 Gbps and 1.4 Gbps respectively. The decoder still

experienced high decoding complexity in the check node architecture with low throughput,

which is not suitable for modern applications.

Thi & Lee, (2017b) proposed a new extra-two-column trellis min–max (MM), with forward-

backward scheme and an architecture of a decoder based on only the computation of the first

lowest values for non-binary LDPC codes. This was done by using an architecture called the one-

minimum finder. This is a scheme that removed all the other values that are higher than the

minimum value in the processing of the check units of the decoder architecture. This lowered the

hardware complexity and the latency of the check unit scheme. The throughput of the decoder

was also improved by the use of overlapping the unit architectures. The decoder was

implemented using a layered decoding scheme and a (837, 726) non-binary LDPC code with a

Galois characteristic field of 32, 𝐺𝐹(25). The technology used is a 90-nm CMOS and a

throughput of 1.27 Gbps was achieved. As a result of the high Galois field used, the decoder still

24

has high complexity in the check node unit which resulted in complex interconnection network

and large memory usage.

 Choi et al., (2017) proposed a non-binary LDPC decoder that is fully overlapped. This was

implemented by using three different techniques. First, an early bubble check unit architecture

was implemented by overlapping check node units and initiating quick parity checks. Second,

the variable unit and the check unit were overlapped and thereafter stored in the same memory.

Lastly, a redundant memory that can be used multiple times was used to store all the node unit

architectures. The cumulative effect of all these techniques resulted in reduction of the initial

latency of the check unit architecture and reduction in the latency of the decoder in hiding the

latency of the check unit within the variable unit. This further decreased the latency and

improved the throughput of the overall decoder. The whole decoder was implemented with a

NB-LDPC code of (160,80) with 160 node units and 80 check units over Galois characteristic of

sixty four (64), 𝐺𝐹(26). The achievable throughput was 2.22Gbps in a 65nm process technology.

The whole decoder scheme suffered from high complexity in the interconnection network as a

result of the high Galois field used.

Toriyama et al., (2018) presented a NB-LDPC decoder that is suited to storage applications.

with a throughput of 2.267Gbps. The non-binary code employed was a high rate code with a

Galois field characteristic of eight (8). The work was achieved by the use of two decoding

algorithms: the min-max decoding algorithm and the iterative hard decoding algorithm. The

iterative hard decoding algorithm was implemented to reduce the complexity of the decoder that

was incurred a result of the min-max algorithm. A logarithm quantization scheme was also used

alongside the decoding algorithms to further reduce the complexity of the node unit of the

decoder. A moderate throughput of 2.267Gbps was achieved. This was because of the high

25

number of the node units and the increase in the parallelism of the units. This is a moderately fast

decoding throughput for a non-binary LDPC decoder. But this throughput was still will not meet

the requirement of mission critical applications that require excellent error correction at very

high throughput.

This review establishes the very high complexity of LDPC decoder schemes, and the

need for a higher throughput with low power consumption during decoding. This laid the

platform for the design of an error control decoder that decodes errors with high throughput.

26

CHAPTER THREE

MATERIALS AND METHODS

3.1 Introduction

In this chapter, the materials, the methods and reported procedure used for the implementation

and synthesis of the non-binary error control decoder for solid state drives are described. The

error control decoder architecture was written in Verilog with synthesis and implementation

carried out in VIVADO Suite 2018.

3.2 Materials

The materials to be used for this research include the following:

1. A core i7 laptop with 2.6GHz speed and 16G RAM

2. Xilinx Field Programmable Gate Array (FPGA)

3.2.1 Computer System

Synthesis and implementation performed in this research work were carried out using the

following materials:

i. Lenovo laptop computer with the following features

ii. Processor: Intel (R) Core (TM) i5-3470 CPU @ 2.60GHz

iii. Installed memory (RAM): 16.00GB (15.8 GB usable)

iv. System type: 64-bit Operating System, x64-based processor

3.2.2 Vivado

The Vivado design suite is the software package used to implement all the models developed in

Verilog. For the purpose of this research, Vivado Suite 2018 version was used. Figure 3.1

illustrates the start page that comes up when the software is initialized. This page provides

options to implement quick start, tasks and learning centre.

27

Figure 3.1: Vivado Design Suite 2018.2 Start Page

3.3 Methods

The methods followed to achieve the objectives are as follows:

1. Design of the NB-LDPC code:

a. Generate the Parity-Check Matrix (H).

b. Generate the NB-LDPC Code in Verilog.

2. Emulation of the error control code decoder architecture

a. Build the module library based on the target LDPC code and declare the

parameters and quantization bits

b. Insertion of interconnect network and routing between the processing nodes

c. Declaration of the decoding iteration limit

3. Synthesizing the architecture on the Zynq FPGA.

a. The complete decoder is synthesized on the Zynq FPGA.

28

b. The performance of the developed system in terms of throughput and power

consumption is compared with the work of (Toriyama & Markovic, 2018).

3.3.1 Design of the NB-LDPC Code

The design of the NB-LDPC code begins with the generation of the Parity-Check Matrix. The

procedure is explained below:

3.3.1.1 Generation of the Parity Check Matrix (H)

The generation of the parity-check matrix begins with the creation of a non-binary base matrix

(𝐵𝑞). This base matrix is created from two arbitrary sets 𝑆0 and 𝑆1of a non-binary field. The

process is as follows;

Let 𝛼 to be a primitive element of Galois Field, GF(q) and q be the order of the field

where each non-zero element of GF(q) is written as 𝛼𝑖 for integer i. Then,

Let 𝑠 = {𝛼0, 𝛼1, 𝛼2, ……𝛼𝑞−2} be a set of nonzero elements of GF(q)

Let 𝐵𝑞 = [𝑏𝑖,𝑗] , 0 ≤ 𝑖 < 𝑚, 0 ≤ 𝑗 < 𝑛 be an m × n matrix over GF(q),

where 𝑏𝑖,𝑗 is the non-zero elements of the base matrix and q denotes ‘q-ary’

Let 𝑆0 and 𝑆1 be two additive subgroups of GF(q) with orders m and n, respectively, such that

m + n ≤ q and 𝑆0 ∩ 𝑆1 = {0}

Let η be any nonzero element in GF(q).

Then, the two sets 𝑆0 and 𝑆1 are represented as

𝑆0 = {𝛼𝑖0 , 𝛼𝑖1 , … . , 𝛼𝑖𝑚−1} (3.1)

𝑆1 = {𝛼𝑗0 , 𝛼𝑗1 , … . , 𝛼𝑗𝑛−1} (3.2)

29

Now, the value of m and n are selected so as to represent the minimum size of Galois field

needed to create the base matrix.

Therefore, m = 29, and n = 9

𝑚 + 𝑛 ≤ 𝑞 (3.3)

29 + 9 ≤ 64 (3.4)

Therefore, Galois field 𝐺𝐹 = 64 = 26

Also a coefficient constant 𝜂 = 1 is selected arbitrarily.

So, for field 𝐺𝐹(64), 𝜂 = 1

𝑆0 = {𝛼𝑖0 , 𝛼𝑖1 , 𝛼𝑖2 , 𝛼𝑖3 , 𝛼𝑖4 , 𝛼𝑖5 , 𝛼𝑖6 , 𝛼𝑖7 , 𝛼𝑖8} (3.5)

𝑆1 = {𝛼𝑗0 , 𝛼𝑗1 , 𝛼𝑗2 , 𝛼𝑗3 , 𝛼𝑗4 , 𝛼𝑗5 , 𝛼𝑗6 , …… . . , … . 𝛼𝑗𝑛} (3.6)

Therefore,

𝑆0 = {𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5, 𝛼6, 𝛼7, 𝛼8, 𝛼9} (3.7)

𝑆1 = {
𝛼3, 𝛼4, 𝛼5, 𝛼6, 𝛼7, 𝛼8, 𝛼9, 𝛼10, 𝛼11, 𝛼12, 𝛼13, 𝛼14, 𝛼15, 𝛼16, 𝛼17, 𝛼18,

𝛼19, 𝛼20, 𝛼21, 𝛼22, 𝛼23, 𝛼24, 𝛼25, 𝛼26, 𝛼27, 𝛼28, 𝛼29, 𝛼30, 𝛼31 } (3.8)

The base matrix is created using

𝑩𝑞 =

[

𝜂𝛼𝑖0 + 𝛼𝑗𝑜 𝜂𝛼𝑖0 + 𝛼𝑗1 𝜂𝛼𝑖0 + 𝛼𝑗2 𝜂𝛼𝑖0 + 𝛼𝑗3 𝜂𝛼𝑖𝑜 + 𝛼𝑗4 𝜂𝛼𝑖0 + 𝛼𝑗5 . 𝜂𝛼𝑖0 + 𝛼𝑗7

.

.

.

.

.
𝜂𝛼𝑖7 + 𝛼𝑗0 𝜂𝛼𝑖7 + 𝛼𝑗1 . 𝜂𝛼𝑖7 + 𝛼𝑗7]

 (3.9)

30

Therefore, substituting for the values into the base matrix gives

𝑩𝑞 =

[

𝛼4 𝛼5 𝛼6 𝛼7 𝛼8 𝛼9 𝛼10 𝛼11 𝛼12 𝛼13 𝛼14 𝛼15 𝛼16 𝛼17 𝛼18 𝛼19

𝛼5 𝛼7 𝛼10 𝛼11 𝛼12 𝛼16 𝛼17 𝛼19 𝛼22 𝛼25 𝛼31 𝛼33 𝛼35 𝛼36 𝛼39 𝛼42

𝛼6 𝛼8 𝛼11 𝛼12 𝛼13 𝛼17 𝛼18 𝛼20 𝛼23 𝛼26 𝛼32 𝛼34 𝛼36 𝛼37 𝛼40 𝛼43

𝛼7 𝛼9 𝛼12 𝛼13 𝛼14 𝛼18 𝛼19 𝛼21 𝛼24 𝛼27 𝛼33 𝛼35 𝛼37 𝛼38 𝛼41 𝛼44

𝛼8 𝛼10 𝛼13 𝛼14 𝛼15 𝛼19 𝛼20 𝛼22 𝛼25 𝛼28 𝛼34 𝛼36 𝛼38 𝛼39 𝛼42 𝛼45

𝛼9 𝛼11 𝛼14 𝛼15 𝛼16 𝛼20 𝛼21 𝛼23 𝛼26 𝛼29 𝛼35 𝛼37 𝛼39 𝛼40 𝛼43 𝛼46

𝛼10 𝛼12 𝛼15 𝛼16 𝛼17 𝛼21 𝛼22 𝛼24 𝛼27 𝛼30 𝛼36 𝛼38 𝛼40 𝛼41 𝛼44 𝛼47

𝛼11 𝛼13 𝛼16 𝛼17 𝛼18 𝛼22 𝛼23 𝛼25 𝛼28 𝛼31 𝛼37 𝛼39 𝛼41 𝛼42 𝛼45 𝛼48

𝛼12 𝛼14 𝛼17 𝛼18 𝛼19 𝛼23 𝛼24 𝛼26 𝛼29 𝛼32 𝛼38 𝛼40 𝛼42 𝛼43 𝛼46 𝛼49

……

𝛼20 𝛼21 𝛼22 𝛼23 𝛼51 𝛼53 𝛼55 𝛼56 𝛼58 𝛼59 𝛼60 𝛼61 𝛼62

𝛼43 𝛼45 𝛼47 𝛼49 𝛼52 𝛼54 𝛼56 𝛼57 𝛼59 𝛼60 𝛼61 𝛼62 𝛼63

𝛼44 𝛼46 𝛼48 𝛼50 𝛼53 𝛼55 𝛼57 𝛼58 𝛼60 𝛼61 𝛼62 𝛼63 𝛼64

𝛼45 𝛼47 𝛼49 𝛼51 𝛼54 𝛼56 𝛼58 𝛼59 𝛼61 𝛼62 𝛼63 𝛼64 𝛼65

𝛼46 𝛼48 𝛼50 𝛼52 𝛼55 𝛼57 𝛼59 𝛼60 𝛼62 𝛼63 𝛼64 𝛼65 𝛼66

𝛼47 𝛼49 𝛼51 𝛼53 𝛼56 𝛼58 𝛼60 𝛼61 𝛼63 𝛼64 𝛼65 𝛼66 𝛼67

𝛼48 𝛼50 𝛼52 𝛼54 𝛼57 𝛼59 𝛼61 𝛼62 𝛼64 𝛼65 𝛼66 𝛼67 𝛼68

𝛼49 𝛼51 𝛼53 𝛼55 𝛼58 𝛼60 𝛼62 𝛼63 𝛼65 𝛼66 𝛼67 𝛼68 𝛼69

𝛼50 𝛼52 𝛼54 𝛼56 𝛼59 𝛼61 𝛼63 𝛼64 𝛼66 𝛼67 𝛼68 𝛼69 𝛼70]

 (3.10)

This results in a (9,29) Base matrix in primitive element form. Then a masking matrix (Z) is

created for mapping unto the base matrix. This is to obtain a non-binary code with a minimum

girth of eight (8). First a (9 × 29) matrix is created, with each element having weight one (1).

Then a replacement of 1 to 0 is performed on the diagonal element starting from any position of

the first row to the right at 45 degrees. After reaching the end of a column, the process starts

again from the top of the next column, until the end of a row is reached. Then the process is

repeated from the leftmost element of the next row. This continues until any 3 × 3 submatrix of

masking matrix contains at least one 0-entry, and the masking matrix has the desired row and

column weight factors.

Therefore,

31

𝒁 =

[

1 . 1 1 1 1
1 . 1 1 1 1
1 . 1 1 1 1
1 . 1 1 1 1
1 . 1 1 1 1
1 . 1 1 1 1
1 . 1 1 1 1
1 . 1 1 1 1
1 . 1 1 1 1]

 (3.11)

After permutations,

𝒁̃ =

[

0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0
0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0
0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0
1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0
0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1
1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0
0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1
1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0
0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1]

 (3.12)

Therefore, this results in a masking matrix with column weight of 3 (𝑑𝑣 = 3), and row weight of

9 (𝑑𝑐 = 9)

Now, mapping the masking matrix, Z unto the base matrix 𝐵𝑞 gives

𝑩𝒒,𝒎𝒂𝒔𝒌 =

[

0 0 6 0 8 0 10 0 0 0 0 15 0 17 0 19 0 0 0 0 51 0 55 0 58 0 0 0 0
0 0 0 11 0 16 0 19 0 0 0 0 35 0 39 0 43 0 0 0 0 54 0 57 0 60 0 0 0
0 0 0 0 13 0 18 0 23 0 0 0 0 37 0 43 0 46 0 0 0 0 57 0 60 0 62 0 0
7 0 0 0 0 18 0 21 0 27 0 0 0 0 41 0 45 0 49 0 0 0 0 59 0 62 0 64 0
0 10 0 0 0 0 20 0 25 0 34 0 0 0 0 45 0 48 0 52 0 0 0 0 62 0 64 0 66
9 0 14 0 0 0 0 23 0 29 0 37 0 0 0 0 47 0 51 0 56 0 0 0 0 64 0 66 0
0 12 0 16 0 0 0 0 27 0 36 0 40 0 0 0 0 50 0 54 0 59 0 0 0 0 66 0 68
11 0 16 0 18 0 0 0 0 31 0 39 0 42 0 0 0 0 53 0 58 0 62 0 0 0 0 68 0
0 14 0 18 0 30 0 0 0 0 38 0 42 0 46 0 0 0 0 56 0 61 0 64 0 0 0 0 70]

 (3.13)

This is the masked base matrix with column weight of 3 (𝑑𝑣 = 3), and row weight of 9 (𝑑𝑐 = 9)

Now, to construct the non-binary LDPC code, each non-zero element is replaced by a (𝑝 × 𝑝)

CPM of 𝐺𝐹(8) and each zero element by a (𝑝 × 𝑝) ZM of zeros, where 𝑝 represent the degree of

parallelism. Toriyama et al (2018) made use of a 58 degree of parallelism. In this work, 𝑝 is

chosen to be 58. This is because, increasing the degree of parallelism, increases the throughput

32

of the error control decoder. Multiplying 𝑝 by 10 gives 580. But when designing the decoder, the

value 580 gives an error when synthesizing on the FPGA.

3.3.1.2 Generation of the NB-LDPC Code in Verilog

The dispersion of the CPM and the ZM into the matrix yields a sparse array of elements that

result into the LPDC code. This matrix is then programmed in Verilog so as to be able to build

the architecture of the error control decoder. Figure 3.2 illustrates the declaration of the nodes

that make up the non-binary LDPC code. Each non-zero element in the matrix represent a

connection between the variable node and the check node. Values within 𝐺𝐹(8) i.e.

{0,1,2,3,4,5,6,7} are used in the model, as seen in the initial value‘3’ used in Figure 3.2 below.

Figure 3.2: The NB-LDPC Code in Verilog

33

3.3.2 Emulation of the error control code decoder architecture

The emulation of the decoder begins with declaration of the module, ports and the signals. The

parameters necessary for the full implementation of the LDPC module are declared.

3.3.2.1 Module Library Declaration with Parameters

Figure 3.3. Shows the LDPC module declaration. The LDPC module has its register, output and

input ports declared, with their respective bit sizes. After the declaration, the wires that connect

the nodes are labeled alongside their respective bits.

Figure 3.3: Verilog Description of the LDPC Module

34

The Q-wire signify the message transferred from the variable node to the check node, while the

R-wire represent the message passed from the check node to the variable node.

3.3.2.2 Insertion of Interconnect Network and Routing

The messages passed between the nodes are done through routing networks. Bits and routing

connections are assigned to every variable/check node connected to its respective check/variable

node. Messages are passed only when there is a connection between nodes. Figure 3.4 shows the

wires of the nodes and their respective bit assignments.

Figure 3.4: Routing and Interconnection in the LDPC Decoder

35

3.3.2.3 Declaration of Check Equation & Iteration Limit

The check equations that are used to determine the performance of the error control decoder are

declared. The check nodes corresponding to the non-zero elements of the LDPC code form a

series of equations that make up the combinatorial logic for the correction of errors in the

system.

Figure 3.5: Check Equations and Iteration Limit Declaration

36

The procedural statement alongside the sensitivity list that begin the sequential circuit, determine

the number of iterations that occurred for complete error correction as well as the iteration limit

of the decoder. Figure 3.5 illustrates the output check equations and the iteration limit of the

decoder circuit.

3.3.3 Synthesis of the Architecture on the Zynq FPGA

The decoder architecture is categorized by modules, and is briefly described by the logic

resources used during synthesis and optimization. XST performs during FPGA synthesis, both

mapping and optimization on the complete design. The complete decoder architecture as shown

in Figure 3.6, is synthesized on the ZYNQ FPGA Board.

 LLR
0

Variable node
0

Check
node

0

M
u

x

/

D
e

m
u

x

Variable node
1

Variable node
2

Variable node
576

Check
node

1

Check
node

2

Check
node

 LLR
1

 LLR
2

LLR
576

Input
LLR

Output

Figure 3.6: Architecture of the Non-binary LDPC Decoder

37

The variable node and check node units are arranged in parallel to achieve a very high

throughput. This results in the utilization of more logic resources which will translate to a higher

segmentation of the memory block. Data is passed between the variable and check node units

through the multiplexer/demultiplexers.

The decoder calculates an initial log likelihood ratio (LLR) for every bit of the code. Message

LLR comprising of values of LLR for every bit, are transferred among the check units and bit

units during each iteration. The decoder allows each check unit use its information of parity

check to know the degree that the value LLR of each bit is changed, using the current message

LLRs from the variable units. Each variable unit collate the updated LLRs from each bit to

produce a new LLR value, using the most current message LLRs from the check units. The

equations of parity check are used to know if the values estimated by the new message LLRs for

each unit have no error. The process stops when the estimated bit values have no error after the

last iteration or when the maximum iteration limit is attained.

38

CHAPTER FOUR

RESULTS AND DISCUSSION

4.1 Introduction

In this chapter, the results for the research work are presented and discussed. The synthesis of the

error control decoder is evaluated and analysed.

4.2 Synthesis

Vivado IDE 2018.2 performs the logic specification of the behaviour of the error control decoder

at the RTL level. It is changed into an implementation of the architecture in logic gates. Figure

4.1 illustrates the window showing the complete synthesis of the error control decoder

architecture

Figure 4.1: Project Manager Depicting Completed Synthesis of the Design

39

The Vivado project manager monitors the synthesis run from the Log window. The project

manager gives a summarized detail of the synthesized design.

4.2.1 Register Transfer Level Analysis

Vivado 2018.2 transforms the RTL code into a gate-level description that goes through logic

optimization and simplification. A gate-level netlist that is optimized is derived from the

mapping of the logic gates. Reports that contain details about the usage of the cell and utilization

is generated and documented in Appendix B. The output is a netlist of the synthesized modules

and is illustrated in the top level schematic in Appendix A.

The Schematic window permits the display selective logic expansion. At the RTL level in

Elaborated Design, the interpretation of the code is shown. The logic representation of the parity

check matrix is built. The nodes in a layer are connected to the next layer where processing

results are transferred. The Synthesis tool generates the gates. The gates, connectivity and

hierarchy, are displayed at the upper level of the design, as shown in the schematic view of the

LDPC logic in Appendix A

40

Figure 4.2: Elaborated View of the LDPC Logic

The elaborated view shown in Figure 4.2 depicts the adder-input and output circuitry of the

nodes and the check equation logic. The elaborated window illustrates the RTL synthesized

logic. For every iteration, the variable node is processed and the result is fed to the check node

for further processing. Afterwards the check equation logic performs at each node the correction

of errors. The final output result is gotten when the maximum iteration limit is reached or when

the output value is zero.

4.2.2 RTL Synthesized Design

The Device window gives a graphical view of the synthesized design as well as the connections

and, logic objects placement. The Synthesized Design window shown in Figure 4.3 illustrates a

graphical implementation of the connection of the RTL logic of the error control decoder. Each

tile is located sized in relative proportion to the others.

41

Figure 4.3: Synthesized Design Window of the LDPC Decoder

Figure 4.3 gives the synthesized design of the overall decoder. The complete rectangular block

illustrates the ZYNQ architecture of the decoder. It is further divided into smaller rectangular

regions that show the programmable system and the programmable logic. The top left section of

the architecture is the programmable system which contains the ARM cortex processor. This

processor is not utilized in this synthesized design. The remaining section of the architecture is

the programmable logic, which contains the CLBs, IOBs, switch matrix, slices and RAMs. The

small blue tiles represent the CLBs. The black rows and columns in-between the CLBs represent

the switch matrix while the yellow, red, green and blue coloured tiles that are at the edges of the

blocks represent the IOBs. The utilization and properties of each of the logic elements in the

synthesized design in Figure 4.3 is provided in appendix B and C.

42

4.3 Synthesis Utilization

The Vivado IDE performs important functions of arranging, compiling and synthesizing all the

Verilog source files and designs of the ECC decoder. This result is the synthesis utilization of

every component of the ECC decoder

4.3.1 Utilization Report

After the completion of the synthesis, the design is analysed and report generated. The

Utilization Report breaks down the design utilization with respect to resource type.

Table 4.1: Summary of Utilization Report of Resource Usage

Resource Utilization Available
Utilization

(%)

LUT 49763 53200 96.00

FF 14598 106400 13.72

Table 4.1 gives the available resource, the number of logic resource utilized and the utilization

ratio of the logic elements contained in the FPGA. The percentage usage of the LUT and FF are

96.00 and 13.72 percent respectively.

From both Table 4.1, it can be seen that more LUT than available were utilized by the decoder

architecture. But the utilization of FF was within the resource provided by the FPGA. Appendix

B and C give the detailed report of the utilization of the logic elements.

4.3.2 Power Usage

The power utilized by the decoder is calculated using equation (2.5) as follows:

 𝑃𝐷 = (1 ∗ 1.18 ∗ 10−9 ∗ 1.22 ∗ 125 ∗ 106) (4.1)

𝑃𝐷 = 0.212𝑊 (4.2)

43

Static power, 𝑃𝑆 = 0.011𝑊

Total power,

 𝑃 = 𝑃𝐷 + 𝑃𝑆 = 0.212𝑊 + 0.011𝑊 (4.3)

𝑃 = 0.223𝑊

Where 𝑓𝑐𝑙𝑘 is the system frequency (125MHz), β is the activity factor (β = 1, because all nodes

are switching at the same rate as the frequency), 𝑉𝐷𝐷 is the source voltage (1.2V) and C is the

capacitance (1.18 ∗ 10−9F).

The degree of parallelism utilized is this work is 58. The dynamic power measured and the static

power during implementation of the decoder at the chosen degree of parallelism are 0.02W/bit

node and 0.083W/bit node respectively. Total measured power,

𝑃𝑇 = (0.02 + 0.083)𝑊/𝑏𝑖𝑡 𝑛𝑜𝑑𝑒 (4.4)

𝑃𝑇 = 0.103𝑊/𝑏𝑖𝑡 𝑛𝑜𝑑𝑒

Therefore, total power measured,

𝑃𝑇 = 0.103 ∗ 58 = 5.97𝑊

The power consumed by the decoder is summarized as shown in Table 4.2.

44

Table 4.2: Relationship Between Throughput and Power Consumption

Degree of

parallelism

Throughput

(Gbps)

Calculated

Power (W)

Measured

Power (W)

58 2.34 0.223 5.97

116 4.68 0.223 11.95

174 7.03 0.223 17.92

232 9.37 0.223 23.90

290 11.71 0.223 29.87

348 14.05 0.223 35.84

406 16.39 0.223 41.82

464 18.74 0.223 47.79

522 21.08 0.223 53.77

580 23.42 0.223 68.18

Table 4.2 shows the relationship between throughput and power consumption. As the degree of

parallelism increases, so also does the throughput and the power measured. The calculated power

(i.e dynamic power) remains constant. This is because the parameters that determine the

calculated power do not change. This is seen in equation (2.5).

45

Table 4.3: Summary of Power Consumption of Logic Resource

Degree of

parallelism

Throughput

(Gbps)

Calculated

Power (W)

0 0 0

25 0.47 0.053

50 0.94 0.096

75 1.41 0.138

100 1.87 0.181

125 2.34 0.223

150 2.81 0.266

175 3.28 0.308

200 3.75 0.351

580 23.42 0.223

Table 4.3, shows the relationship between the throughput and the calculated power (i.e dynamic

power) as the frequency changes. From Table 4.3, it can be seen that as the frequency increases

so also does the throughput and the power. This relationship is also captured in equation (2.5).

The degree of parallelism is kept constant at 58.

4.3.3 Performance Comparison and Analysis

In order to evaluate the performance of the error control decoder, the throughput and power

consumption are used as metric.

46

The throughput of the design is analysed as written in equation (2.4). From the synthesis of the

decoder architecture, the following parameters were measured:

𝑓𝑐𝑙𝑘 = 125MHz

𝐼𝑚𝑎𝑥 = 6

𝑁 = 576

𝑀 =288

𝑝 = 58

𝑑𝑣 = 4

𝐷 = 2

𝑞 = 8

Therefore, calculating the throughput:

𝑇 =
125×576 ×58

6 ×(288+4 𝑋 2)+(8−1)
𝑀𝑏𝑝𝑠 (4.5)

Therefore,

𝑇 = 2.34𝐺𝑏𝑝𝑠

This design outperforms that of Toriyama et al in terms of throughput. This is as result of certain

factors, which are: i) increased parallel processing of the nodes, ii) improved frequency and iii)

reduced number of iterations. In terms of amount of logic units, Toriyama et al (2018) used

142,822 LUTs as compared to 49763 LUTs and 14598 FFs used in this designed architecture.

In terms of power consumption, this decoder architecture consumed a total power of 0.223W,

while that of Toriyama et al 2018 consumed 0.212W. This is as a result of the high utilization of

logic elements by the decoder architecture on the FPGA.

47

CHAPTER FIVE

CONCLUSION AND RECOMMENDATION

5.1 Summary

In this dissertation, the development of an error control decoder for solid state drives has been

presented. The synthesis of the hardware description language on an FPGA provides insight into

the decoding capability of LDPC error control codes. The decoder architecture in terms of

throughput and power consumption achieves 2.34Gbps at 0.223W as compared to 2.267Gbps at

0.212W of Toriyama et al 2018.

5.2 Conclusion

The research presents the development of an error control decoder for solid state drives. The

non-binary error control decoder was developed in Verilog and synthesized on the ZYNQ 7000

FPGA. A parallel decoder architecture that utilizes all the nodes in the scheme utilizes a large

amount of logic blocks of the ZYNQ development board. This decoder design synthesized on the

FPGA achieves a throughput of 2.34Gbps, and consumed a total power of 0.223W. This

throughput is critical for applications that need very fast storage drives. But the decoder

consumed more power.

5.3 Limitations

In the process of implementation of the decoder architecture, it was discovered that, the number

of input/output ports of the synthesized design exceeded that provided by the FPGA. A bank of

FPGAs will be needed to accommodate the synthesized design. Due to the cost of purchasing the

bank of FPGAs, a full implementation of the decoder architecture could not be accomplished.

48

5.4 Significant Contributions

The significant contributions by this research are as follows:

1. A non-binary LDPC error control decoder for SSDs was developed.

2. The developed algorithm exploited a parallel architecture that achieved a very high

throughput. This is required in today’s state of the art SSDs used in servers.

3. The developed decoder architecture achieved a 7.3% improvement in its throughput when

compared with that of Toriyama et al 2018.

5.5 Recommendations for further work

The following considerations are recommended for further research:

1. Several fully parallel decoder cores can be instantiated for even higher throughput.

2. Banks of more powerful FPGAs can be utilized for the synthesis of the decoder and its

architectural implementation.

3. Further improvements and optimization can be made by implementing the LDPC parallel

decoder on an ASIC chip.

4. The complexity of the routing interconnect of the SSD decoder can be reduced by

implementing lower bits for the check and bit nodes.

49

REFERENCES

Cai, Y., Ghose, S., Haratsch, E. F., Luo, Y., & Mutlu, O. (2017). Error Characterization,

Mitigation, and Recovery in Flash-Memory-Based Solid-State Drives. Proceedings of the

IEEE, 105(9), 1666–1704. https://doi.org/10.1109/JPROC.2017.2713127

Chang, K. K., Nair, P. J., Lee, D., Ghose, S., Qureshi, M. K., & Mutlu, O. (2016a). Low-Cost

Inter-Linked Subarrays (LISA): Enabling fast inter-subarray data movement in DRAM.

Proceedings - International Symposium on High-Performance Computer Architecture,

2016-April, 568–580. https://doi.org/10.1109/HPCA.2016.7446095

Chang, K. K., Nair, P. J., Lee, D., Ghose, S., Qureshi, M. K., & Mutlu, O. (2016b). Low-Cost

Inter-Linked Subarrays (LISA): Enabling fast inter-subarray data movement in DRAM.

Proceedings - International Symposium on High-Performance Computer Architecture,

2016-April, 568–580. https://doi.org/10.1109/HPCA.2016.7446095

Chen, X., & Wang, C. L. (2012). High-throughput efficient non-binary LDPC decoder based on

the simplified min-sum algorithm. IEEE Transactions on Circuits and Systems I: Regular

Papers, 59(11), 2784–2794. https://doi.org/10.1109/TCSI.2012.2190668

Choi, I., Member, S., & Kim, J. (2017). High-Throughput Non-Binary LDPC Decoder. 1–12.

Codes, N. L. P., Cai, F., Member, S., Zhang, X., & Member, S. (2013). Relaxed Min-Max

Decoder Architectures for. 21(11), 2010–2023.

Crockett, L., Elliot, R., Enderwitz, M., & Stewart, R. (2014). The Zynq Book Embedded

Processing with the ARM Cortex-A9 on the Xilinx Zynq-7000 All Programmable SoC. 484.

Retrieved from All Papers/E/Elliot,Ross 2014 - The_Zynq_Book_ebook.pdf

Dolecek, L. (2014). Making Error Correcting Codes Work for Flash Memory Part I : Primer on

ECC , basics of BCH and LDPC codes ECC is a must for Flash ! Flash Memory Summit.

Eshghi, K., & Micheloni, R. (2018). SSD architecture and PCI express interface. In Springer

Series in Advanced Microelectronics (37),1–27. https://doi.org/10.1007/978-981-13-0599-

3_1

Koelling, B., Manager, S., Product Marketing, S., & Bertholdt, J. (2015). Altera Corporation

Zynq to SoC FPGA Design Migration Tips and Techniques. (April), 1–18. Retrieved from

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/tb-111-

zynq-to-soc-fpga.pdf

Kumar, P. (2004). Book reviews - Error control coding; Fundamentals and applications. IEEE

Communications Magazine, 21(6), 48–49. https://doi.org/10.1109/mcom.1983.1091452

Lacruz, J., García-Herrero, F., Canet, M. J., & Valls, J. (2016). Reduced-Complexity Nonbinary

LDPC Decoder for High-Order Galois Fields Based on Trellis Min-Max Algorithm. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, 24(8), 2643–2653.

https://doi.org/10.1109/TVLSI.2016.2514484

Lacruz, J. O., García-Herrero, F., Canet, M. J., & Valls, J. (2016). High-Performance NB-LDPC

50

Decoder With Reduction of Message Exchange. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 24(5), 1950–1961.

https://doi.org/10.1109/TVLSI.2015.2493041

Lacruz, O., Garc, F., Declercq, D., Member, S., & Member, J. V. (2015). Simplified Trellis Min-

Max Decoder Architecture. IEEE TRANSACTIONS ON VERY LARGE SCALE

INTEGRATION (VLSI) SYSTEMS, (32), 1–10.

Lee, K., Lim, S., & Kim, J. (2012). Decoder for NAND Flash Memory. 413–415.

Lee, Y., Yoo, H., Yoo, I., & Park, I. C. (2012). 6.4Gb/s multi-threaded BCH encoder and

decoder for multi-channel SSD controllers. Digest of Technical Papers - IEEE International

Solid-State Circuits Conference, 55(8), 426–427.

https://doi.org/10.1109/ISSCC.2012.6177075

Lin, J., Sha, J., Wang, Z., & Li, L. (2010). An efficient VLSI architecture for nonbinary LDPC

decoders. IEEE Transactions on Circuits and Systems II: Express Briefs, 57(1), 51–55.

https://doi.org/10.1109/TCSII.2009.2036542

Micheloni, R., Marelli, A., & Eshghi, K. (2018). Inside solid state drives (SSDs) (Vol. 37).

Nicola, B., Reis, R., Graziano, P., Masahiro, F., & Todd, A. (2018). VLSI-SoC : Design and

Engineering of Electronics Systems Based on New. Springer.

Reviriego, P., Argyrides, C., & A. Maestro, J. (2012). Efficient error detection in Double Error

Correction BCH codes for memory applications. Microelectronics Reliability, 52(7), 1528–

1530. https://doi.org/10.1016/j.microrel.2012.01.017

Smith, K. (2020). Low-Density Parity Check Error Correction for Solid State Storage. Electronic

Design, (8) 1–13.

Thi, H. P., & Lee, H. (2017a). Basic-Set Trellis Min-Max Decoder Architecture for Nonbinary

LDPC Codes with High-Order Galois Fields. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 26(3), 496–507. https://doi.org/10.1109/TVLSI.2017.2775646

Thi, H. P., & Lee, H. (2017b). Two-Extra-Column Trellis Min-Max Decoder Architecture for

Nonbinary LDPC Codes. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 25(5), 1787–1791. https://doi.org/10.1109/TVLSI.2017.2647985

Toriyama, Y., & Markovic, D. (2018). A 2.267-Gb/s, 93.7-pJ/bit Non-Binary LDPC decoder

with logarithmic quantization and dual-decoding algorithm scheme for storage applications.

IEEE Journal of Solid-State Circuits, 53(8), 2378–2388.

https://doi.org/10.1109/JSSC.2018.2832851

Wang, J., Vakilinia, K., Chen, T. Y., Courtade, T., Dong, G., Zhang, T., … Wesel, R. (2014).

Enhanced precision through multiple reads for LDPC decoding in flash memories. IEEE

Journal on Selected Areas in Communications, 32(5), 880–891.

https://doi.org/10.1109/JSAC.2014.140508

Xilinx, & Inc. (2019). ZC702 Evaluation Board for the Zynq-7000 XC7Z020 SoC User Guide.

51

850, 78. Retrieved from www.xilinx.com

Yang, L., Liu, F., & Li, H. (2008). Min-max decoding for non-binary LDPC codes. Lecture

Notes in Electrical Engineering, 210 LNEE, 125–134. https://doi.org/10.1007/978-3-642-

34528-9_14

Zhang, X., Cai, F., Member, S., & Nb-ldpc, A. N. (2011). Reduced-Complexity Decoder

Architecture for. 19(7), 1229–1238.

Zhao, K., Wenzhe, Z., Hongbin, S., Zhang, T., Xiaodong, Z., & Zheng, N. (2013). LDPC-in-

SSD: making advanced error correction codes work effectively in solid state drives.

Proceedings of 11th USENIX Conference on File and Storage Technologies, 243–256.

52

APPENDIX

APPENDIX A

Vivado Synthesized Designs

 Top Level Schematic of the Synthesized Design.

Schematic View of the LDPC Logic

53

APPENDIX B

Synthesis and Implementation Report

*** Vivado Running

Vivado soft v2018.2 (64/bit)

 Build 2258646 on Thu Jun 14 21:03:12 MDT 2018

 **** IP Build 2256618 on Thu Jun 14 22:10:49 MDT 2018

 ** Copyright 1986-2018 Xilinx, Inc. All Rights Reserved.

INFO: [Synth 8-2490] definition of module QAdd [C:/Users/LENOVO/OMOWUYI/ECC-

SSD/ECC-SSD.srcs/sources_1/imports/New Origin/QAdd.v:1]

INFO: [Synth 8-2490] definition of module QSub [C:/Users/LENOVO/OMOWUYI/ECC-

SSD/ECC-SSD.srcs/sources_1/imports/New Origin/QSub.v:1]

Commencing Synthesize: Time: Memory (MB): gain. = 109.793peak = 428.414 cpu = 00:00:04;

elapse. = 00:00:02;

INFO: [Synth. 8-6157] synthesize module 'LDPC' [C:/Users./LENOVO/OMOWUYI/ECC-

SSD/ECC-SSD.srcs/sources_1/imports/New Origin/LDPC.v:870]

INFO: [Synth 8-6157] synthesizing module 'CheckNode'

[C:/Users/LENOVO/OMOWUYI/ECC-SSD/ECC-SSD.srcs/sources_1/imports/New

Origin/CheckNode.v:2]

 Parameter num_connections bound. to: 6 – type.: integer

 Parameter. prec bound. to: 4 - type: integer

INFO: [Synth 8-6157] synthesize module 'Comparator' [C:/Users/LENOVO/OMOWUYI/ECC-

SSD/ECC-SSD.srcs./sources.1/imports/New. Origin/Comparator.v:1]

 Parameter prec bound. to: 4 – type. integer

INFO: [Synth. 8-6155] done synthesizing module 'Comparator' (1#1)

[C:/Users/LENOVO/OMOWUYI/ECC-SSD/ECC-SSD.srcs/sources_1/imports/New

Origin/Comparator.v:1]

54

INFO: [Synth. 8-6155] done synthesize module 'CheckNode' (2#1)

[C:/Users/LENOVO/OMOWUYI/ECC-SSD/ECC-SSD.srcs/sources_1/imports/New

Origin/CheckNode.v:2]

INFO: [Synth. 8-6157] synthesize module 'CheckNode__parameterized0'

[C:/Users/LENOVO/OMOWUYI/ECC-SSD/ECC-SSD.srcs/sources_1/imports/New

Origin/CheckNode.v:2]

INFO: [Synth 8-6155] done synthesizing module 'VarNode__parameterized0' (5#1)

[C:/Users/LENOVO/OMOWUYI/ECC-SSD/ECC-SSD.srcs/sources_1/imports/New

Origin/VarNode.v:4]

INFO: [Synth 8-6157] synthesizing module 'VarNode__parameterized1'

[C:/Users/LENOVO/OMOWUYI/ECC-SSD/ECC-SSD.srcs/sources_1/imports/New

Origin/VarNode.v:4]

 Parameter. num-connections bound-to: 2. – type-integer

 Parameter. prec. bound. to: 4type: integer

INFO: [Synth. 8-6155] done synthesize module 'VarNode__parameterized1' (5#1)

[C:/Users/LENOVO/OMOWUYI/ECC-SSD/ECC-SSD.srcs/sources_1/imports/New

Origin/VarNode.v:4]

INFO: [Synth. 8-6155] done synthesize module 'LDPC' (6#1)

[C:/Users/LENOVO/OMOWUYI/ECC-SSD/ECC-SSD.srcs/sources_1/imports/New

Origin/LDPC.v:870]

Complete Synthesize: Time: gain. = 198.594; elapsed. = 00:00:09. Memory. (MB): peak. =

517.215; cpu. = 00:00:09

Complete Constraint Validation: Time (s): gain. = 198.594; elapsed = 00:00:10. Memory. (MB):

peak. = 517.215; cpu. = 00:00:09

Begin Timing Information & Loading Part

55

Loading. part: xc7z020clg484-1

Complete Timing Information & Loading Part: Time: elapsed. = 00:00:10. Memory. (MB): peak.

= 517.215; gain. = 198.594; cpu. = 00:00:09;

INFO: [Device 21-403] Loading part xc7z020clg484-1

Complete RTL Optimization-Phase 2 : Time: cpu. = 00:00:24;.peak. = 626.969; gain. = 308.348;

elapsed = 00:00:19; Memory (MB)

56

APPENDIX C

Tile Properties

Name: CLBLM_L_X54Y24

Type: CLBLM_L

Row: 131

Column: 133

Clock Region: X1Y0

Number of Cell Pins: 0

No. of Cell: 0

No. of Ports: 0

No. of BELs: 120

No. of sites: 2

No. of nodes: 313

Number of Switchboxes: 0

Number of clock regions: 1

CLBLM_L_X54Y24

Site Type Available Required

%

Util

PHY_CONTROL 1 0 0.00

PHASER_REF 1 0 0.00

IDELAYCTRL 1 0 0.00

MCME2_ADV 1 0 0.00

PLE2_ADV 1 0 0.00

BUFMCE 2 0 0.00

57

FIFO (OUT) 4 0 0.00

FIFO (IN) 4 0 0.00

PHASER_OUT/PHASER_OUT_PHY 4 0 0.00

PHASER_IN/PHASER_IN_PHY 4 0 0.00

BUFIO 4 0 0.00

BUFR 4 0 0.00

Block RAM Tile 30 0 0.00

RAMB36/FIFO 30 0 0.00

IBUFDS 48 0 0.00

Bonded IOB 50 0 0.00

IDELAYE2/IDELAYE2_FINEDELAY 50 0 0.00

ILOGIC 50 0 0.00

OLOGIC 50 0 0.00

RAMB18 60 0 0.00

DSPs 60 0 0.00

F8 Muxes 2500 0 0.00

LUT as Memory 4000 0 0.00

F7 Muxes 5000 0 0.00

Slice LUTs 10000 0 0.00

Logic LUT 10000 0 0.00

Slice 20000 0 0.00

Flip Flop (Register) 20000 0 0.00

Latch (Register) 20000 0 0.00

